用户名: 密码: 验证码:
滇牡丹保护生物学与遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芍药科(Paeoniaceae)为单科属植物,隶属3组,其中牡丹组(Paeonia sect. Moutan)植物为中国特有,野生类群包括矮牡丹(Paeonia spontane),卵叶牡丹(P. qiui),紫斑牡丹(P. rockii),凤丹(杨山牡丹)(P. ostii),四川牡丹(P. decomposita),狭叶牡丹(P.potanini)、滇牡丹(P. delavayi)(或被划分为紫牡丹(P.delavayi)和黄牡丹(P. lutea)),大花黄牡丹(P. ludlowii)。广泛栽培的牡丹(P. suffruticosa)是中国十大传统名花之一,也是中国的候选国花,具有极高的观赏价值和文化价值。
     本研究所采用的滇牡丹为其复合群体的总称(Paeonia delavayi complex)。滇牡丹是中国西南地区特有珍稀种质资源,其生态环境复杂、花色多样,地理与生殖隔离造成居群表型性状差异较大,不断有新群体被发现和描述,根据形态学命名的观点不断被否定和修正。由于野外调查和标本收集不足,滇牡丹的形态学、孢粉学、分子生物学等未形成系统研究;其黄色花基因资源及其保存和利用意义深远,但育种工作滞后。基于此,本研究持续多年对该类群分布区进行了全面的调查统计和性状分析研究,并通过种群生态学的方法,研究了滇牡丹的种群数量动态,种子雨、土壤种子库以及幼苗的天然更新,以期了解种群变化原因、濒危机制以及生态位拓展策略等。通过开花繁育和传粉生物学观察,分析滇牡丹的开花特性、种子形成的繁育系统学基础和访花昆虫的传粉生物学特征等,以期为滇牡丹的引种利用及新品种的选育创造条件。为进一步探求滇牡丹的遗传多样性关系,通过开发利用分子标记技术对调查和取样的野生居群以及其他野生种进行了系统的研究,并结合形态学和孢粉学的结果对滇牡丹居群间进行比较分析。主要研究结果如下:
     1)运用种群静态生命表、存活曲线、生殖力表和Leslie矩阵模型研究了中国西南特有濒危植物滇牡丹种群数量动态过程。静态生命表和种群存活曲线表明:滇牡丹在株龄3–6a之间经历了较强的环境筛,其单株生理寿命为15a左右,平均周期为8a,种群的净增殖率(R_0=0.9857)、内禀增长率(r_m=–0.0017)和周限增长率(λ=0.9983)表明其为衰退型种群;滇牡丹种群存活表现为台阶型曲线(B1型),分别在6a和12a阶段种群消亡率(Kx)较高。Leslie矩阵模型的模拟结果表明,在30a内种群数量呈现出下降趋势,大约下降了50%,其种群数量靠自身根系的萌蘖和种子繁殖共同维持。野生滇牡丹种群数量下降与其自身繁殖特性有关,但主要原因是人为采挖和生态环境的破坏。
     2)连续3年调查了滇牡丹分布不同群落类型最为典型的三个居群,即,以灌草层为主体的昆明梁王山居群、以灌木层为优势种的香格里拉滑雪场居群、以乔木层为优势种郁闭度较高的德钦明永居群,统计分析了不同种群结构中滇牡丹的种子雨、土壤种子库及幼苗的天然更新。结果表明:在滇牡丹自然生境中,种子雨散布时间为9月上旬至10月下旬,2011年不同居群的种子雨强度为昆明梁王山(65粒·m~(-2))>中甸滑雪场(36粒·m~(-2))>德钦明永冰川(13粒·m~(-2)),土壤中完好种子粒数分别为48、21、6供萌发更新,滇牡丹种子储量取决于当年结实量、虫食、动物啃食等因素,动物搬运和腐烂是储量较少的主要原因。种子易脱水失活以及自身上胚轴休眠特性等因素导致次年萌发幼苗数最多不足3株·m~(-2),萌蘖植株则相对较多。滇牡丹种子自身的休眠特性、种子库种子活力影响其幼苗的建成,进而影响种群的天然更新和生态适应性。
     3)以种群数量最大、分布最集中的香格里拉居群滇牡丹群体为研究对象,对其繁育系统特征及传粉生物学特性进行了连续的观察和分析,内容包括开花物候及繁育系统特征、花粉活力及柱头可授期、访花昆虫行为、频率及传粉效果等。研究结果表明:滇牡丹种群整体花期为5月中旬至6月中下旬,单花花期6~9d,花朵虫食率高并促进雄蕊提前散粉;繁育系统中不同套袋实验表明滇牡丹不存在自花授粉和无融合生殖现象,具有较弱的风媒传粉能力,同株异花能产生少量种子,但种子量少且饱满度较低,人工异株异花授粉略高于自然杂交结实率,繁育系统研究认为滇牡丹应为以昆虫为主要媒介的异花传粉植物,自然条件下种子的形成主要依赖于昆虫传粉活动;正常发育的滇牡丹花瓣打开1~2d后自内向外开始散粉,可持续5~6d,花粉量大且活力在常温下持续时间较长,柱头在花瓣打开前1d至打开后3d授粉成功率均较高,散粉滞后可认为是雄蕊后熟;花粉/胚珠比(P/O)值为6124~9713:1,花粉量大,为较高授粉成功率提供了可能性。
     4)在传粉生物学方面通过对访花昆虫的观察和收集,在滇牡丹花朵中共观察到3种蜂类、9种甲虫类、7种食蚜蝇类、4种蚁类和3种蝶类出现。通过人工控制访花昆虫种类实验和扫描电镜(SEM)观察,结果表明:蜂类是滇牡丹最主要的传粉者,尤其是中华蜜蜂(Apis (Sigmatapis) cerana cerana)和无斑宽痣蜂(Macropis (Sinomacropis)immaculata);甲虫类和蚁类在一定程度上参与传粉,但很不稳定;食蚜蝇类和蝶类是极不可靠的传粉者,其传粉成功率极低;滇牡丹花朵可散发气味吸引昆虫,并为访花者提供大量的花粉和蜜液,晴天昆虫访花高峰为11:00-15:00,部分蚁类全天停留在花朵之中,阴雨天大多昆虫停止花间活动;滇牡丹同花期植物对昆虫传粉有一定影响,扫描电镜观察发现多数蜂类和甲虫类体表附有其他植物花粉,其传粉不具专一性。
     5)对云南等地分布的滇牡丹16个居群和其他野生种从形态学和分子标记方法展开遗传多样性的研究,结果利用UPGMA构建的树状图表明每一个野生种都能各自聚为一支,种间的遗传相似性系数为0.47-0.67;滇牡丹居群间在相似系数为0.68时聚为三支,黄色花系居群与红紫色花系居群各占一支,其遗传相似性系数与P. qiui和P.ostii(0.67)、P. decomposita和P. potanini(0.65)相近。结合花色及花器官特征,叶型、叶色及小叶特征,株高及年生长量等形态学性状的差异,研究认为“P. delavayi(滇牡丹)”作为该类群所有分布区域的种名或作为“P. delavayi complex(滇牡丹复合群)”处理不尽合理,在一定程度上支持将黄色花系居群为P. lutea(黄牡丹)和红紫色花系为P. delavayi(紫牡丹)的观点。
