用户名: 密码: 验证码:
鸭茅对干旱胁迫的生理响应及分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸭茅(Dactylis glomerata L.)是世界著名的多年生冷季型禾本科牧草,其草质柔嫩、高产、优质、耐荫、适应性强等优点被大量应用于草山草坡改良及喀斯特地区石漠化治理等,具有较高的应用价值和开发前景。然而,干旱作为一个世界性问题,是影响植物在形态、生理及基因表达水平上发生变化,限制植物生长发育和产量提高的主要逆境因子之一。因此,研究干旱对植物的影响及植物对干旱的响应机制,对选育耐旱性新品种,发挥现有水资源的增产潜力,解决水资源短缺具有重要意义。本文在对9个鸭茅优良品种(系)种子和幼苗的抗旱特性进行比较研究的基础上,以抗旱性存在明显差异的“宝兴”鸭茅(耐旱型)和“01998”鸭茅(敏感型)为研究对象,从光合特性、渗透调节、抗氧化酶活性及相应基因表达方面探讨鸭茅对干旱胁迫及复水恢复后的响应机制。主要研究结果如下:
     1.鸭茅种子萌发对渗透胁迫响应与耐旱性评价
     9份鸭茅品种(系)的萌发期抗旱性研究表明,PEG胁迫降低了鸭茅种质的发芽势和发芽率,抑制了胚芽和胚根的生长。采用性状相对值进行耐旱性的综合评价,可避免各材料在正常条件下发芽率和发芽势的差异对结果的影响,结合萌发抗旱指数(GDRI)、活力抗旱指数(Ⅵ)、相对发芽率(RGR)、相对发芽势(RGV)、相对胚芽长(REBL)和相对胚根长(RRL)6个指标,应用模糊数学中隶属函数法对鸭茅种质萌发期耐旱性进行综合评价,得出9个鸭茅耐旱隶属函数总平均值范围为0.139~0.935,宝兴总平均值最高,其次为02-116和斯巴达,总平均值分别为0.935、0.883、0.824,而01998平均值最低,为0.139。抗旱性大小排序为宝兴>02-116>斯巴达>金牛>古蔺>川东>德娜塔>波特>01998。
     2.鸭茅苗期抗旱性鉴定及综合评价
     9份鸭茅品种(系)的苗期阶段抗旱性研究表明,在干旱胁迫条件下,各材料的株高,相对含水量(RWC)均显著下降,脯氨酸(Pro)和可溶性糖(TSS)作为重要的渗透调节物质,其含量显著增加,细胞膜透性数值变大,膜受伤害程度增大。同时,超氧化物歧化酶(SOD)、抗氧化物酶(POD)和过氧化氢酶(CAT)作为主要的抗氧化保护酶类,其活性呈先上升后下降趋势,结合上述9个指标,利用方差分析、相关性分析、聚类分析研究各项指标与种质材料抗旱性关系,综合鉴定不同鸭茅种质苗期耐旱性,将9份种质材料苗期抗旱性划分为3个等级,抗旱性相对较强的是宝兴、02-116、斯巴达,中等抗旱性的是金牛、古蔺、川东、德娜塔,抗旱性相对敏感的是波特、01998。
     3.鸭茅根系生长及叶片光合特性对干旱胁迫的响应
     不同土壤含水量胁迫条件下,“宝兴”(耐旱)和“01998”(敏感)鸭茅根系生长及叶片光合特性的生理响应变化表明,干旱胁迫降低了两个鸭茅材料的叶片相对含水量、叶绿素含量、净光合速率、叶片蒸腾速率、气孔导度,却提高了电导率含量和胞间CO2浓度。其中,“01998”变化幅度较大,而“宝兴”变化幅度小,表现出较强的耐旱性。研究还表明,在轻度土壤胁迫下,气孔因素是限制不同抗旱性鸭茅光合作用降低的主要因素,而重度胁迫以非气孔限制为主;同时,干旱胁迫降低了两个鸭茅材料的单株叶面积,以及“01998”的地下及地上植株生物量,而对“宝兴”无显著影响,两个材料的根系活力和根数在SWC降到30%时显著增加并达到最大值,且“宝兴”根系活力显著高于“01998”。因此,土壤水分胁迫下,耐旱型材料可以通过提高根系活力、保持较高的根系生长量,增强根系吸水能力,进而维持较高的光合面积和光合速率,缓解干旱对生长的抑制。结合上述指标比较鸭茅抗旱型品种与敏感型品种在不同土壤相对含水量胁迫下的生理响应,可以推断土壤相对含水量保持在40%-50%,可以有效促进幼苗的健壮生长。
     4.干旱胁迫对鸭茅根、叶保护酶活性、渗透物质含量及膜质过氧化作用的影响
     以两种不同耐旱性的鸭茅基因型(敏感型“01998”和耐旱型“宝兴”)为研究对象,探讨鸭茅不同营养器官耐旱机制之间的差异。结果表明,随着干旱胁迫时间的延长,两种基因型鸭茅根系及叶片电导率(EL),丙二醛(MDA)含量逐渐增加,渗透调节物质可溶性糖(TSS)和游离脯氨酸(Pro)不断积累,而可溶性蛋白含量、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)活性呈先上升后下降趋势。其中,叶片脂膜过氧化产物MDA累积和膜透性增幅较大,说明在持续的干旱胁迫下叶片所受伤害重于根系。而渗透物质积累方面,叶片中可溶性糖和可溶性蛋白的含量高于根系,而根系中的游离氨基酸的相对增加量则大于叶片,这可能由于叶片是糖的主要产生部位,而根系则可以合成氨基酸有关。研究还表明,干旱胁迫第24天,耐旱型品种“宝兴”根系及叶片APX、POD活性显著高于“01998”表明重度干旱胁迫并没有降低APX和POD酶清除H2O2和单态氧的能力,说明“宝兴”鸭茅在干旱条件下抗氧化清除系统响应更积极、更持久。
     5.相同水分-亏-缺及复水对鸭茅抗氧化酶系统活性及基因表达的影响
     在相同水分亏缺情况下,比较两个不同耐旱性的鸭茅基因型“01998”和“宝兴”在干旱胁迫及复水恢复过程中生理,分子方面的不同表现,结果表明,当两个基因型RWC降低到同一水平(“宝兴”干旱处理24天RWC下降到20%;“01998”干旱处理21天RWC下降到20%),抗氧化酶防御系统中清除氧化损害的三种酶SOD、CAT、 POD为鸭茅适应干旱胁迫,减轻氧胁迫毒害提供了重要的抗氧化保护,然而CAT、 POD酶活性主要在复水恢复中清除不同细胞定位的H2O2,促进细胞修复中发挥重要作用。另外,当处于相同水分胁迫条件时,耐旱型品种“宝兴”具有较高的SOD表达水平,可能是“宝兴”抗氧化酶保护系统适应干旱的一部分,而复水过程中,“宝兴”POD的基因表达水平和酶活性水平均显著高于“01998”,表明POD在减少氧化损伤和复水恢复过程中发挥着重要作用。
Orchardgrass (Dactylis glomerata L.) is indigenous to northern Africa, Europe, and temperate Asia, which has been naturalized on nearly every continent. Orchardgrass has higher application value and development prospects and is widely applied to mountain slope improvement and rocky desertification of karst area owing to its good nutrition, high yield, biomass production and good shade tolerance.However, Drought stress, as a worldwide problem, is one of the major abiotic factors limiting plant growth and productivity, and induces various changes at the morphologic, physiological, and genomic levels during adaptation to drought stress in plants.Therefore, studying the mechanisms for drought resistance and the adaptation and regulatory mechanisms to drought in plants is crucial for selecting and breeding drought-tolerant cultivars, which could be an important solution to the water shortage.Drought tolerance of nine Orchardgrass cultivates were evaluated in this study, and then two types of Orchardgrass, which genotypes differing in drought tolerance (drought-tolerant 'Baoxing' and drought-sensitive '01998'), were used to investigate different physiological and molecular responses to drought stress and rewatering. The main results were as follows:
     1. Seed Germination Response to Osmotic Stress and Drought Tolerance Evaluation of Orchardgrass
     The results of germination stage showed that the germinating vigor and germinating rate,the growth rate of embryo bud and root were all decreased by PEG water stress. The drought resistance of all germplasm was evaluated comprehensively by membership function method. Based on the Drought tolerant index, plant vigor tolerant index, relative seed germination rate, relative seed germination vigor, relative embryo bud length (dry weight), and relative radical length (dry weight) of nine Orchardgrass germplasm were measured to evaluate their drought tolerant ability.9Dactylis glomerata materials were ordered below based on their drought tolerance:Baoxing>02-116>Sparta> Aldebaran> Gulin> Chuandong> Donata> Proto>01998.
