用户名: 密码: 验证码:
微小型高性能永磁交流伺服系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微电子技术、电力电子技术、计算机技术和现代控制技术的发展,电机制造工艺水平的不断提高,永磁交流伺服系统作为数控机床、机器人、大规模集成电路制造、航空航天等领域的重要驱动部件,在现代工业自动化生产中获得了广泛的应用。
     本文根据国家863计划课题要求,针对仿人机器人关节驱动系统的快速稳定控制,研究机器人关节驱动系统一体化集成设计方法,从永磁交流伺服系统驱动控制策略和微小型高性能交流伺服系统研发两个方面进行了全面而深入的研究。具体内容包括以下几个方面:
     交流伺服系统动态频响的核心制约因素是内环电流环的带宽,本文对电流环带宽扩展策略进行了研究。在数字控制交流伺服系统中,制约电流环带宽的因素主要包括功率器件的开关频率和A/D采样时间、计算处理、PWM占空比更新等数字控制延时。在不提高功率器件开关频率的前提下扩展电流环的带宽很有必要。在同步旋转坐标系下的电流解耦控制基础上,分析了永磁交流伺服系统中电流采样和占空比更新方式产生的延时对电流环带宽的影响,提出了在一个载波周期内实现定子电流的双次采样和PWM占空比双次更新的带宽扩展策略。在保持开关频率不变情况下,理论上可扩展电流环带宽一倍以上,从而可以大幅提高永磁交流伺服系统的动态性能。
     对永磁同步电机数字控制系统的电流预测控制进行了研究,提出了一种增强鲁棒性的预测控制算法。基于拉格朗日插值的传统无差拍预测控制算法,具有动态响应快、开关频率恒定、适于数字实现等特点,但对电机电感参数失配比较敏感。为此提出的改进无差拍预测控制算法,改进了电流偏差约束条件和输出电压预测方法。利用根轨迹法分析了算法鲁棒性与电感参数失配的关系。在电机电感参数发生失配情况下,能够维持系统稳定,实现电机电流的闭环控制,使实际电流跟随给定,提高了算法的鲁棒性。
     为保证电机转速快速跟随给定,动态过程中不出现超调和振荡,提出了一种速度环IP控制器参数设计方法。根据永磁同步电机速度环结构和数学模型的分析,调整了比例增益的作用位置,实现局部反馈校正,构成速度环IP控制器。根据稳定性和跟随性要求,选取转速偏差指标函数,推导出IP控制器参数设计方法,并在控制器设计中增加了anti-windup策略,以抑制积分饱和现象。通过辨识转动惯量,实现控制器参数整定。所设计的速度环控制器,可以获得电机转速的无超调、无振荡快速响应,并具有较强的抗扰动能力。
     针对仿人机器人一体化关节驱动系统所要求的小型、轻量、高速度和高精度控制等关键问题,提出了微小型高性能交流伺服系统的研究和设计方法。微小型交流伺服系统由高功率密度永磁电机、微小型伺服驱动器和磁编码器组成。主要围绕伺服驱动器微小型化设计中的关键技术进行研究,从电源系统、电压电流检测、结构设计等方面进行了微小型化设计,并给出了各部分功能模块的设计方法和解决方案。为保证系统的可靠性,对微小型伺服驱动器进行了热设计,建立了热分析模型,并基于热仿真分析实现了驱动器结构优化。
     在上述工作的基础上,研制开发了两种型号的微小型交流伺服驱动器,分析了系统的硬件组成和软件结构设计。对研发的微小型交流伺服系统进行了实验研究,具有控制性能良好、体积小、重量轻、功率密度高、通用性强等特点,满足仿人机器人一体化关节驱动系统的性能指标要求,为微小型伺服控制技术的自主创新和产业化打下了坚实的理论和实践基础。
     本文的研究内容是国家高技术发展计划(863计划)重点课题“仿人机器人感知控制高性能单元和系统——高速高精一体化关节”的重要组成部分。该项目于2011年9月通过863专家组验收,获得了较高的评价。
With the development of microelectronics technology, power electronics,computer technology, control technology and motor manufacturing technology, asthe important drive parts of digital control machine tools, industrial robots, largescale integrated circuit manufacturing and aerospace field application, permanentmagnet AC servo system has been applied broadly in modern industry automationmanufactures.
