用户名: 密码: 验证码:
冀北人工固沙林林分特征与综合评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河北省北部处于首都的上游,既是北京的沙源地,又是风沙的必经通道,在保障京、津、冀生态安全方面具有重要的作用,为此,河北省营造了大量的人工固沙林。为了掌握河北省北部人工固沙林的生长状况、结构状态和功能作用,本项研究在划分河北省沙化土地类型的基础上,针对北部沙化最严重的坝东森林草原沙化土地和冀西北间山盆地沙化土地2个类型,以近30年来人工营造的华北落叶松、樟子松、侧柏、白榆、北京杨、小叶杨、小美旱杨和新疆杨8个主要树种、15个类型的固沙林为研究对象,从群落生态学和测树学的角度入手,采用野外调查的方法获取了典型林分样地的胸径、树高、冠幅、密度、郁闭度、生物量等反映林分生长和结构的32项指标,采用主成分分析法,为人工固沙林建立了综合评价模型,对林分做出了综合评价。本项研究的主要结论如下:
     (1)冀北人工固沙林受自然环境的影响,林分生长缓慢,生长量低。樟子松的材积连年、平均生长量最高,年均生物量最大值产生于黄羊滩的13a生樟子松林,其次是坝上的30a生华北落叶松和24a生樟子松,最小的是黄羊滩侧柏林。在冀西北零星沙地,白榆的生长状况好于其他树种。北京杨生长量虽不低,但生长过程受环境影响波动较大。所有林分的年均生物量在71-6007kg/hm~2·a,未能达到相应树种正常生长状态时的生物量。
     (2)采用正态分布、对数正态分布、Welbull分布、Gamma分布和β分布5种分布曲线,对8个树种的林分胸径分布进行拟合的结果表明,适合性最好的拟合曲线依次为β分布、正态分布和Welbull分布,分别能够拟合84.6%、76.9%和69.2%的林分,且同时能够符合这3个分布假设的林分达到了69.2%。说明林分大部分处于β分布、正态分布和Welbull分布状态。对数正态分布对所有参与拟合的林分均不能很好地描述。
     (3)15个类型的林分中的Shannon-Wiener多样性指数在0.804-2.221之间,最大值仅2.221,说明冀北人工固沙林的物种多样性较低。其中,以7号侧柏林分最高,其次是1号、2号华北落叶松林分和11号北京杨林分。针叶林的多样性指数普遍高于阔叶林。均匀度指数与Shannon-Wiener指数的大小排序相似。林分的Margalef丰富度指数的范围在0.806-3.733之间,差异较大。随着林龄的增大,物种的数量能够稳定下来并均匀分布。
     (4)所有林分的输沙都发生在地面以上高度0-12cm范围内,其中,35.3%-63.1%的输沙发生在近地表0-2cm高度,64.7%-90.9%的输沙集中发生在距离地面4cm高度范围内。输沙在垂直高度上具有一定的分布规律,越靠近地面,集沙越多,越远离地面,集沙量减少,呈指数分布。30a生的华北落叶松和24a生的樟子松林林内已经没有输沙通过,完全达到了降低风沙侵蚀、固定沙化土地的目的。由于侧柏生长过于缓慢,防护能力低,输沙率高,而白榆林分在阔叶树种中降低输沙率的效果最好。林分输沙率与林分的郁闭度呈显著负相关,在水平方向对降低输沙发挥作用。
     (5)冀北人工固沙林林地土壤总孔隙度在32%-54%之间,土壤孔隙构成中非毛管孔隙占总孔隙度的比例偏高,土壤的持水、保肥能力差,渗水能力强。土壤田间持水量的变化范围在10.54%-37.24%之间。冀西北的零星沙地,土壤有机质含量普遍偏低,而坝上林地的有机质含量明显高,且林分中针叶林的土壤有机质含量最大的林分位于坝上高原,整体上具备森林草原和草甸草原的特点,土地退化不严重。土壤氮素与有机质含量趋势相同。林分土壤中的全磷和速效磷全都处于极低水平。坝上高原和坝下零星沙地的全钾含量截然不同,前者含量很低,后者很高。
     (6)经过主成分分析,建立了综合评价模型,为人工固沙林的总体特征进行了综合评价,15个类型综合评价结果排名顺序为:5号24a生樟子松林>2号30a生华北落叶松林>3号8a生樟子松林>10号5a生北京杨林>11号25a生北京杨林>9号13a生白榆林>1号8a生华北落叶松林>8号7a生白榆林>4号113a生樟子松林>14号9a生小美旱杨林>15号9a生新疆杨林>13号15a生小叶杨林>7号17a生侧柏林>6号7a生侧柏林>12号9a生小叶杨林。排在前3位是分布于坝东森林草原沙化土地类型的24a生樟子松林、30a生华北落叶松林和8a生樟子松林;而排在最后4位的则全部是冀西北间山盆地沙化土地类型的9a生小叶杨林、7a生侧柏林和17a生侧柏林、15a生小叶杨林。
     根据综合评价的结果,把15个人工固沙林类型按照好、较好、中等、较差和差5个等级划分为5个类型组。针对不同等级的人工固沙林简要提出了优化经营对策。总体上说,对于坝上高原,华北落叶松和樟子松是人工固沙造林树种的首选,而对于冀北的零星沙地,最适宜树种是白榆,局部条件下可应用小美旱杨、新疆杨造林,但由于抗旱性差、耗水多,在固沙造林需慎重采用。