     2. Drought Resistance Evaluation of Orchardgrass Germplasms at Seedling Stage
     The results of seedling stage showed that all of the materials decrease to various extent in plant height, leaf relative water content (RWC) under drought stress. Whereas, they showed an increase in free praline accumulation (Pro) and soluble sugar content (TSS). Superoxide dismutase (SOD), Catalase (CAT), Guaiacol peroxidase (POD) as the main antioxidant protection enzymes, the activity increased firstly and then decreased. Analysis of variance, correlation analysis and cluster analysis were used to explore their drought resistance. The materials were divided into three drought resistant types based on Euclidian Distance method. The most drought resistant germplasm were'Baoxing','02-116','Sparta'and the moderate drought resistant ones were'Aldebaran','Gulin','Chuandong','Donata' while the drought sensitive ones were 'Proto' and '01998'.
     3. Effects of drought stress on root growth and photosynthetic characters of Orchard grass seedlings
     Using drought-sensitive Orchardgrass genotapy '01998' and drought-tolerant genotapy 'Baoxing' as test materials to study the effects of drought stress on root system morphology, physiological characteristics and leaf photosynthesis of Orchardgrass seedlings, aiming to investigate the differences of drought tolerance mechanism between different cultivars of Orchardgrass seedlings.The test results showed that drought stress decreased the relative water content, leaf chlorophyll content, Pn, gs, and Tr of the two materials, among them, the large r variations in "01998", while at the same time, electrolyte leakage and Intercellular CO2concentration increased, thereinto'01998'changed most obviously while 'Baoxing' changed only slightly under drought stress. Studies also showed that,stomatal restriction was the main factor for the net photosynthetic rate's decrease in the leaves of two orchardgrass genotypes under the light soil stress. While non-stomatal restriction was the main factor under serious soil stress. And meanwhile, drought stress decreased the individual leaf area of the two materials and underground and aboveground plant biomass of '01998', but had no significant effects on 'Baoxing'. Two materials of the root activity and root number increased significantly when SWC decreased to30%and reached the maximum.therefore, under drought stress, drought-tolerant 'Baoxing' were able to maintain higher photosynthetic area and photosynthetic rate by improving the root activity, maintaining higher root biomass, enhancing the ability of root water adsorption.lt was also optimal to keep soil relative moisture content in40%-50%in sandy loam for maximum growth of Orchardgrass.
     4. Effects of Drought Stress on Lipid Peroxidation, Osmotic Accumulation and Activity of Protective Enzymes in Root and Leaf of Orchardgrass
     In order to investigate the different drought tolerance mechanism in Orchardgrass, the objective of this research was to study the different responses associating with lipid peroxidation, osmotic adjustment and activity of protective enzymes in root and leaf to drought stress of two different genotypes of Orchardgrass (drought-sensitive '01998'and drought-tolerance 'Baoxing').The results showed that with the extension of drought stress, MDA content and electrolyte leakage in root and leaf of two Orchardgrass increased while total soluble sugar content and free proline content were accumulated. At the same time, soluble protein content, SOD, CAT, POD, APX activities increased initially and then decreased. As the results showed, significantly higher cell membrane stability, content of osmotic adjustment substances and activities of SOD, CAT, POD, APX as well as lower lipid peroxidation level in root and leaf of 'Baoxing' were observed as compared with the '01998' under drought stress. In addition, APX and POD activity in root and leaf of "Baoxing" was higher than that of the '01998' under24-days drought stress, which indicated that its ability to scavenge for singlet oxygen and H2O2was not weakened by drought stress. Drought tolerant 'Baoxing' showed more active and stable peroxidation ability under drought stress.