     Sponsored by National High Technology Development (863Program) Project,guided by the fast and stable tracking requirements of humanoid robot joint drivesystems, we deeply study the robot integrated joint drive system design approach,including the permanent magnet AC servo control strategies and the minitype highperformance AC servo system development. Specifically include the following:
     The inner current loop bandwidth constraints the dynamic response of theservo system. This paper presents a bandwidth expansion strategy of the currentloop. In digital control AC servo system, there are two major factors restrictingcurrent loop bandwidth, switching frequency and digital delay which means thesum of time durations of A/D sampling, algorithm execution and PWM duty cycleupdate delay. The switching losses will rise with the switching frequency increase.So expanding the current loop bandwidth is necessary, without changing theswitching frequency. The delay effects of current sampling and duty cycle updatewere analyzed and the bandwidth expansion strategy is proposed. Double statorcurrent sampling and double PWM duty cycle update are achieved in a carrierperiod. The current loop bandwidth can be extended more than one timetheoretically and the dynamic performance of servo system is improved.
     The predictive current control for permanent magnet synchronous motor(PMSM) digital control system is studied and an improved robustness predictivecurrent control algorithm is proposed. The traditional deadbeat predictive controlalgorithm, based on Lagrange interpolation formula, has fast dynamic response andconstant switching frequency and is suitable for digital implementation. However, itis sensitive to motor inductance mismatch. So an improved deadbeat predictivecontrol algorithm is proposed. The current offset constraint and output voltageprediction method are modified. The relationship between algorithm stability andmotor inductance mismatch is analyzed using root locus method. In case if theinductance mismatch occurs, the system remains stable. The actual motor currentcould follow the reference current and the closed-loop control is achieved. Therobustness of the algorithm is improved.
     In order to ensure speed response follow the command rapidly, withoutovershoot and oscillations occurring in the dynamic process, we propose a speedcontrol loop IP regulator parameter design method. The proportional action isrelocated into the feedback path to constitute integral-proportional (IP) regulator.Taking stability and following performance into account, the speed controllerdesign method is derived, and the anti-windup strategy is considered. The inertiaidentification is adopted to achieve controller parameters tuning. The speed controlstrategy has fast response without overshoot and oscillation, and improves anti-disturbance performance.
     The requirements for humanoid robot joint servo system are small size, lightweight, high response speed and high control precision. Aiming at these technicalrequirements, the minitype high performance servo system design method isproposed. The minitype AC servo system is consisting of high power densitypermanent magnet motor, minitype servo driver and magnetic encoder. The keytechnologies in the miniaturization design of the servo driver are researched,including power supply system, voltage and current detection, mechanical structuredesign and other aspects. The design method and solution of each function moduleare given. The thermal design of the minitype servo driver is implemented to ensurethe reliability of the system. The thermal analysis model is established, and thestructure is optimized based on simulation.
     Two types of minitype servo drivers have been developed after the aboveresearch work. And the system hardware and software have been designed.Experimental results show that the minitype AC servo system has small volume,light weight, good control performance, high power density, strong universality andother characteristics. It is applicable for the humanoid robot integrated joint drivesystem. And the research has built a stable base for the independent innovation andindustrialization of minitype servo control technology.
     The content in this paper is an important part of National High TechnologyDevelopment (863Program) Project (High Performance Humanoid Robot SenseControl Unit and System: High-speed High-precision Integrated Joint). The projecthas been checked and accepted by National863expert group and has achieved ahigher rating in September,2011.
引文
[1] Bose B K. Modern Power Electronics and AC Drives[M]. New Jersey:Prentice Hall PTR,2001:449-483.
    [2]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,2006:1-12.
    [3]高景德,王祥珩,李发海.交流电机及其系统的分析[M].第二版.北京:清华大学出版社,2005:291-304.
    [4]陈伯时,陈敏逊.交流调速系统[M].第二版.北京:机械工业出版社,2005:181-195.
    [5]李永东.交流电机数字控制系统[M].北京:机械工业出版社,2003:312-326.
    [6] Lian R J. Intelligent Controller for Robotic Motion Control[J]. IEEETransactions on Industrial Electronics,2011,58(11):5220-5230.
    [7] Ruderman M, Hoffmann F, Bertram T. Modeling and Identification of ElasticRobot Joints with Hysteresis and Backlash[J]. IEEE Transactions on IndustrialElectronics,2009,56(10):3840-3847.