     6)多年的野外调查,发现的维西居群从未被描述过,不同于前人所发表的各个种、变种、变异类型等,通过形态学和孢粉学比较分析,结合分子标记的研究结果,认为维西群体应提升为一个独立种的分类单元,并拟命名发布野生牡丹新种“维西牡丹Paeoniaweisiensis Y. Wang&K. Li sp. nov.(Paeoniaceae)”,采集描述模式标本,并与相似种滇牡丹进行了比较和证明。
Tree peony (Paeonia suffruticosa) is a popular traditional ornamental plant in China and isalso appreciated internationally because of its large showy flowers. The wild groups ofPaeonia sect.Moutan were endemic species of China, and their systematics and classificationhad not uniform standard until now. Specific and interspecific relationships had been reportedin succession since the new species of P. delavayi and P. lutea were published for the first timeby Franchet in1886. Many viewpoints of taxonomy and description of new species accordingto morphological characters were denied and modified continuously. Lack of field surveys andspecimens collection, its can not combined analysis of morphological characters and molecularbiology or other methods. In order to provide reference for solve the systematic classificationof P. delavayi, the pollen morphology of wild populations were examined using scanningelectron microscope, based on field surveys and statistic analysis between2008and2009years,SSR (random amplified polymorphic DNA) makers were used to study the systematicclassification among the wild populations and other all species of Paeonia sect.Moutan. Thestudied results mostly as follows:
     1) Paeonia delavayi is an endangered plant which is only distributed in the southwest ofChina. This objective was to study the numeric dynamics of the natural populations of thelargest and the most concentrated population in Shangri–La, Yunnan Province, China. Thedistribution area of P. delavayi were investigated in3years, the numeric dynamics ofpopulation was studied using static life table, survivorship and mortality curves, fecundityschedule and Leslie matrix model. Important findings: P. delavayi underwent strongenvironmental screening at ages between three to six years. The physiological life span wasabout15years, and generation span was eight years. The net reproductive rate (R0=0.9857),intrinsic rate of increase (rm=–0.0017) and finite rate of increase (λ=0.9983) were lowrelatively, it indicated that the population was decreasing, the Leslie matrix model showed that the plant numbers from seedlings and shootings declined about50%during the past30years.The survival rate exhibited as step curve (B1type), its mortality rate of individuals weredifferent at every stage, and the killed power (Kx) was very high at the age of six and12years.At present, the population was maintained mainly by shootings and seedlings. Key threats tothe species were most likely the damage of ecological environment and the humandisturbances.