     5. Antioxidant Enzyme Activities and Gene Expression Patterns in Leaves of Orchardgrass (Dactylis glomerata L.) during drought stress and recovery
     The study was designed to investigate different physiological and molecular responses of two genotypes of Orchardgrass (drought-tolerant 'Baoxing' and drought-sensitive '01998') to drought stress and rewatering. The '01998' and 'BaoXing' were exposed to drought stress for21days and24days in a growth chamber, respectively allowing the leaf relative water content (RWC) of both genotypes to drop to the same level (20%). Significantly higher activities of superoxide dismutase (SOD), catalase (CAT), and guaiacol peroxidase (POD) were observed in the 'Baoxing' compared to the '01998' under drought stress and rewatering. CAT and POD for H2O2scavenging was associated with post-drought recovery on rewatering in Orchardgrass.The maintenance of higher transcripts levels of SOD in 'Baoxing' versus '01998' when both cultivars were exposed to the same level of water deficit suggests that the activation of SOD expression could be involved in the antioxidant protection of Orchardgrass during drought. At both enzymatic activity and gene transcript levels, POD was significantly higher in drought-tolerant 'Baoxing' than in drought-sensitive '01998' under post-drought recovery, suggesting that POD could play critical roles protecting plants from drought-induced oxidative stress and the recovery from drought damages.
引文
[1].陈贵,周毅,郭世伟,等.水分胁迫条件下不同形态氮素营养对水稻叶片光合效率的调控机理研究[J].中国农业科学.2007,40(10):2162-2168.
    [2].陈立松,刘星辉.作物抗鉴定指标的种类及其综合评定[J].福建农业大学学报,1997,26(1):48-55.
    [3].陈明涛,赵忠,权金娥.干旱对4种苗木根尖可溶性蛋白组分和含量的影响[J].西北植物学报,2010.30(6):1157-1165.
    [4].陈少裕.膜脂过氧化与植物逆境胁迫[J].植物学通报,1989,6(4):211-217.
    [5].陈亚鹏,陈亚宁,李卫红,等.干旱胁迫下胡杨脯氨酸积累特点分析[J].干旱地区地理,2003,26(4):420-424.
    [6].付爱红,陈亚宁,李卫红,等.干旱,盐胁迫下的植物水势研究与进展[J].中国沙漠,2005,25(5):744-749
    [7].高古寅.国外抗旱性筛选方法的研究[J]国外农业科技,1983,(7):12-15.
    [8].高俊风.植物生理学实验指导[M].北京:高等教育出版社,2006.
    [9].高俊风.植物生理学实验技术[M].北京:世界图书出版杜,2000:137-138.
    [10].高暝,李毅,种培芳,等.渗透胁迫下不同地理种源白刺的生理响应[J].草业学报,2011,20(3):99-107.
    [11].高宁,高辉远,等.16种(品种)寒地型草坪草抗旱性及评定方法初探[J].八一农学院学报,1995(1):68-71.
    [12].高杨,张新全,谢文刚.干旱胁迫下鸭茅新品系抗旱性研究[J].湖北农业科学,2007,46(6):981-984.
    [13].葛体达,隋方功,白莉萍,等.水分胁迫下夏玉米根叶保护酶活性变化及其对膜脂过氧化作用的影响[J].中国农业科学,2005,38(5):922-928.
    [14].葛体达,隋方功,张金政.玉米根、叶质膜透性和叶片水分对土壤干旱胁迫的反应[J].西北植物学报.2005,25(3):507-512.
    [15].郭霭光,张慧,王保莉,等.干早胁迫对小麦叶片核糖核酸酶活力及合成的影响[J].核农学报,1994,8(2):75-79
    [16]郭卫华,李波,黄永梅,等.2004.不同程度的水分胁迫对中间锦鸡儿幼苗气体交换特征的影响[J].生态学报,24(12):2716-2722.
    [17].韩建民.抗早性不同的水稻品种对渗透胁迫的反应及其与渗透调节的关系[J].河北农业大学学报,1990(1):17-21.
    [18].韩建秋.水分胁迫对白三叶叶片脂质过氧化作用及保护酶活性的影响[J].安徽农业科学,2010,38(23):12325-12327.
    [19].韩蕊莲,李丽霞,梁宗锁.干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究[J].西北植物学报,2003,23(1):23-27.
    [20].胡标林,余守武,万勇,等.东乡普通野生稻全生育期抗旱性鉴定[J].作物学报,2007,33(3):425-432.
    [21].胡化广,刘建秀,何秋.草坪草种质资源抗旱性及其改良研究进展[J].植物学通报,2005,22:648-657.
    [22].胡梦芸,张正斌,徐萍,等.亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究[J].作物学报.2007,33(11):1884-1891.
    [23].蒋高明.植物生理生态[M].北京:高等教育出版社,2004,191-192.
    [24].蒋明义,荆加海,王韶唐.渗透胁迫对水稻光合色素和膜脂过氧化的影响[J].西北农业大学学报,1991,19(2):88-94.
    [25].姜卫兵,高光林,俞开锦,等.水分胁迫对果树光合作用及同化代谢的影响研究进展[J].果树学报,2002,19(6):416-420
    [26].揭雨成,黄丕生,李宗道.竺麻基因型抗旱性差异及其早期鉴定研究[J].作物学报,2000,26(6):942-946.
    [27].金忠民,沙伟.白三叶抗旱生理的研究[J].北方园艺,2010(18):50-52.
    [28].景蕊莲,昌小平,胡荣海等.变水条件下小麦幼苗的甜菜碱代谢与抗旱性的关系[J].作物学报,1999,25(4):494-498.
    [29].康俊梅,杨青川,樊奋成.干旱对苜蓿叶片可溶性蛋白的影响[J]草地学报,2005.13(3):199-202.
    [30].黎裕.作物抗旱鉴定方法与指标[J].干旱地区农业研究,1993,11(1):91-99.
    [31].李德全,邹琦等.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质[J].植物生理学报,1992,18(1):37-43.
    [32].李广敏,关军锋.作物抗生理与节水技术研究[M].北京:气象出版社,2001.
    [33].李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2002.