The north of Hebei province is located in the upstream of Beijing, it is not only the sourceof sandstorm, but also the channel of wind and sand, it plays an important role in protecting theecological security for Beijing, Tianjin and Hebei. Many plantations have afforested innorthern Hebei in recent decades. In order to understand the growth, structure and ecologicalfuction of sand fixation plantation in northern Hebei, on the basis of sandification land division,aimed to2types of heavy sandification land--east Bashang forest-steppe and northwestbasin-mountain,15type stands composed of different tree species including Larixprincipis-rupprechtii Mayr, Pinus sylvestnis, Populus X beijingensis, Ulmus pumila L.,Platycladus orientalis, Populus simoniiCarr., Populus simonii×(Populus pyramidalis+Salixmatsudana) cv. Poplaris and Populus bolleana were studyed by the method of sample-plotsurvy.32indices including diameter at breast height(DBH), tree height(H), crown breadth, treenumber, crown density, biomass were chose as the main factors to represent the whole status ofstands. Then, the model of comprehensive aseesment for sand-fixation plantations was built byprincipal component analysis method, Characteriscs of stand were evaluated in the end. Themain results for this paper are listed as the follows:
     (1) Sand fixation plantations generally grow very slow due to the harsh surroundings innorthern Hebei, Pinus sylvestnis has the biggest growing rate of volume in both averageincrement and current annual increment. The maxium value happened at13years old forest inHuangyangtan, followed by30years old Larix principis-rupprechtii Mayr and24years oldPinus sylvestnis in Bashang. The least amount of growth was found in Platycladus orientalisstand. The result shows that Populus X beijingensis grows not very slow but easy to be affectedby surroundings. Ulmus pumila L. is the tree species with satisfying performance inHuangyangtan. All of the stands grow lower than normal at the rate of71-6007kg/hm~2·a.
     (2)The distribution rule of DBH was analysied by5methods including normaldistribution, lognormal distribution, Welbull distribution, Gamma distribution and βdistribution, the result shows that normal distribution, Welbull distribution and β distribution can well match the distribution rule of DBH with the ratioes of84.6%、76.9%and69.2%respectively for15stands, and stands fitting all the three distributions at the same time reach aratio of69.2%, but lognormal distribution doesn't fit any of these stands.