     2) This objective was to study the seed rain, soil seed bank, and natural regeneration of thenatural populations of the largest and the most concentrated population of ski in Shangri–La,Liangwangshan in Kunming, Mingyongbingchuan in Deqin, Yunnan Province, China.Thedistribution area of P. delavayi were investigated from2010to2012, The seed rain dispersedfrom September to the end of December. In2011, the seed rain intensity in different samplingplots was in the order of Liangwangshan(65seeds·m~(-2))>Huanxuechang(36seeds·m~(-2))>Mingyong(13seeds·m~(-2)), and the quantity of the intact seeds in soil supplied for seedgermination and regeneration was48,13and6seeds·m~(-2)respectively. The seed bankreserves was affected by the seed production amount, animals feeding, and seed viability, etc.,of which animals feedingwas the prime factor for the substantial drop of the seed bankreserves. Due to the low resistance against storage and a large number of rot during storage,the seeds in soil could hardly be effectively stored beyond after year to budding.The soil seedreserves in the next May was less than3stands·m~(-2), it was concluded that the small seed rainreserves, low seed vigor of soil seed bank was the important factors impacting the naturalregeneration of P. delavayi.
     3) Breeding system and pollination biology were studied of P. delavayi from Shangri-La,Yunnan Province, southwest of China. Flowerings and flower visitors were observed orcollected continuously in2008–2011. The florescence lasted for6d to9d in a single flowerfrom mid-May to late June. High seed rate from the stigma was observed at1d before to3dafter the petals opened, and the dissemination hysteresis was defined as protogyny. The P/Oratios were6,124to9,713:1, suggesting to increase the seed setting rate.
     4) Three species of bees, eight species of beetles, seven species of syrphid flies, fourspecies of ants, and three species of butterflies were observed on the flowers. Through pollenexamination on the bodies of the visitors under stereomicroscope and scanning electronmicroscope, much pollen was found from the plants of similar flowering period innercommunity, and indicated that these visitors were not species-specific pollinators. The baggingexperiments showed that P. delavayi has self-incompatibility and no apomixes. Anemophilyonly had a minor role in the fertilization. A few seeds with poor plumpness can be produced ofgeitonogamy. Seed setting rate of artificial xenogamy was higher than natural pollination.Artificial control the species of visitors showed bees being the most important pollinators.Beetles and ants participated in pollination to some extent and were unstable. Syrphid flies andbutterflies with low pollination efficiency. Reproductive success depended largely oncross-pollination assisted by pollinator activities, especially the bees.
     5) The cluster analysis based on the results was performed by UPGMA: The operationaltaxonomic units of wild species were divided while genetic similarity coefficient among0.47-0.67. And the P. delavayi from different populations were divided into3groups, thesimilarity coefficient was0.68among the yellows, the red-purples and Weixi population whichclosed to the wild species distances as P. qiui and P.osti(i0.67), P. decomposita and P. potanini(0.65). Associated with the morphological characters, it was unreasonable to call the allpopulations as P.delavayi or P. delavayi complex. The research supported to name the yellowsas P. lutea, and the red-purples as P. delavayi.