    [8] Chien M C, Huang A C. Adaptive Control for Flexible-Joint ElectricallyDriven Robot with Time-Varying Uncertainties[J]. IEEE Transactions onIndustrial Electronics,2007,54(2):1032-1038.
    [9]王宏,于泳,徐殿国.永磁同步电动机位置伺服系统[J].中国电机工程学报,2004,24(7):151-155.
    [10] Cheng M Y, Lee C C. Motion Controller Design for Contour-Following TasksBased on Real-Time Contour Error Estimation[J]. IEEE Transactions onIndustrial Electronics,2007,54(3):1686-1695.
    [11] Jeon J W, Ha Y Y. A Generalized Approach for the Acceleration andDeceleration of Industrial Robots and CNC Machine Tools[J]. IEEETransactions on Industrial Electronics,2000,47(1):133-139.
    [12] Jeon J W. Efficient Acceleration and Deceleration Technique for ShortDistance Movement in Industrial Robots and CNC Machine Tools[J].Electronics Letters,2000,36(8):766-768.
    [13]赵希梅,郭庆鼎.数控机床多轴联动伺服电机的零相位自适应鲁棒交叉耦合控制[J].中国电机工程学报,2008,28(12):129-133.
    [14] Ogasawara S, Nishimura M, Akagi H, et al. A High Performance AC ServoSystem with Permanent Magnet Synchronous Motors[J]. IEEE Transactionson Industrial Electronics,1986,33(1):87-91.
    [15] Lorenz R D, Van Patten K W. High-Resolution Velocity Estimation for All-Digital, AC Servo Drives[J]. IEEE Transactions on Industry Applications,1991,27(4):701-705.
    [16] Jezernik K, Rodic M. High Precision Motion Control of Servo Drives[J].IEEE Transactions on Industrial Electronics,2009,56(10):3810-3816.
    [17] Pillay P, Krishnan R. Modeling, Simulation, and Analysis of Permanent-Magnet Motor Drives. I. The Permanent-Magnet Synchronous Motor Drive[J].IEEE Transactions on Industry Applications,1989,25(2):265-273.
    [18] Islam R, Husain I, Fardoun A, et al. Permanent-Magnet Synchronous MotorMagnet Designs with Skewing for Torque Ripple and Cogging TorqueReduction[J]. IEEE Transactions on Industry Applications,2009,45(1):152-160.
    [19] Sarma S, Agrawal V K, Udupa S. Software-Based Resolver-to-DigitalConversion Using a DSP[J]. IEEE Transactions on Industrial Electronics,2008,55(1):371-379.
    [20] Hwang S-H, Kim H-J, Kim J-M, et al. Compensation of Amplitude Imbalanceand Imperfect Quadrature in Resolver Signals for PMSM Drives[J]. IEEETransactions on Industry Applications,2011,47(1):134-143.
    [21] Kayal M, Burger F, Popovic R S. Magnetic Angular Encoder Using an OffsetCompensation Technique[J]. IEEE Sensors Journal,2004,4(6):759-763.
    [22] Wekhande S, Agarwal V. High-Resolution Absolute Position Vernier ShaftEncoder Suitable for High-Performance PMSM Servo Drives[J]. IEEETransactions on Instrumentation and Measurement,2006,55(1):357-364.
    [23]谢涛,徐建峰,张永学,等.仿人机器人的研究历史、现状及展望[J].机器人,2002,24(4):367-374.
    [24]于秀丽,魏世民,廖启征.仿人机器人发展及其技术探索[J].机械工程学报,2009,45(3):71-75.
    [25] Kanda T, Ishiguro H, Imai M, et al. Development and Evaluation ofInteractive Humanoid Robots[J]. Proceedings of the IEEE,2004,92(11):1839-1850.
    [26] Garcia E, Jimenez M A, Santos P G, et al. The Evolution of RoboticsResearch[J]. IEEE Robotics&Automation Magazine,2007,14(1):90-103.
    [27] Hirose M, Ogawa K. Honda Humanoid Robots Development[J]. PhilosophicalTransactions of the Royal Society A: Mathematical Physical and EngineeringSciences,2007,365(1850):11-19.
    [28] Tajima T, Honda D, Suga K. Fast Running Experiments Involving aHumanoid Robot[C]. IEEE International Conference on Robotics andAutomation. Kobe:IEEE,2009:1571-1576.