     (3)The Shannon-Wiener diversity indices for15types of stand fall into0.804-2.221,indicates that the diversities under sand-fixation plantations are very low. The fisrt three standsowning big diversity are No.7, No.1, No.2in order of numerical size.Coniferous stand hashigher diversity than deciduous one. Evenness index has the same order as Shannon-Wienerdiversity index. Margalef richness indices keep between0.806and3.733with big difference.As the tree grows older, the amount of undercanopy species can reach and keep a steady level.
     (4) The results also shows that sand-fixation plantations have played an important role inblocking sand, reducing wind erosion. Different type stands have different sand transportingrates, but35.3%-63.1%of sands was shifted only under the height of4cm above ground,64.7%-90.9%under the height of4cm. Sand transporting rate in vertical direction distributesregularly in the order of0-2cm>2-4cm>4-6cm>6-8cm>8-10cm>10-12cm. In this survy,sand has never been transported again in the stands of30years old Larixprincipis-rupprechtii Mayr and24years old Pinus sylvestnis in Bashang, which completelymet the objective of reducing wind and blocking sand. Since Pinus sylvestnis grows very slow,with weak ability of defendence, it has higher sand transporting rate, but Ulmus pumila L..stand blocks sand very well with no any transported sand. Sand transporting rate has very closecorrelativy with canopy densey, which has played an important role in horizontal direction.
     (5) Soil porosity in sand fixation plantations is from32%to54%, with morenoncaplillary porosity than caplillary one. The soil has lower ability of keeping water andfertilizer. The scale of water holding capacity is from10.54%to37.24%. In northwest Hebei,the content of soil organic is rather low, however, it is pretty high in Bashang. The highest soilorganic content for coniferious planted forest land happens in Bashang, which means that thesoil still keeps a typical characteristic of forest steppe or meadow steppe with no heavysandification. The composition of soil nitrogen has the same rule as organic. Both totalphosphorus and available phosphorus are in the extremely low level. To total potassium, Bashang is very different from scattered sandy land in the northwest, it is very low in Bashangbut very high in the northwest.
     (6) Comprehensive aseesment model for sand fixation plantations has been built by themethod of principle component analysis, the result of aseesment shows as the following order:5>2>3>10>11>9>1>8>4>14>15>13>7>6>12. the first three stands are24years old Pinussylvestnis,30years old Larix principis-rupprechtii Mayr, and8years old Pinus sylvestnis, allof them locate in Bashang sandy land, the last four stands based on the aseesment order are8year-old Populus simoniiCarr.,7and17year-old Platycladus orientalis, and15year-oldPopulus simoniiCarr.
     According to the aseesment result,15stands were divided into5groups including the best,better, middle, worse and the worest, in the end of this paper, optimizing managementcountermeasures have also been proposed to develop the sand fixation forest. In general, Larixprincipis-rupprechtii Mayr, and Pinus sylvestnis are the first choice for Bashang forest-steppetype. Ulmus pumila L.. is good for the scattered sandy land of northwest basin-mountain, orPopulus bolleana and Populus simonii×(Populus pyramidalis+Salix matsudana) cv. Poplarisin some special part, however, they are not recommended to be used as the planting treespecies because of their high water consumption and poor resistence to the evironment.
引文
[1]王玉忠,张伟,李春贵,等.河北省京津风沙源区生态建设成效分析.河北林业科技.2010(4):26-28.
    [2]刘洛,徐新良,段建南,等.京津风沙源区生态环境时空变化的遥感监测分析.地球信息科学.2011,13(6).
    [3]朱震达.中国沙漠化研究的进展.中国沙漠.1989,9(1):1-13.
    [4]中国科学院林业土壤研究所.辽宁省章古台固沙造林研究中的基本经验.林业集刊.科学出版社.1957.
    [5]李鸣冈等.包兰铁路中卫腾格里沙漠地区铁路站线固沙造林研究.林业集刊.科学出版社.1957.
    [6]焦树仁.辽宁省章古台引种樟子松造林研究.防护林科技.2009(6):10-14.
    [7]戴继先,杨国林,杨战阳.治沙造林先锋树种——樟子松造林技术研究.林业实用技术.2003,10(3):5-7.