     6) A new species of Chinese tree poeny, Paeonia weisiensis Y. Wang&K. Li sp. nov.(Paeoniaceae) is described from Yunnan, China. It is morphologically most similar to P.delavayi and P. lutea, but differs in lower leaves more than13leaflets, lobes in number reach to45-60. Petals11-14in number, light pink, large red radial speckle basal portion, a great manyerose at the apex, Filaments red or purple, anthers yellow. This is study using scanning electronmicroscope and DNA sequencing to study the micromorphology of pollen grains, and molecular data of Paeonia weisiensis, which can provide valuable characters for speciesidentification in the genus and species.
引文
Akagi H, Yokozeki Y, Inagali A, Fujimura T. Microsatellite DNA markers for rice chromosomes[J]. TheorAppl Genet,1996,93:1071-1077
    All S, Muller C R, Epplen J T. DNA fingerprinting by oligonucleotide probes specific for simple repeats[J].Hum Genet,1986,74:239-243
    Demoise C F, Partanen, C R. Effects of subculturing and physical condition of medium on the nuclearbehavior of plant tissue culture[J]. Am. J.Bot,1969,56(2):147-152
    Doyle J J, and Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J].Phytochemical Bulletin,1987,19:11-15
    Drake D R. Re lationships among the seed rain, seed bank and vegetation of a Hawaiian forest [J]. Journal ofVegetation Science,1998,9:103-112.
    Echt C S, DeVerno L L, Anzidei M, et al. Chloroplast microsatellite reveal population genetic diversity inred pine, Pinus resinosa Ait. Molecular Ecology,1998,7:307-316
    Fang W P. Notes on Chinese Paeonies[J].Acta Phytotax Sin,1958,7(4):297-323
    Feng G M. Paeonia lutea. In: China Plant Red Data Book—Rare and Endangered Plants (Volume1)[M].Beijing: Science Press,1992.
    Finet F C, and Gagnepain F. Contributions a La Flore de I’Asie Orientale[J]. Bull Soc Bot France,1904,51:524
    Franchet. A Plantae Yunnanensis Paeonia[J]. Bull Soc Bot France,1886,33:382-383
    Godoy J A, Jo rdano P. Seed dispersal by animals: Exactiden tification of source trees with endocarp DNAmicrosate-llites[J]. Molecular Ecology,2001,10:2275-2283.
    Gómez-Aparicio L, Gómez JM, Zamora R. Spatiotemporal patterns of seed dispersal in a wind-dispersedMediterranean tree (Acer opalus subsp. granatense): Implications for regeneration[J]. Ecography,2007,30:13-22
    Harper. J L. Population Biology of Plants[M]. Academic Press, London.1977.
    Holzapfel C, SchmidtW, Shmida A. The role of seed bank and seed rain in the reco loniza tion o f disturbedsites a long an ar id ity g radient[J]. Phy tocoenologia,1993,23:561-580.
    Hong D Y, Pan K Y,Yu H. Taxonomy of the Paeonia delavayi complex (Paeoniaceae)[J]. Annals of theMissouri Botanical Garden,1998,85:554-564
    Hong D Y. and Pan K Y. Taxonomical history and revision of Paeonia sect. Moutan (Paeoniaceae)[J].ActaPhytotax Sin.1999,37(4):351-368
    Janzen D H. Seed predation by animals[J]. Annual R eview s of Ecology and Systematics,1971,2:465-492.
    Jensen K. Species composition of soil seed bank and seed rain of abandoned wet meadows and the irrelationto above ground vegetation. F lora,1998,193:345-359
    Jing X M, Zheng G H. The characteristics in seed germination and dormancy of four wild species of treepeonies and their bearing on endangerment [J]. Acta Phytophysiologica Sinica,1999,25(3):214-221.
    Kjellsson G. Seed banks in Danish deciduous forests: Species composition, seed influx and distributionpattern in soil[J]. E cography,1992,15:86-100.
    Kojima T, Nagaoka T, Noda K, Ogihara Y. Genetic linkage map of ISSR and RAPD markers in Einkornwheat in relation to that of RFLP markers[J]. Theoretical and Applied Genetics,1998,96,37–45.