    [29] Kuroki Y, Ishida T, Yamaguchi J, et al. A Small Biped EntertainmentRobot[C]. IEEE/RSJ International Conference on Humanoid Robotics.Hawaii:IEEE,2001:181-186.
    [30] Ogura Y, Aikawa H, Shimomura K, et al. Development of a Humanoid RobotWABIAN-2[C]. IEEE International Conference on Robotics and Automation.Florida:IEEE,2006:76-81.
    [31] Nishiwaki K, Kuffner J, Kagami S, et al. The Experimental Humanoid RobotH7: a Research Platform for Autonomous Behaviour[J]. PhilosophicalTransactions of the Royal Society A: Mathematical Physical and EngineeringSciences,2007,365(1850):79-107.
    [32] Gienger M, Loffler K, Pfeiffer E. Towards the Design of Biped JoggingRobot[C]. IEEE International Conference on Robotics and Automation.Seoul:IEEE,2001:4140-4145.
    [33] Kaneko K, Harada K, Kanehiro F, et al. Humanoid Robot HRP-3[C].IEEE/RSJ International Conference on Intelligent Robots and Systems.Nice:IEEE,2008:2471-2478.
    [34] Oh J, Hanson D, Kim W, et al. Design of Android Type Humanoid RobotAlbert HUBO[C]. IEEE/RSJ International Conference on Intelligent Robotsand Systems. Beijing:IEEE,2006:1428-1433.
    [35]刘莉,汪劲松,陈恳,等. THBIP-I拟人机器人研究进展[J].机器人,2002,24(3):262-267.
    [36] Pabon L, Martinez C P, Villagra J, et al. Mechatronic Design and Control of aCritical Biped Robot Joint[C]. IEEE International Conference onMechatronics. Malaga:IEEE,2009:1-6.
    [37] Tsuji T, Ohnishi K, Sabanovic A. A Controller Design Method Based onFunctionality[J]. IEEE Transactions on Industrial Electronics,2007,54(6):3335-3343.
    [38] Bentivegna D C, Atkeson C G, Jung-Yup K. Compliant Control of aHydraulic Humanoid Joint[C]. IEEE-RAS International Conference onHumanoid Robots. Pittsburgh:IEEE,2007:483-489.
    [39]周玉林,高峰.仿人机器人构型[J].机械工程学报,2006,42(11):66-74.
    [40]李开生,张慧慧,费仁元,等.机器人控制器体系结构研究的现状和发展[J].机器人,2000,22(3):235-240.
    [41] Granosik G, Borenstein J. Integrated Joint Actuator for Serpentine Robots[J].IEEE/ASME Transactions on Mechatronics,2005,10(5):473-481.
    [42] Shimoda S, Yoshihara Y, Kimura H. Emergence of Bipedal Walking ThroughBody/Environment Interactions[C]. IEEE/RSJ International Conference onIntelligent Robots and Systems. Taipei:IEEE,2010:1760-1765.
    [43] Lohmeier S, Buschmann T, Ulbrich H, et al. Humanoid Robot LOLA-Research Platform for High-Speed Walking: Motion and VibrationControl[M]. Netherlands:Springer,2008:221-230.
    [44] Gouaillier D, Hugel V, Blazevic P, et al. Mechatronic Design of NAOHumanoid[C]. IEEE International Conference on Robotics and Automation.Kobe:IEEE,2009:769-774.
    [45] Costa N, Brown M, Hutchins D G, et al. Design of Human-Friendly PoweredLower Limb Rehabilitation Orthosis[C]. Workshop on Human AdaptiveMechatronics and High-Fidelity Telepresence. Tokyo:COE,2005:69-75.
    [46] Sellaouti R, Ouezdou F B. Design and Control of3DOFs Parallel ActuatedMechanism for Biped Application[J]. Mechanism and Machine Theory,2005,40:1367-1393.
    [47] Cheng G, Hyon S, Morimoto J, et al., CB: A Humanoid Research Platform forExploring Neuroscience[C]. The6th IEEE-RAS International Conference onHumanoid Robots. Genoa:IEEE,2006:182-187.
    [48]喻刚,舒志兵.基于CAN总线的ELMO伺服运动控制系统[J].机床与液压,2008,36(7):302-305.
    [49]吴明阳,孟庆鑫,王沫楠.电机驱动型两栖仿生机器蟹步行腿研究[J].电机与控制学报,2005,9(4):307-310,315.