    [34].李先芳,丁红.鸭茅生物学特性及栽培技术[J].河南林业科技,2000,20(3):24-25
    [35].李源,师尚礼,孙桂芝,等.干旱胁迫下鸭茅苗期抗旱性生理研究[J].中国草地学报,2007,29(2):35-40
    [36].李造哲.10种苜蓿品种幼苗抗旱性的研究[J].中国草地,1991,(3):1-3.
    [37].李智念,王光明,曾之文.植物干旱胁迫中的ABA研究[J].干旱地区农业研究.2003,21(2):99-104.
    [38].梁银丽,杨翠玲等.不同抗旱型型小麦根系形态与生理特性对渗透胁迫的反应[J].西北农业学报,1995,4(4):31-36
    [39].廖光瑶.SPAC的水势热力学系统[J].四川林业科技,1999,12(1):47-52.
    [40].林叶春,曾昭海,郭来春,等.裸燕麦不同生育时期对干旱胁迫后复水的响应[J].麦类作物学报,2012,32(2):284-288.
    [41].刘灵娣,李存东,高雪飞.干旱对不同铃重棉花不同区位果枝叶可溶性蛋白及脯氨酸含量的影响[J].华北农学报,2008,23(5)1165-169.
    [42].刘晓军,洪光宇,袁志诚,等.干热胁迫下两种苇状羊茅对不同水肥处理的响应机理[J].草业学报,2011,20(1):46-54.
    [43].卢从明,张其德,匡廷云,等.1994.水分胁迫抑制水稻光合作用机理.作物学报,20(5):601-606
    [44].吕德彬,杨建平,李莲芝,等.水分胁迫下不同小麦品种抗性反应与产量表现的相关研究[J].河南农业大学学报,1994,8(3):230-235
    [45].吕德彬,杨建平.水分胁迫下不同小麦品种抗性反应与产量表现的相关研究[J].河南农业大学学报,1994,28(3):230-235
    [46].马秀芳,沈秀瑛,杨德光,等.不同耐旱性玉米品种对干旱的生理生化反应.沈阳农业大学学报,2002,33(3):167-170.
    [47].马原松,王启明,吴诗光,等.干旱胁迫下大豆生理生化指标的研究.[J].安徽农业科学,2005,33(6):974-976.
    [48].梅鹃,别治法.种用鸭茅锈病的防治[J].中国草地,1991(2):76-76
    [49].牛瑞明,王燕,吴桂丽,等.裸燕麦种子萌发对模拟干旱胁迫的响应及其耐旱性综合评价[J].麦类作物学报,2011,31(4):753-756
    [50].潘全山,张新全,等.禾本科优质牧草—黑麦草、鸭茅[M].台海出版社.2000,103.
    [51].彭立新,李德全,束怀瑞.园艺植物水分胁迫生理及耐早机制研究进展[J].西北植物学报, 2002.22:1275-1281
    [52].彭燕,张新全.鸭茅种质资源多样性研究进展[J].植物遗传资源学报,2003,4(2):179-183.
    [53].彭燕,张新全,曾兵.野生鸭茅植物形态学特征变异研究[J].草业学报,2007,16(2):69-75.
    [54].彭燕,张新全,刘金平,等.野生鸭茅种质遗传多样性的AFLP分子标记[J].遗传,2006,28(7):845-850.
    [55].邱真静,李毅,种培芳.PEG胁迫对不同地理种源沙拐枣生理特性的影响[J].草业学报,2011,20(3):108-114.
    [56].邵世光,阎斌伦,许云华,等.Cd2+对条斑紫菜的胁迫作用[J].河南师范大学学报:自然科学版,2006,34(2):113-116.
    [57].邵艳军,山企,李广敏.干旱胁迫与复水条件下高粱、玉米苗期渗透调节及抗氧化比较研究[J].中国生态农业学报,2006,14(1):68-70.
    [58].时忠杰,胡哲森,李荣生.水分胁迫与活性氧代谢[J].贵州大学学报(农业与生物科学版).2002,21(2):140-145.
    [59].孙彩霞,刘志刚,荆艳东.水分胁胁迫对玉米叶片关键防御酶系活性及其同工酶的影响.玉米科学,2003,11(1):63-66.
    [60].孙鸿乔.水势问题[J].植物生理学通讯.1985,21(3):48-52
    [61].孙骏威,杨勇,蒋德安.水分亏缺下水稻的光化学和抗氧化应答[J].浙江大学学报(农业与生命科学版)2004,30(3):278-284.
    [62].唐一国.鸭茅的栽培技术及利用[J].四川草原,2003(5):59-59
    [63].万刚,张新全,刘伟等.鸭茅栽培品种与野生材料遗传多样性比较的SSR分析[J].草业学报,2010,19(06):187-196
    [64].王贺正,马均,李旭毅,等.水稻种质芽期抗旱性和抗旱性鉴定指标的筛选研究[J].西南农业学报,2004,17(5):594-5991.
    [65].王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢.植物学通报.2001,18(4):459-465.
    [66].王均明,孟丽,孙金花.林木抗旱性与其根次生构造关系的研究[J].中国水土保持,1999,6:20-22.
    [67].王沙生,高荣孚,吴贯明.植物生理学[M].北京:中国林业出版社,1990,175-186
    [68].王霞,侯平,尹林克.柽柳植物对干旱胁迫的生理响应和适应性的研究[J].干旱地区研究.2000,10(3):13-17.
    [69].王颖,穆春生,王靖,等.松嫩草地主要豆科牧草种子萌发期耐旱性差异研究[J].中国草地学报,2006,28(1):7212.
    [70].王赞,高洪文,孙桂芝.PEG渗透胁迫下鸭茅种子萌发特性及抗旱性鉴定[J].中国草地学报,2008,30(1):50-55
    [71].王赞,李源,吴欣明,等.PEG渗透胁迫下鸭茅种子萌发特性及抗旱性鉴定[J].中国草地学报,2008,30(1):50-55
    [72].王振镒,郭蔼光,罗淑萍.水分胁迫对玉米SOD、POD活力及同功酶的影响[J].西北农业大学学报,1989,17(1):45-49.
    [73].王忠.植物生理学[M].北京,中国农业出版社,2006,422-439.
    [74].辛国荣,等.牧草抗旱性研究[J].草业科学,1996.13(5):50-54.