    Komarov V L.Plantae novae Chineses[J]. Not Syst Herb Hort Bot Petrop,1921,2(2):5-8
    Levin J M, Murell D J. The community-level consequences of seed dispersa l patterns. Annual R eview of Ecology and Sy stematics,2003,34:549-574
    Li X G, Tian J J, Tani N.Isolation and characterization of nuclear microsatellites from Chamaecypressobtusa Endl[J]. Yi Chuan Xue Bao,2004,31(4):375-379
    Lin Q B, Zhou ZQ, and Zhao X. Interspecific relationships among the wild species of Paeonia sect. moutanDC. based on DNA sequences of adhgene family[J]. Acta Horticulturae Sinica,2004,31(5):627-632
    Miesfeld R, Krystal M,Arnheim N.A member of a new repeated sequence family that is conservedthroughout eukaryotic evolution is found between the human delta and beta globin genes[J]. Nucl AcidsRes,1981,9:5931-5947
    Molau U, Larsson E L. Seed rain and seed bank along an alpine a ltitudinal gradient in Swed ish Lapland[J].Canadian Journal of Botany,2000,78:728-747.
    Nathan R, Helene C. Spatial patterns of seed dispersal, their determinants and consequences forrecruitment[J].Trends in Ecology and Evolution,2000,15:278-285
    Onaindia M A.Seasonal variation in the seed banks of native woodland and coniferous plantations inNorthern Spain[J].Forest Ecology and Management,2000,126:163-172
    O'Reilly P T, McPherson A A, Kenchington E, et al.Isolation and characterization of tetranucleotidemicrosatellites from Atlantic haddock(Melanogrammus aeglefinus)[J]. Mar Biotechnol (NY),2002,4(4):418-422
    Oven N W, Kent M, Da leMP. Spatial and temporal var-iation in seed dynamics o f machair sand dunecommunities,Outer H ebriges, Scottland[J]. J ournal of B iogeograph,2001,28:565-588
    Powell W, Morgant E, Andre C, et al. The comparision of RFLP, RAPD, AFLP and SSR (microsatellite)marker s for germplasm analysis[J]. Mol. Breed.,1996,2:225-238
    Punt W. Glossary of pollen and spore terminology[J]. Rev. Palaeobot. Palynol.2007.143:1-81.
    Radford A E. et al.1974. Vascular plant systematics[M]. Harper and Row Publishers
    Rota L R, K antety R V, Yu JK. N onrandom distribution and frequencies of genomic and EST-derivedmicrosatellite markers in rice, wheat, and barley [J]. BMC Genomics,2005,6(1):23
    Saghai-Maroof M A, Biyashev R M, Yang G P. Extraordi-narily polymorphic microsatellite DNA inbarley:Species diversity, chromosomal location, and population dynamics[J]. Proc Natl Acad Sci USA,1994,91:5466-5470
    Sajida B, and Aliodhano.2009. Genetic differentiation of rice mutants based on morphological traits andmolecular marker (RAPD)[J].Pak. J. Bot,41(2):737-743
    Schafer R,Zischler H, Birsner U.Optimized oligonucleotide probe for DNA fingerprinting[J]. Electrophoresis,1988,(9):369-374
    Schott GW, H amburg SP.1997. The seed rain and seed banks of an adjacent tall grass prairie old fields[J].Canad ian J ournalof B otany,75:1-7
    Skinner D M, Beattie W G, Blattner F R, et al. The repeat sequence of a hermit crab satellitedeoxyribonucleic acid is (-T-A-G-G-)n.(-A-T-C-C-)n[J]. Biochemistry,1974,13:3930-3937
    Stebbins G L Chromosomal evolution in highter plants[M]. London: Edward Arnold.1971:87-90
    Stern F C A Study of the genus Paeonia[M]. London: The Royal Horticulture Society,1946,46-47
    Stern F C,Taylor G. A new peony from S. E. Tibet[J]. Journ Roy Hort Soc,1951,76:216-217
    Stern F C. Paeony species[J]. Journ Roy Hort Soc,1931,56:71-77
    Stern F C.1946. A Study of the genus Paeonia[M]. London: The Royal Horticulture Society
    Tomita M, Hirabuki Y, Seijwa K.Post-dispersal changes in the spatial distribution of Fagus crenataseeds[J].Ecology,2002,83:1560-1565
    Urbanska KW, Fattorini M. Seed rain in high altitude restoration plots in Switzer land. Restoration Ecology,2000,8:74-79
    Wagner RH. The annua l seed ra in o f adv entive herbs in a radiation damaged forest[J]. Ecology,1965,46:517-520.