    [8]章中,武志成.荒漠草原草牧场防护林营造及提高草场生产力的研究.内蒙古林业科技.1994(3):1-9.
    [9]俞益民.盐池县沙地直插造林技术.宁夏盐池农业资源与利用研究论文集.宁夏:宁夏人民出版社.1987.
    [10]曹显军.踏郎,黄柳再生沙障治理流动沙丘技术的探讨.内蒙古林业科技.1999:67-69.
    [11]郭秀珍,孙巍,马占军.踏郎沙地造林技术.内蒙古林业调查设计.2005,28(01):18-18.
    [12]李丽霞,梁宗锁,王俊峰.土壤水分和风速对沙棘苗木水分状况和成活率影响的实验研究.沙棘.1999,12(4):18-21.
    [13]王俊峰,梁宗锁,李鸿德.提高沙棘造林成活率的机理与途径.沙棘.2001,14(2):5-7.
    [14]赵军,郭春华.盐碱地沙棘造林试验研究.沙棘.2001,14(2).
    [15]廖空太.防风固沙林优化模式的树种选择及其配置.甘肃林业科技.1995,20(3):15-21.
    [16]曾德慧,尤文忠,范志平,等.樟子松人工固沙林天然更新障碍因子分析.应用生态学报.2002,13(3):257-261.
    [17]王玉魁,杨文斌,卢琦,等.半干旱典型草原区白榆防护林的密度与生物量试验.干旱区资源与环境.2010,24(11):144-150.
    [18]李钢铁,姚云峰,张德英.科尔沁沙地疏林草原植被恢复技术体系.内蒙古农业大学学报(自然科学版).2005,3.
    [19]庞荣翔,崔浩然.赤峰地区杨树大苗抗旱造林法.内蒙古林业.2003(3):39-39.
    [20]焦树仁.辽宁省章古台樟子松固沙林提早衰弱的原因与防治措施.林业科学.2001,37(2):131-138.
    [21]崔国发.固沙林水分平衡与植被建设可适度探讨.北京林业大学学报.1998,20(6):89-94.
    [22]吴祥云,姜凤岐,李晓丹,等.樟子松人工固沙林衰退的规律和原因.应用生态学报.2004,15(12):2225-2228.
    [23]李宏印,刘明国.樟子松人工固沙林发展现状.辽宁林业科技.2003,5:35-39.
    [24]杨文斌,丁国栋,王晶莹,等.行带式柠条固沙林防风效果.生态学报.2006,26(12):4106-4112.
    [25] Zhu Jiaojun,Fan Zhiping,Zeng Dehui, et al. Comparison of stand structure and growth between artificialand natural forests of pinus sylvestiris var. Mongolica on sandy land. Journal of Forestry Research.2003,14(2):103-111.
    [26]康宏樟,朱教君,李智辉,等.沙地樟子松天然分布与引种栽培.生态学杂志.2004,23(5):134-139.
    [27]苏芳莉,郭成久,徐庆祥,等.风蚀荒漠化地区樟子松固沙林生长状况的研究.西北林学院学报.2006,21(4):65-68.
    [28]杨文斌,王晶莹,王晓江,等.科尔沁沙地杨树固沙林密度、配置与林分生长过程初步研究.北京林业大学学报.2005,27(004):33-38.
    [29]姜丽娜,杨文斌,姚云峰,等.不同配置的行带式杨树固沙林与带间植被修复的关系.中国水土保持科学.2011,9(2):88-92.
    [30] Thomas A Spies. Forest structure: A key to the ecosystem. Northwest Science.1998,72:34-36.
    [31]赵淑清,方精云,宗占江,等.长白山北坡植物群落组成、结构及物种多样性的垂直分布.生物多样性.2004,12(1):164-173.
    [32]张金屯.植物种群空间分布的点格局分析.植物生态学报.1998,22(4):344-349.
    [33]夏富才.长白山阔叶红松林植物多样性及其群落空间结构研究,2007.