    [75].徐炳成,山仓,黄占斌.草坪草对干旱胁迫的反应及适应性研究进展.中国草地,2001,23(2):55-61.
    [76].徐倩,才宏伟,刘艺杉,等.16个国外鸭茅种质材料引种与初步评价[J].草业科学,2011,(4):597-602
    [77].薛青武,陈培元.土壤干旱条件下氣素营养对小表水分状况和光合作用的影响[S].植物生理学报,1990(1):49-56.
    [78].杨剑平,陈学珍,王文平,等.大豆实验室PEG模拟干旱体系的建立[J].中国农学通报,2003,19(3):65-68
    [79].杨静慧,杨焕庭.苹果树植物叶片角质层厚度与植物抗旱性[J].天津农学院学报,1996,3(3):27-28.
    [80].杨敏生,裴保华,朱之悌.白杨双交杂种无性系抗旱性鉴定指标分析[J].林业科学.2002,38(6):36-42.
    [81].杨鹏辉,李贵全,郭丽,等.干旱胁迫对不同抗旱大豆品种质膜透性的影响[J].山西农业科学.2003,31(3):23-26.
    [82].鱼小军,干芳,白小明.草坪草抗旱性研究现状[J].草业科学,2005,22(2):96-100.
    [83].余健.中国旱情态势及防控对策[J].西北农业学报,2010,19(7):154-158
    [84].于忠禾,宫玉芝,赵德林,等.寒地鸭茅引种初探[J].草业科学,1995,12(4):23-25.
    [85].曾兵,张新全,彭燕,等.优良牧草鸭茅的温室抗旱性研究[J],湖北农业科学,2006,(1):103-106
    [86].曾兵,兰英,伍莲.中国野生鸭茅种质资源锈病抗性研究[J].植物遗传资源学报,2010,11(3):278-283.
    [87].赵琳,郎南军,温绍龙,等.云南干热河谷4种植物抗机理的研究[J].西部林学.2006,35(2):9-16.
    [88].张健,池宝亮,黄学芳,等.以活力抗旱指数作为玉米萌芽期抗旱性评价指标的初探[J].华北农学报,2007,22(1):22-25.
    [89].张荣芝等.旱地冬小麦形态特征及生理特性的初步研究[J].河北农业大学学报,1991,14(2):10-14.
    [90].张新全,杜逸,郑德成.鸭茅二倍体和四倍体PMC减数分裂、花粉育性及结实性研究[J].中国草地,1996,(6):38-40。
    [91].张正斌,山仑.小麦抗旱生理指标与叶片卷曲度和蜡质关系研究[J].作物学报,1998,24(30):608-612.
    [92].种培芳,苏世平,李毅.4种地理种群红砂的抗旱性综合评价[J].草业学报,2011,20(5):26-33.
    [93].钟声,杜逸,郑德成,等.野生四倍体鸭茅农艺性状的初步研究[J].草业科学,1998,(2):20-23.
    [94].张莉,续九如.水分胁迫下刺槐不同无性系生理生化反应的研究[J].林业科学,2003,39:162-167
    [95].Alscher RA, Eturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. Journal of experimental botany,2002,53(372):1331-1341.
    [96].Amalo K,Chen GX,Asade K.Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase implants[J]. Plant Cell Physiology,1994,35(3):497-504.
    [97].Aroca R, Vernieri P, Rulz LJM. Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant (sitiens)[J]. Microbial ecology,2008,56(4):704-719.
    [98].Arora A, Sairam RK, Srivastava GC. Oxidative stress and antioxidative system in plants[J]. CURRENT SCIENCE-BANGALORE-,2002,82(10):1227-1238.
    [99].Asada K. The water-water cycle in chloroplast:Scavenging of active oxygens and dissipation of excess photons[J].Annu.Rev.Plant Physiol.Plant Mol Biol,1999,50:601-639.
    [100].Asseng S, Ritchie JT, Smucker AJM, et al. Root growth and water uptake during water deficit and recovering in wheat[J]. Plant and Soil,1998,201(2):265-273.
    [101]. Bai L P, Sui F G, Ge T D, et al. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize[J]. Pedosphere,2006,16(3):326-332.
    [102].Bargali K, Tewari A. Growth and water relation parameters in drought-stressed< i> Coriaria nepalensis seedlings[J]. Journal of arid environments,2004,58(4):505-512.
    [103].Barrs H D, Weatherley P E. A re-examination of the relative turgidity technique for estimating water deficits in leaves[J]. Australian Journal of Biological Sciences,1962,15(3):413-428.
    [104].Bertrand A, Castonguay Y, Nadeau P. Changes in translatable mRNAs in water-stressed common bean genotypes of contrasting drought tolerance[J].Plant Cell Physiol,1994,35 (7):1043-1048
    [105].Bethke P C, Malcolm C D. Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity[J]. Plant physiology, 1992,99(1):219-226.
    [106].Blum A, Ebercon A. Cell membrane stability as a measure of drought and heat tolerance in wheat[J]. Crop Science,1981,21(1):43-47.
    [107].Bonos S A, Mrphy J A. Growth responses and performance of Kentucky bluegrass under summer stress[J]. Crop science,1999,39(3):770-774.
    [108].BouslamaM, Schapaugh WT. Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance[J]. Crop Science,1984,24(5):933-937.
    [109].Bowler C, Montagu MV, Inze D. Superoxide dismutase and stress tolerance[J]. Annual review of plant biology,1992,43(1):83-116.
    [110].Boyer JS. Plant productivity and environment[J]. Science,1982,218(4571):443-448.
    [111].Carrow RN. Drought avoidance characteristics of diverse tall fescue cultivars[J]. Crop Science, 1996,36(2):371-377.
    [112].Casler MD, Fales SL, McElroy AR, et al. Genetic progress from 40 years of orchardgrass breeding in North America measured under hay management J]. Crop science,2000,40(4): 1019-1025.
    [113].Chance B, Maehly AC. Assay of catalases and peroxidases[J]. Methods in enzymology,1955,2: 764-775.
    [114].Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell[J]. Annals of Botany,2009,103(4):551-560.
    [115].ChavesMM, Maroco JP, Pereira JS. Understanding plant responses to drought—from genes to the whole plant[J]. Functional Plant Biology,2003,30(3):239-264.