    Walker J.W. Evolutionary significance of the exine in the pollen of primitive angiosperms [J]. Linn SocSymp Ser,1976,1:251-308
    Wang J X, Xia T, Zhang JM, Zhou SL. Isolation and characterization of fourteen microsatellites from atree peony (Paeonia suffruticosa)[J]. Conserv Genet,2009,10:1029-1031
    Wang L Y. Pictorial Record of Chinese Tree Peony Varieties[M]. Beijing: China Forestry PublishingHouse,1997
    Watkinson A T, H arpe r JL. The demography of a sand dune annua,l Vulp ia fasciculate. The dispersalofseeds[J]. J ournal of Ecology,1978,66:483-498.
    Westelaken I L, M aunMN. Spatial pattern and seed dispersal of Lithos permum caroliniense on Lake Huronsand dunes. C anad ian Journal of Botany,1985,63:125-132.
    Williams J G K, et al DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J].Nucleic Acids Res,1990,18:6531-6535
    Zhou Z Q, Pan K Y, Hong D Y. Phylogenetic analyses of Paeonia section Moutan (treepeonies, Paeoniaceae)based on morphological data[J]. Acta Phytotax Sin,2003,41(5):436-446
    埃尔塔曼G著.中国科学院植物研究所古植物研究室孢粉组译.孢粉学手册[M].北京:科学出版社,1978
    曹玉芬,刘凤之,高源,等.梨栽培品种SSR鉴定及遗传多样性[J].园艺学报,2007,34(2):305-310
    陈本银,姜慧芳,廖伯寿,等.利用SSR技术研究花生属种间亲缘关系[J].植物遗传资源学报,2007,82:140-144
    成仿云,李嘉珏.中国野生牡丹自然繁殖特性研究[J].园艺学报,1997,24(2):180-184
    程小毛,黄晓霞. SSR标记开发及其在植物中的应用[J].中国农学通报2011,27(05):304-307
    邓小燕,周颂东,何兴金.中国黄精属13种植物花粉形态及系统学研究[J].武汉植物学研究,2007,25(1):11-18
    邓欣,陈信波,龙松华等.用磁珠富集法分离亚麻基因组微卫星分子标记.作物学报,2008,34(12):2099-2105
    邓自发,谢小玲,王启基,等.高寒小嵩草草甸的种子库和种子雨动态分析[J].应用与环境生物学报,2003,9(1):7-10
    方文培.中国芍药属植物的研究[J].植物分类学报,1958,7(4):297-323
    冯国楣.黄牡丹[A].中国植物红皮书—稀有濒危植物(第一册)[C].北京:科学出版社,1992:530-531
    冯立国,邵大伟,生利霞,等.野生玫瑰的花粉形态及其起源与演化的探讨[J].林业科学,2007,43(12):76-80
    高志民,王雁,王莲英.牡丹、芍药繁殖与育种研究现状[J].北京林业大学学报,2001,23(4):75-79
    龚洵,顾志建,武全安.黄牡丹七个居群的细胞学研究[J].云南植物研究,1991,13(4):402-410
    龚洵,潘跃之,杨志云.滇牡丹的多样性和现状评估[J].西北植物学报,2003,23(2):218-223
    龚洵,武全安.渐危植物黄牡丹受威因素初探[J].植物引种驯化集刊,1993(第8集):141-146
    龚洵,肖调江,顾志建,等.黄牡丹八个居群的Giemsa C-带比较研究[J].云南植物研究,1999,21(4):477-482
    龚洵.滇牡丹复合群体分类研究[D].昆明植物研究所,1990
    郭先锋,王莲英,袁涛.4种野生芍药的花粉形态研究[J].林业科学,2005,41(5):184-188
    何桂梅.牡丹远缘杂交育种及其胚培养与体细胞胚发生的研究[D].北京林业大学,2006
    何丽霞,李睿,李嘉珏,等.中国野生牡丹花粉形态的研究[J].兰州大学学报,2005,41(4):43-70
    洪德元,潘开玉.芍药属牡丹组的分类历史和分类处理[J].植物分类学报,1999,37(4):351-368
    洪德元,张志宪,先相云.芍药属的研究—国产几个野生种核型的报道[J].植物分类学报1988,26(1):33-43
    黄红兰,张露,廖承开.毛红椿天然林种子雨、种子库与天然更新,应用生态学报,2012,23(4):972-978
    江泽慧主编.中国牡丹—培育与鉴赏及文化渊源[M].北京:中国林业出版社,2000
    姜汉侨,段昌群,杨树华,等.植物生态学[M].2010,北京:高等教育出版社166-190
    李嘉珏.中国牡丹与芍药[M].北京:中国林业出版社,1999
    李嘉珏,张西方,赵孝庆,等.中国牡丹与芍药[M].北京:中国大百科全书出版社,2011
    李军,郑师章,钱吉,等.野生大豆种子雨的研究[J].应用生态学报,1997,8(4):372-376.