    [34]李毅,孙雪新,康向阳.甘肃胡杨林分结构的研究.干旱区资源与环境.1994,8(3):88-95.
    [35]陈东来,秦淑英.山杨天然林林分结构的研究.河北农业大学学报.1994,17(1):36-43.
    [36]孟宪宇.测树学.中国林业出版社.2006.
    [37]孟宪宇.天然兴安落叶松林年龄结构的分析.北京林业大学学报.1989,11(3):17-23.
    [38]孟宪宇.使用weibull分布对人工油松林直径分布的研究.北京林业学院学报.1985(1):30-40.
    [39]姚爱静,朱清科,张宇清,等.林分结构研究现状与展望.林业调查规划.2005,30(2):70-76.
    [40]雷相东,唐守正.林分结构多样性指标研究综述.林业科学.2002,38(3).
    [41] H. Pretzsch. Analysis and modeling of spatial stand structures. Methodological considerations based onmixed beech-larch stands in lower saxony. Forest ecology and Management.1997,97(3):237-253.
    [42]潘德成,姜涛,于涛.林分结构调整对固沙林地生态环境影响.水土保持应用技术.2007(2):4-5.
    [43]厚福兴.内蒙奈曼旗沙地草场植被退化及其防治途径.中国沙漠.1992,12(2):64-68.
    [44]孙冰,杨国亭.白桦种群的年龄结构及其群落演替.东北林业大学学报.1994,22(003):43-48.
    [45] D. Pereg,S. Payette. Development of black spruce growth forms at treeline. Plant Ecology.1998,138(2):137-147.
    [46]朱教君.透光分层疏透度测定及其在次生林结构研究中的应用.应用生态学报.2003,14(8):1229-1233.
    [47]郑景明,罗菊春.长白山阔叶红松林结构多样性的初步研究.生物多样性.2003,11(4):295-302.
    [48]胡艳波,惠刚盈,戚继忠.吉林蛟河天然红松阔叶林的空间结构分析.林业科学研究.2003,16(5):523-530.
    [49] SR Jiao. The structure and function of sand-fixation forest ecosystems in zhanggutai. Liaoning Science&Technology Press, Shenyang.1989.
    [50] Yang Wenbin,Ding Guodong,Wang Jingying,et al. Windbreak effects of belt scheme caraganakorshinskili kom plantation for sand-fixation. Acta Ecologica Sinica.2006,12.
    [51]马士龙.植被覆盖对土壤风蚀影响机理的研究,2006.
    [52]马全林,王继和,詹科杰,等.塑料方格沙障的固沙原理及其推广应用前景.水土保持学报.2005,19(1):36-39.
    [53]张瑞麟,刘果厚,崔秀萍.浑善达克沙地黄柳活沙障防风固沙效益的研究.中国沙漠.2006,26(5):717-721.
    [54]洪启法,张启昌.吉林省固沙防护林的小气候效益.吉林林学院学报.1994,10(003):147-152.
    [55]胡立峰.河北坝上土壤风蚀监测与防治对策研究,2003.
    [56]凌裕泉,屈建军,金炯.稀疏天然植被对输沙量的影响.中国沙漠.2003,23(1):12-17.
    [57]尚润阳.地表覆盖对土壤风蚀影响机理及效应研究,2007.
    [58]顾新庆,王林.柠条防护林的防风固沙效益研究.河北林业科技.1998(2):8-9.
    [59]章志都.侧柏刺槐林群落生态学特征及林内景观影响研究,2007.
    [60]俞益武,江志标,胡永旭.杭州木荷常绿阔叶林的林分特征.浙江林学院学报.1999,16(3):242-246.
    [61]周东雄.杉木乳源木莲混交林分特征与固土保水功能.福建林学院学报.2004,24(1):68-71.
    [62]马增旺.河北省土地沙漠化概况.河北林业科技.2000(S1).
    [63]李金海.区域生态承载力与可持续发展.中国人口.资源与环境.2001,11(3):76-78.