    [116].Chen THH, Gusta LV. Abscisic acid-induced freezing resistance in cultured plant cells[J]. Plant physiology,1983,73(1):71-75.
    [117].Chia LS, Thompson JE, Dumbroff E B. Simulation of the effects of leaf senescence on membranes by treatment with paraquat[J]. Plant Physiology,1981,67(3):415-420.
    [118].Comie G. Drought stress inhibits photosynthesis by decreasing stomatal aperture:not by affecting ATP synthesis[J]. Trends Plant Sci.,2002,5:187-188.
    [119].Cupta AS, Heinen JL, Holaday AS, et al. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase[J]. Proceedings of the National Academy of Sciences,1993,90(4):1629-1633.
    [120].DaCosta M, AndHuang BR. Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in response to drought stress[J]. Journal of the American Society for Horticultural Science,2007,132(3):319-326.
    [121].Davies WJ, Zhang J. Root signals and the regulation of growth and development of plants in drying soil[J]. Annual review of plant biology,1991,42(1):55-76.
    [122].Dhindsa RS, Matowe W.1981. Drought tolerance in two mosses:correlated with enzymatic defence against lipid peroxidation[J]. Journal of Experimental Botany,1981,32(1):79-91.
    [123]. Dhindsa RS, Dhindsa PP,Thorpe TA. Leaf senescence:correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. Journal of Experimental botany,1981,32(1):93-101.
    [124].Dobretsov GE, Borschevskaya TA, Petrov V A, et al. The increase of phospholipid bilayer rigidity after lipid peroxidation[J]. FEBS letters,1977,84(1):125.
    [125].Eapen D, Barroso ML, Ponce G, et al. Hydrotropism:root growth responses to water[J]. Trends in plant science,2005,10(1):44-50.
    [126].Efeoglu B, Ekmekci Y, Cicek N. Physiological responses of three maize cultivars to drought stress and recovery[J]. South African Journal of Botany,2009,75(1):34-42.
    [127].E1-Hafid R, Smith D H, Karrou M, et al. Physiological responses of spring dumm wheat cultivars to early-season drought in a mediterranean environmentJ]. Annals of Botany.1998,81(2):363-370
    [128].Ephrath JE. The effects of drought stress on leaf elongation,photosynthetic and transpiration rates in maize leaves[J]. Photosynthetica,1991,25:607-619
    [129].Farquhar G D,Sharkey T D. Stomatal conductance and photosynthesis[J], Annual review of plant physiology,1982,33(1):317-345.
    [130]. Foyer CH, Noctor G. Oxidant and antioxidant signalling in plants:a re-evaluation of the concept of oxidative stress in a physiological context[J]. Plant, Cell & Environment,2005,28(8): 1056-1071.
    [131].Fu JM, Huang BR. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress[J]. Environmental and Experimental Botany,2001, 45(2):105-114.
    [132].Giannopolities CN, Ries SK. Superoxide dismutases I. Occurrence in higher plants[J]. Plant physiology,1977,59(2):309-314.
    [133].Gindaba J. Rozanov A, Negash L. Response of seedlings of two< i> Eucalyptus and three deciduous tree species from Ethiopia to severe water stress[J]. Forest Ecology and Management, 2004,201(1):119-129.
    [134].Gomez JM, Hernalldez JA, Jimenez A,et al. Differential response of antioxidative enzymes of chloroplasts and mitoehondria to long-term NaCI stress of pea plants[J].Free Radical Research, 1999.31:11-18.
    [135].Hamilton EW, Heekathom SA. Mitoeholldrial adaptations to NaCI.Complex I is Protected by antioxidants and small heat shoek Proteins, whereas complex II is protected by proline and betaine[J].Plant Physiol,2001,126,1266-1274.
    [136].Han Jianqiu. Effects of Water Stress on Lipid Peroxidation and Protective Enzyme Activities in White Clover Leaves[J]. Journal of Anhui Agricultural Sciences,2010,23:011.
    [137].Hrishikesh U, Sanjib KP,Biman KD. Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery[J]. Acta Physiologiae Plantarum,2008,30(4):457-468.
    [138]. Hsiao TC, Xu LK. Sensitivity of growth of roots versus leaves to water stress:biophysical analysis and relation to water transport[J]. Journal of Experimental Botany,2000,51(350):1595-1616.
    [139].Hu L, Wang Z, Huang BR. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C3 perennial grass species[J]. Physiologia plantarum,2010,139(1):93-106.
    [140].Huang b, Gao H. Physiological responses of diverse tall fescue cultivars to drought stress[J]. HortScience,1999,34(5):897-901.
    [141].Huang B, Wang Z. Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress[J]. Crop Science,2004,44(5):1729-1736.
    [142].Hubner K. The importance of breeding cocksfoot (Dactylis glomerata L.) with few leaf denticles, the influence of the denticles on the fodder value and the possibilities of early selection methods[J]. Journal of Agricultural Science.1976:61.
    [143].Hulten E. Flora of Alaska and neighboring territories:a manual of the vascular plants[M]. Stanford, Calif:Stanford University Press,1968.
    [144].Irigoyon JJ, Emerich DW.Water stress induced changes in concentrations of praline and total sduble sugars in nodulated alfalfa (Medicago sativd) [J].Physiologia Plantarum,1992,84(1):55-60.
    [145].Ittu M, Kellner E.Sources of resistance to black mst(Pueeinia graminis Pers.)in cocksfoot (Dactylisglomerata L.)[J].Probleme de Genetica Teoretiea si Aplieata,1980,12(6):511-517.
    [146].Jaleel CA, Manivannan P, Wahid A, et al. Drought stress in plants:a review on morphological characteristics and pigments composition[J]. Int J Agric Biol,2009,11(1):100-105.
    [147]. Jia WS, Zhang JH. Stomatal movements and long-distance signaling in plants[J]. Plant signaling& behavior,2008,3(10):772-777.
    [148]. Jiang DA, Lu Q, Weng X Y, et al. Role of key enzymes for photosynthesis in the diurnal changes of photosynthetic rate in rice[J]. Acta Agronomica Sinica,2001,27(3):301-307.