    李奎,郑宝强,王雁,等.野生滇牡丹资源调查与分析[J].中国城市林业.2009,12(5):71-75
    李奎,郑宝强,王雁,等.60Co-γ射线辐照对黄牡丹种子萌发及幼苗生长的影响[J].云南农业大学学报.2010,25(6):840-843
    李思锋,于兆英,周俊彦.黄牡丹的核型分析[J].武汉植物学研究,1989,7(2):107-111
    李文平.烟草种质遗传多样性的SSR标记分析及抗TMV鉴定[D].湖南农业大学,2010
    李秀珍,李学强,马慧丽,等.不同处理对牡丹和芍药种子发根及发芽的影响[J].种子,2004,23(3):59-60
    李义良,赵奋成,张应中,等.分子标记在松树遗传与进化研究中的应用[J].分子植物育种,2009,7(5):1004-1009
    李宗艳,万晓敏,唐岱,等.黄牡丹花粉萌发特性的研究[J].浙江林学院学报,2004,21(3):285-289
    林启冰,周志钦,赵宣,等.基于Adh基因家族序列的牡丹组(Sect. Moutan DC.)种间关系.园艺学报,2004,31(5):627-632
    刘宇杰.马铃薯遗传多样性的SSR分析[D].内蒙古农业大学,2010
    刘志斋. TP-M13-SSR技术及其在玉米遗传多样性研究中的应用[J].玉米科学,2007,15(6):10-15
    娄方芳,赵林森,李宗艳.昆明西山野生黄牡丹种子休眠与萌发特性初步研究[J].西南林学院学报,2007,27(5):34-37
    马万里,荆涛, Ku jansuu J,等.长白山地区胡桃楸种群的种子雨和种子库动态[J].北京林业大学学报,2001,23(3):70-73.
    马万里,罗菊春,荆涛,等.长白山林区核桃楸种群数量动态变化的研究[J].植物研究.2007,27(3):249-253
    孟丽,郑国生.部分野生与栽培牡丹种质资源亲缘关系的RAPD研究[J].林业科学,2004,40(5):110-114
    彭镇华,刘贯水,李潞滨.磁珠富集法开发毛竹SSR标记引物[J].林业科学研究,2011,24(6):743-748
    王开发,王宪曾.孢粉学概论[M].北京:北京大学出版社,1983
    王莲英.中国牡丹品种图志[M].北京:中国林业出版社,1997,2-7
    王莲英,袁涛,王福,等.中国芍药科野生种迁地保护与新品种培育[M].北京:中国林业出版社,2013
    王艳梅.利用SSR研究榛属种间亲缘关系及平榛居群遗传多样性[D].北京林业大学,2008
    王玉国,李光照,漆小雪,等.杜鹃花属植物花粉形态及其分类学意义[J].广西植物,2006,26(2):113-119
    王志芳.黄牡丹种子萌发及其营养物质和内源激素的动态变化研究[D].哈尔滨:东北林业大学,2007
    温坎坡M,郑卓被子植物的花粉形态系列与系统发育[J].植物分类学报,1990,28(2):103-111
    吴大荣.福建省萝卜岩自然保护区闽楠种群种子雨研究[J].南京林业大学学报,1997,21(1):56-60.