    [64]马增旺,邢存旺,师国洪,等.论河北省坝上地区的沙漠化.河北林业科技.2005(5):33-34.
    [65]邢存旺,黄选瑞,李玉灵,等.黄羊滩人工固沙林防护期分析与评价.林业科学.2012,48(11):134-139.
    [66]许清海,孙黎明,阳小兰,等.冰消期以来宣化盆地的植被与环境.地质力学学报.2001,7(4):303-308.
    [67]孟宪宇.测树学.中国林业出版社.1996.
    [68]关毓秀.测树学.北京:中国林业出版社.1987.
    [69]段爱国,张建国,童书振.种生长方程在杉木人工林林分直径结构上的应用.林业科学研究.2003,16(4):423-429.
    [70]韩致文,董治宝,王涛,等.塔克拉玛干沙漠风沙运动若干特征观测研究.中国科学D辑.2003,33(3).
    [71]李振山,倪晋仁.挟沙气流输沙率研究.泥沙研究.2001(1):1-10.
    [72]李振山,倪晋仁.挟沙气流中输沙量垂线分布的实验研究.泥沙研究.2002(1):30-35.
    [73]卫茂荣.一次取样连续测定土壤物理性质的方法.辽宁林业科技.1990,1:56-57.
    [74]李靖华,郭耀煌.主成分分析用于多指标评价的方法研究管理工程学报.2002,16(1):39-43.
    [75]李海奎,唐守正,李永慈,等.统计分析软件forstat的设计与应用.北京林业大学学报.2004,26(4):104-106.
    [76]郭志刚.社会统计分析方法: Spss软件应用.中国人民大学出版社.1999.
    [77] QY Tang. Dps software for data analysis in biological experiments. Agric. Press, China.1998:127-131.
    [78]袁明龙,姜韬,刘琳,等.冀北山地华北落叶松人工林与天然次生油松林不同坡位生长状况研究.河北林果研究.2011,26(4):327-333.
    [79]赵晓彬,刘光哲.沙地樟子松引种栽培及造林技术研究综述.西北林学院学报.2007,22(5):86-89.
    [80]邢兆凯,焦树仁.章古台固沙造林技术与效益评价.中国沙漠.1999,19(2):179-183.
    [81]宋华茹,顾雄柱,曹满芝,等.榆蓝叶甲发生规律及预测预报.河北林业科技.1991,3:011.
    [82] Verma R K, Kapoor KS,et al] Rawat RS. Analysis of plant diversity in degraded and plantation forestsin kunihar forest division of himachal pradesh. Indian Journal of Forestry.2005,28(1):11-16.
    [83]徐振邦,代力民,陈吉泉,等.长白山红松阔叶混交林森林天然更新条件的研究.生态学报.2001,21(9):1414-1420.
    [84]马姜明.元谋干热河谷地区人工林稳定性及人工生态系统管理的研究.北京:中国林业科学研究院,2004.
    [85]曾德慧,姜凤岐,范志平,等.樟子松人工固沙林稳定性的研究.应用生态学报.1996,7((sup.)):1~5.
    [86]姜凤岐,曾德慧,范志平,等.沙地樟子松林单木生长的研究.应用生态学报.1996,7(sup.):1~5.
    [87]姚爱静,朱清科,张宇清,等.林分结构研究现状与展望.林业调查规划.2005,6(2):70-76.
    [88]吴承祯,洪伟.杉木数量经营学引论.北京:中国林业出版社.2000.
    [89]雷相东,唐守正.林分结构多样性指标研究综述.林业科学.2002,38(3):140-146.
    [90]吴承祯,洪伟,杉木数量经营学引论.北京:中国林业出版社.,2000
    [91] Gaston. Biodiversity:A biology of numbers and difference. London, UK.1996.
    [92] David Tilman,John A Downing. Biodiversity and stability in grasslands. Ecosystem management:selected readings.1996,367:363-365.