    [149].Jiang YW, Huang B. Osmotic adjustment and root growth associated with drought preconditioning-enhanced heat tolerance in Kentucky bluegrass[J]. Crop Science,2001,41(4): 1168-1173.
    [150].Jiang, Y.W. and B. Huang. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses[J]. Journal of Experimental Botany,2001, 52(355):341-349.
    [151].Kenonowicz AK.Biochemical and cellular mechanisms of stress tolerance in plant[J].Berlin: Spring-verlag,1994.381-414.
    [152].Kevin B, Jensen, Blairl. Forage nutritional characteristics of orchardgrass and perennial ryegrass at five irrigation levels[J]. Agronomy Journal,2003,95(3):668-675.
    [153].Ke SS. Effects of copper on the photosynthesis and oxidative metabolism of Amaranthus tricolor seedlings[J]. Agricultural Sciences in China,2007,6(10):1182-1192.
    [154].Lakso AN. Seasonal changes in stomatal response to leaf water potential in apple[J]. Journal American Society for Horticultural Science,1979,104.
    [155].Lawlor DW,Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J]. Plant, Cell & Environment,2002,25(2):275-294.
    [156].Li HS. Principles and techniques of experiments in plant physiology and biochemistry[J].2000.
    [157].Li Z, Peng Y, Ma X. Different response on drought tolerance and post-drought recovery between the small-leafed and the large-leafed white clover (Trifolium repens L.) associated with antioxidative enzyme protection and lignin metabolism[J]. Acta Physiologiae Plantarum,2013,35(1):213-222.
    [158].LI Z W, Cai Q G, Tang Z H. [Crop productivity model and its application][J]. Ying yong sheng tai xue bao= The journal of applied ecology/Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban,2002,13(9):1174-1178.
    [159].Lima ALS, Damatta FM, Pinheiro H A, et al. Photochemical responses and oxidative stress in two clones of< i> Coffea canephora under water deficit conditions[J]. Environmental and Experimental Botany,2002,47(3):239-247.
    [160].Liu Y, Deng LQ. The Drought Resitanhce of the Main Tree Species in Relation with Their Root Characteristics in the Western Aneas of Liaoning Povince [J][J]. JOURNAL OF SHENGYANG AGRICULTURAL UNIVERSITY,1995,2.
    [161].Lumaret R. sCytology, genetics, and evolution in the genus dactylis[J]. Critical reviews in plant sciences,1988,7(1):55-91.
    [162].Luna CM, Pastori GM, Driscoll S, et al. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat[J]. Journal of experimental botany,2005,56(411): 417-423.
    [163].Ma FJ, Li DD, Cai J, et al. Responses of wheat seedlings root growth and leaf photosynthesis to drought stress[J]. Ying yong sheng tai xue bao= The journal of applied ecology/Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban,2012,23(3): 724.
    [164].Magnani F, Mencuccini M, Grace J. Age-related decline in stand productivity:the role of structural acclimation under hydraulic constraints[J]. Plant, Cell & Environment,2000,23(3): 251-263.
    [165].Martino CD, Delfine S,Pizzuto R,Loreto F, Fuggi A. Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress[J]. New Phytologist,2003,158(3): 455-463.
    [166].McCue KF, Hanson AD. Drought and salt tolerance:towards understanding and application[J]. Trends in Biotechnology,1990,8:358-362.
    [167].Merewitz E, Meyer W, Bonos S, et al. Drought stress responses and recovery of TexasxKentucky hybrids and Kentueky bluegrass genotypes in temperate climate conditions [J].Agron.J.2010,102(1): 258-268.
    [168].Michael BE, Kaufaman MR. The osmotic potential of polyethylene glycol 6000[J]. Plant physiology,1973,51(5):914-916.
    [169].Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in plant science,2002,7(9): 405-410.
    [170].Mittler R, Zilinskas BA. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought[J]. The Plant Journal,1994,5(3):397-405.
    [171 J.Morgan JM, Hare RA, Fletcher RJ. Genetic variation in osmoregulation in bread and durum wheats and its relationship to grain yield in a range of field environments[J]. Crop and Pasture Science,1986,37(5):449-457.
    [172].Morgan J M. Osmotic components and properties associated with genotypic differences in osmoregulation in wheat[J]. Functional Plant Biology,1992,19(1):67-76.
    [173].Munns R. Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses[J]. Plant, Cell & Environment,1993,16(1):15-24.
    [174].Mustapha E, Ahmadou MV, Hahib K. Osmoregulation and osmoprotection in the leaf cells of two olive cultivars subjected to severe water deficit[J]. Acta Physiologiae Plantarum,2009,31(4): 711-721.
    [175].Mohammadkhani N, Heidari R.. Drought-induced accumulation of soluble sugars and proline in two maize varieties[J]. World Appl Sci J,2008,3(3):448-453.
    [176].Neubauer C, Schreiber U. Photochemieal and Non-photochemical Quenching of ChloroPhy II Fluorescence Indueed by Hydrogen-Peroxide.Zeitsehrift Fur Naturforsehung Ca[J].Joumal of Biosclenees,1989,44:262-270.
    [177].Nielsen DC, Vigil MF, Benjamin JG. The variable response of dryland corn yield to soil water content at planting[J]. Agricultural water management,2009,96(2):330-336.
    [178].Nunez M R, Calvo L. Effect of high temperatures on seed germination of< i> Pinus< i> sylvestris and< i> Pinus< i> halepensis[J]. Forest Ecology and Management,2000, 131(1):183-190.
    [179].Otting G. Protein hydration in aqueous solution[J]. Science,1991,254(5034):974-980.
    [180].Parry MA, Andralojc PJ,Khan S et al.Rubisco activity effects of drought stress[J].Annails of Botany,2002,89(7)833-839.
    [181].Perdom OP, Murphy JA, Berkowitz GA. Physiological changes associated with performance of Kentucky bluegrass cultivars during summer stress[J]. HortScience,1996,31(7):1182-1186.
    [182].Qiman Y, Muhtar Z, Tayer A. [Root activity and photosynthetic characteristics of Elaeagnus oxycarpa seedlings under drought stress][J]. Ying yong sheng tai xue bao= The journal of applied ecology/Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban,2011,22(7):1789.