    吴征镒.云南植物名录第一卷[M].昆明:云南人民出版社,1979,122-123
    席以珍.中国芍药属花粉形态及其外壁超微结构的观察[J].植物学报,1984,26(3):241-246
    肖调江,龚洵,夏丽芳,等.滇牡丹复合群的Giemsa C-带比较研究[J].云南植物研究,1997.19(4):395-401
    肖宜安,何平,李晓红.濒危植物长柄双花木自然种群数量动态[J].植物生态学报.2004,28(2):252-257
    徐克学.数量分类学[M].北京:科学出版社,1994.
    徐雁鸿,关建平,宗绪晓.豇豆种质资源SSR标记遗传多样性分析[J].作物学报,2007,33(7):1206-1209
    杨涤清,朱燮稃.草芍药、野牡丹和黄牡丹的核型研究[J].云南植物研究,1989,11(2):139-144
    杨淑达,施苏华,龚洵,等.滇牡丹遗传多样性的ISSR分析[J].生物多样性,2005,13(2):105-111
    杨小林,王秋菊,兰小中等.濒危植物大花黄牡丹(Paeonia ludlowii)种群数量动态[J].生态学报.2007,3:1242-1247
    杨允菲,祝廷成.松嫩平原大针茅群落种子雨动态的研究[J].植物生态学与地植物学学报,1991,15(1):46-55.
    姚明哲.利用ISSR和EST-SSR标记研究中国茶树资源的遗传多样性和遗传结构[D].浙江大学,2009
    于玲,何丽霞,李嘉珏.甘肃紫斑牡丹与中原牡丹类群染色体的比较研究[J].园艺学报,1997,24(1):79-83
    袁涛,王莲英.几个牡丹野生种的花粉形态及其演化、分类的探讨[J].北京林业大学学报,1999,21(1):17-21
    袁涛,赵弟轩,王莲英.浅议我国牡丹当前发展中存在的问题及对策[J].中国园林,2003, l
    岳春雷,江洪,朱荫湄.濒危植物南川升麻种群数量的动态分析[J].生态学报.2002,22(5):793-796
    臧润国,祝宁,李进中.天然次生林群落中刺五加种群生态学的研究.刺五加种群增长的Leslie矩阵模型[J].吉林林学院学报.1994,10(2):77-81
    张巧玲,王少平,胡启明,等.中国紫金牛属圆齿组花粉形态研究及其分类学意义[J].广西植物,2007,27(3):385-392
    张文辉,许晓波,周建云,等.濒危植物秦岭冷杉种群数量动态[J].应用生态学报,2005,16(10):1799-1804
    张秀英,王雁,王桂萍.桃花种质资源花粉形态的观察与比较[J].北京林业大学学报,1997,19(2):57-62
    张艳丽,王雁,李正红,等.基于牡丹EST信息的滇牡丹SSR标记开发[J].林业科学研究2011,24(2):171-175
    张志全.土壤种子库[J].生态学杂志,1996,15(6):36-42
    赵罕.白皮松遗传资源评价及保存策略研究[D].中国林业科学研究院,2012
    赵宣,周志钦,林启冰,等.芍药属牡丹组(Paeonia sect. Moutan)种间关系的分子证据:GPAT基因的PCR-RFLP和序列分析[J].植物分类学报,2004,42(3):236-244
    郑相穆,周阮宝,谷丽萍,等.凤丹种子的休眠和萌发特性[J].植物生理学通讯,1995,31(4):260-262
    郑元润,张新时.沙地云杉种群增长预测模型研究[J].植物生态学报.1997,21(2):130-137
    中国科学院中国植物志编委会.中国植物志(第27卷)[M],科学出版社,1979,37-59
    仲延凯,包青海,孙维,等.割草干扰对典型草原土壤种子库种子数量与组成的影响.种子雨的来源及其降落[J].内蒙古大学学报(自然科学版),1999,30(6):733-738.
    周守标,余本祺,罗琦,等.石蒜属植物花粉形态及分类研究[J].园艺学报,2005,32(5):914-917
    周延清. DNA分子标记技术在植物研究中的应用[M].北京:化学工业出版社,2005
    邹春静,徐文铎,刘广田.沙地云杉种群种子雨的时空分布规律[J].生态学杂志,1998,17(3):16-19.
    邹喻苹,蔡美琳,王子平.芍药属牡丹组的系统学研究—基于RAPD分析[J].植物分类学报,1999,37(3):220-227
    祖元刚,张文辉,阎秀峰,等.濒危植物裂叶沙参保护生物学[M].北京:科学出版社.1999:182-223

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700