    [93] Loreau Michel,Naeem Shahid,Inchausti Pablo,et al. Biodiversity and ecosystem functioning: Currentknowledge and future challenges. science.2001,294(5543):804-808.
    [94]刘濂,王守一.河北植被.北京:科学出版社.1996.
    [95]李博,杨持,林鹏,等.生态学.北京:高等教育出版社.2005.
    [96]陈北光,张木明,苏志尧,等.广东大东山常绿阔叶林物种多样性分析.华南农业大学学报.1997,18(4):59-63.
    [97] Edward H Simpson. Measurement of diversity. Nature.1949,163(4148):688.
    [98] Russell Lande. Statistics and partitioning of species diversity, and similarity among multiplecommunities. Oikos.1996:5-13.
    [99] Robert K Peet. The measurement of species diversity. Annual review of ecology and systematics.1974,5:285-307.
    [100] C Heip. A new index measuring evenness. Journal of Marine Biological Association.1974,54:555-557.
    [101]汪殿蓓,暨淑仪,陈飞鹏.植物群落物种多样性研究综述.生态学杂志.2001,20(4):55-60.
    [102] Baruch Z. Ordination and classification of vegetation along an altitude gradient in the venezuelanparamos. Vegetation.1984,,(55):115-126.
    [103]杨跃军,孙向阳,王保平.森林土壤种子库与天然更新.应用生态学报.2001,12(2):304-308.
    [104]国庆喜,葛剑平,马承慧,等.长白山红松混交林林隙状况与更新研究.东北林业大学学报.1998,26(1):4-7.
    [105]徐振邦,代力民,陈吉泉,等.长白山红松阔叶混交林森林天然更新条件的研究.生态学报.2001,9.
    [106]张琼,洪伟,吴承祯,等.天然更新檫木林的能量分析.植物资源与环境学报.2004,13(2):36-39.
    [107] Su Yongzhong,Zhao Halin. Soil properties and plant species in an age sequence of caragana microphylla plantations in the horqin sandy land,north china. Ecological Engineering.2003,20(3):223-235.
    [108]焦树仁.章古台固沙林生态系统的结构与功能.辽宁科技出版社.1989.
    [109]倪晋仁,冯大军,李振山.风沙流中不同粒径组沙粒的输沙量垂向分布实验研究.地理学报.2007,62(11):1194-1203.
    [110]治沙造林学编委会.治沙造林学.北京:中国农业科技出版社.1984.
    [111] Bagnold R A. The physics of blown sand and desert dunes., London: Methuen.1941.
    [112] Chepil W S. Dynamics of wind erosion: I. Nature of movement of soil by wind. Soil Science.1945(60):305-320.
    [113] Williams G. Some aspects of the eolian saltation load. Sedimentology.1964(3):257-287.
    [114] Ling Yuquan,Wu Zheng. A preliminary study of wind-blown sand movement and sand disasterprevention. Research of Sand Disaster Prevention.1965(7):7-14.
    [115] Albert R Grable,EG Siemer. Effects of bulk density, aggregate size, and soil water suction on oxygendiffusion, redox potentials, and elongation of corn roots. Soil Science Society of America Journal.1968,32(2):180-186.
    [116] WJ Rawls, D Gimenez,R Grossman. Use of soil texture, bulk density, and slope of the water retentioncurve to predict saturated hydraulic conductivity. Transactions of the ASAE.1998,41(4):983-988.
    [117] Michel Rieu,Garrison Sposito. Fractal fragmentation, soil porosity, and soil water properties: I. Theory.Soil Science Society of America Journal.1991,55(5):1231-1238.
    [118] J Lipiec,J Ku,A S owińska-Jurkiewicz, et al. Soil porosity and water infiltration as influenced bytillage methods. Soil and Tillage research.2006,89(2):210-220.
    [119] RJ Luxmoore. Micro-, meso-, and macroporosity of soil. Soil Sci. Soc. Am. J.;(United States).1981,45(3).