    [183].Rachmilevitch, S., M. DaCosta, and B. Huang. Physiological and biochemical indicators for stress tolerance[J]. Plant-environment interactions. CRC Taylor & Francis, New York,2006: 321-356.
    [184]. Rao AH, Karunasree B, Reddy A R. Waterstress-responsive 23 kDa polyepptide from rice seedling is boiling stable and is related to the RAB16 family of proteins[J]. Journal of Plant Physiology 1993, 142(1):88-93.
    [185].Ramanjulu S, Bartels D. Drought-and desiccation-induced modulation of gene expression in plants[J]. Plant, cell & environment,2002,25(2):141-151.
    [186].Bermejo R, Irigoyen JJ,Santamaria JM. Short-term drought response of two white clover clones, sensitive and tolerant to O3.Physiologia Plantarum,2006,127(4):658-669.
    [187].Sairam RK, Shukla DS, Saxena DC. Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes[J]. Biologia Plantarum,1997,40(3):357-364.
    [188].Sairam RK, Vasanthan B, Ajay A. Calcium regulates Gladiolus flower senescence by influencing antioxidative enzymes activity[J]. Acta Physiologiae Plantarum,2011,33(5):1897-1904.
    [189].Salaiz TA, Shearman RC, Riordan TP. Creeping bentgrass cultivar water use and rooting response[J].Crop Sci,1991,31:1331-1334.
    [190]. Sanderson MA, Elwinger GF. Plant density and environment effects on orchardgrass-white clover mixtures[J]. Crop science,2002,42(6):2055-2063.
    [191].Sehmidt J.Analysis of variability among ecotypes of cocksfoot (Dactylis glomerata L.)on the basis of material from a grass collection[J].Biuletyn Instytutu Hodowlii Aklimatyzacji Roslin,1985,158: 117-121.
    [192].Seki M, Kamei A, Yamaguchi Shinozaki K, et al. Yamaguchi-Shinozaki K, et al. Molecular responses to drought, salinity and frost:common and different paths for plant protection[J]. Current Opinion in Biotechnology,2003,14(2):194-199.
    [193].Sharma P, Dubey RS. Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress:role of osmolytes as enzyme protectant[J]. Journal of plant physiology, 2005,162(8):854-864.
    [194].Sharma P, Dubey RS. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings[J]. Plant growth regulation,2005,46(3):209-221.
    [195].Sharp RE, Poroyko V, Hejlek LG, et al. Root growth maintenance during water deficits: physiology to functional genomics[J]. Journal of Experimental Botany,2004,55(407):2343-2351.
    [196].Sheffer KM, Dunn JH, Minner DD. Summer drought response and rooting depth of three cool-season turfgrasses[J]. HortScience,1987,22.
    [197].Simon EW. Phospholipids and plant membrane permeability[J]. New Phytologist,1974:377-420.
    [198].Stewart AV, Ellison NW. The genus Dactylis; wealth of wild Species:role in plant genome elucidation and improvement, Vol.2[J].2010.
    [199].Suarez N. Comparative Leaf Anatomy and Pressure-Volume Analysis in Plants of Ipomoea pes-caprae Experimenting Saline and/or Drought Stress[J]. International Journal of Botany,2011, 7(1):53-62.
    [200].Sundar D, Perianayaguy B, Reddy AR. Localization of antioxidant enzymes in the cellular compartments of sorghum leaves[J]. Plant Growth Regulation,2004,44(2):157-163.
    [201].Tang L, Kwon SY, Kim SH, et al. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature[J].Plant Cell Rep,2006,25(12):1380-1386.
    [202].Tezara W, Mitchell VJ,Driseoll SD. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP[J]. Nature,1999,401(6756):914-917.
    [203].Tolmachev AI, Packer JG, Griffiths GCD. Flora of the Russian Arctic:Polypodiaceae-Gramineae [M]. Univ of Alberta Pr,1995.
    [204].Topp GC. Electromagnetic determination of soil water content:Measurements in coaxial transmission lines[J]. Water Resources Research,1980,16(3):574-582.
    [205].Turkan I, Bor M, Ozdemir F,et al. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L.subjected to polyethylene glycol mediated water stress[J]. Plant Science,2005,168(1):223-231.
    [206]. Wang Y, Mu C S, Wang J, et al. Study on the Difference of Drought Resistance of Main Legumes in Songnen Grassland at Germinating Stage [J]. Chinese Journal of Grassland,2006,1:001.
    [207]. Winter K,Schromm M J. Analysis of stomatal and nonstomatal components in the environmental control of CO2 exchange in leaves of Welwitschia mirabilis[J]. Plant physiology,1986,82(1): 173-178.
    [208].Xu DQ. Photosynthetic Efficiency.Shanghai:Shanghai Scientific and Technical Publishers,2002. 821-834.
    [209].Xu LX, Han LB, Huang BR. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science,2011,136(4):247-255.
    [210].Yousfi N, Slama I, Ghnaya T, et al. Effects of water deficit stress on growth, water relations and osmolyte accumulation in Medicago truncatula and M. laciniata populations[J].Comptes rendus biologies,2010,333(3):205-213.
    [211].Zhang J, Kirkham MB. Antioxidant responses to drought in sunflower and sorghum seedlings[J]. New Phytologist,1996,132(3):361-373.
    [212].Zhang R H, Xue J Q, Pu J.Influence of Drought Stress on Plant Growth and Photosynthetic Traits in Maize Seedlings[J].Acta Agronomica Sinica,2011,37(3):521-528.
    [213].Zheng SH, Yan CR. The ecophysiological and morphological characteristics of maize in seedling stage under water stress[J]. Acta Ecologica Sinica,2006,4:021.
    [214].Zhou L, Yan P, Xiao M. Different response on drought tolerance and post-drought recovery between the small-leafed and the large-leafed white clover (Trifolium repens L.) associated with antioxidative enzyme protection and lignin metabolism[J]. Acta Physiologiae Plantarum,2013, 35(1):213-222.
    [215].Zhu JK. Salt and drought stress signal transduction in plants[J]. Annual review of plant biology, 2002,53:247.
    [216].Zlatev XZ, Yordanov IT. Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants[J]. Bulg J Plant Physiol,2004,30(3-4):3-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700