    [120]何蓉.菜阳河自然保护区3种森林类型的土壤特性.云南林业科技.2003(2):25-30.
    [121]王燕,王兵,赵广东,等.江西大岗山3种林型土壤水分物理性质研究.水土保持学报.2008,22(1):151-153.
    [122]彭文英,张科利,陈瑶,等.黄土坡耕地退耕还林后土壤性质变化研究.自然资源学报.2005,20(2).
    [123] Paul Jackson Kramer. Plant and soil water relationships: A modern synthesis. Plant and soil waterrelationships: a modern synthesis.1969.
    [124] William A Jury, Wilford R Gardner,Walter H Gardner. Soil physics. John Wiley and Sons, Inc.1991.
    [125] James Kenneth Mitchell,Kenichi Soga. Fundamentals of soil behavior. Wiley New York.1976.
    [126] M Mo Kononova. Soil organic matter. Vol.377: Pergamon Press Oxford.1966.
    [127] Mariia Mikha lovna Kononova. Soil organic matter, its nature, its role in soil formation and in soilfertility. Pergamon Press Oxford.1961.
    [128]文启孝.我国土壤有机质和有机肥料研究现状.土壤学报.1989,26(3):255-261.
    [129]文启孝.土壤有机质研究法.农业出版社.1984.
    [130]王淑平,周广胜,高素华,等.中国东北样带土壤氮的分布特征及其对气候变化的响应.应用生态学报.2005,16(2):279-283.
    [131]鲁如坤.我国土壤氮,磷,钾的基本状况.土壤学报.1989,26(3):280-286.
    [132] ICR Holford. Soil phosphorus: Its measurement, and its uptake by plants. Australian Journal of SoilResearch.1997,35(2):227-240.
    [133] Roger H Bray,LT Kurtz. Determination of total, organic, and available forms of phosphorus in soils.Soil science.1945,59(1):39-46.
    [134]金继运.土壤钾素研究进展.土壤学报.1993,30(1):94-101.
    [135]梁成华,魏丽萍,罗磊.土壤固钾与释钾机制研究进展.地球科学进展.2002,17(5):679-684.
    [136]傅湘,纪昌明.区域水资源承载能力综合评价:主成分分析法的应用.长江流域资源与环境.1999,8(2):168-173.
    [137]夏建国,李廷轩,邓良基,等.主成分分析法在耕地质量评价中的应用.西南农业学报.2000,13(2):51-55.
    [138]姚焕玫,黄仁涛,刘洋,等.主成分分析法在太湖水质富营养化评价中的应用.桂林工学院学报.2005,25(2):248-251.
    [139]李美娟,陈国宏.数据包络分析法(DEA)的研究与应用.中国工程科学.2003,5(6):88-94.
    [140]陈军飞,许长新,严以新.用数据包络分析法对港口水运上市公司经营效率的评价.上海海运学院学报.2004,25(1):51-55.
    [141]程道品,林治.模糊评价法在旅游资源评价中的应用.桂林工学院学报.2001,21(2):186-190.
    [142]陈守煜,胡吉敏.可变模糊评价法及在水资源承载能力评价中的应用.水利学报.2006,37(3):264-271.
    [143] Ian T Jolliffe. Principal component analysis. Vol.487: Springer-Verlag New York.1986.
    [144] Svante Wold, Kim Esbensen,Paul Geladi. Principal component analysis. Chemometrics and intelligentlaboratory systems.1987,2(1):37-52.
    [145]王彤.医学统计学与spss软件应用.北京大学医学出版社.2008.
    [146] Marija Norusis. Spss16.0guide to data analysis. Prentice Hall Press.2008.
    [147]张文霖.主成分分析在spss中的操作应用.市场研究.2005,12(1):31-34.
    [148]吴承祯,洪伟.杉木人工林胸径的weibull分布及其最优拟合研究.江西农业大学学报.1998,20(1):86-90.
    [149]张建国,段爱国.理论生长方程与直径结构模型的研究.北京:科学出版社.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700