    [50] Oblak J, Cikajlo I, Matjaci Z. Universal Haptic Drive: A Robot for Arm andWrist Rehabilitation[J]. IEEE Transactions on Neural Systems andRehabilitation Engineering,2010,18(3):293-302.
    [51] Kazmierkowski M P, Malesani L.Current Control Techniques for Three-PhaseVoltage-Source PWM Converters: A Survey[J]. IEEE Transactions onIndustrial Electronics,1998,45(5):691-703.
    [52] Naouar M-W, Monmasson E, Naassani A A, et al. FPGA-Based CurrentControllers for AC Machine Drives-A Review[J]. IEEE Transactions onPower Electronics,2007,54(4):1907-1925.
    [53] Zmood D N, Holmes D G, Bode G H. Frequency-Domain Analysis of Three-Phase Linear Current Regulators[J]. IEEE Transactions on IndustrialApplications,2001,37(2):601-610.
    [54] Zmood D N, Holmes D G. Stationary Frame Current Regulation of PWMInverters with Zero Steady-State Error[J]. IEEE Transactions on PowerElectronics,2003,18(3):814-822.
    [55] Harnefors L, Nee H P. Model-Based Current Control of AC Machines Usingthe Internal Model Control Method[J]. IEEE Transactions on IndustryApplications,1998,34(1):133-141.
    [56] Choi J, Kim H, Sul S K. Design of Fast Response Current Controller Using d-q Axis Cross-Coupling Application to Permanent Magnet Synchronous MotorDrive[C]. International Conference on Industrial Electronics, Control, andInstrumentation. Melbourne:IEEE,1996:1187-1192.
    [57] Blanco F B, Degner M W, Lorenz R D. Analysis and Design of CurrentRegulators Using Complex Vectors[J]. IEEE Transactions on IndustryApplications,2000,36(3):817-825.
    [58] Holtz J. The Representation of AC Machine Dynamics by Complex SignalFlow Graphs[J]. IEEE Trasactions on Industrial Electronics,1995,42(3):263-271.
    [59] Lorenz R D, Lawson D B. Performance of Feedforward Current Regulatorsfor Field Oriented Induction Machine Controllers[J]. IEEE Transactions onIndustry Applications,1987, IA-23(4):597-602.
    [60] Lee D C, Sul S K, Park M H. High Performance Current Regulator for a Field-Oriented Controlled Induction Motor Drive[J]. IEEE Transactions on IndustryApplications,1994,30(5):1247-1253.
    [61] Moon H-T, Kim H-S, Youn M-J. A Discrete-Time Predictive Current Controlfor PMSM[J]. IEEE Transctions on Power Electronics,2003,18(1):464-472.
    [62] Morel F, Xuefang L-S, Retif J-M, et al. A Comparative Study of PredictiveCurrent Control Schemes for a Permanent-Magnet Synchronous MachineDrive[J]. IEEE Transctions on Industrial Electronics,2009,56(7):2715-2728.
    [63] Mohamed Y A, El-Saadany E F. Robust High Bandwidth Discrete-TimePredictive Current Control with Predictive Internal Model-A UnifiedApproach for Voltage-Source PWM Converters[J]. IEEE Transctions onPower Electronics,2008,23(1):126-136.
    [64] Hua C-C, Wu C-W, Chuang C-W. A Digital Predictive Current Control withImproved Sampled Inductor Current for Cascaded Inverters[J]. IEEETransctions on Industrial Electronics,2009,56(5):1718-1726.
    [65] Pan C T, Chang T Y.An Improved Hysteresis Current Controller for ReducingSwitching Frequency[J]. IEEE Transactions on Power Electronics,1994,9(1):97-104.
    [66] Aldabas E, Romeral L, Arias A, Jayne M G. Software-Based DigitalHysteresis-Band Current Controller[J]. IEE Proceedings on Electric PowerApplications,2006,153(2):184-190.
    [67] Kwon B H, Min B D, Youm J H. An Improved Space-Vector-BasedHysteresis Current Controller[J]. IEEE Transactions on Industrial Electronics,1998,45(5):752-760.
    [68] Wipasuramonton P, Zhu Z Q, Howe D. Improved Current-Regulated DeltaModulator for Reducing Switching Frequency and Low-Frequency CurrentError in Permanent Magnet Brushless AC Drives[J]. IEEE Transactions onPower Electronics,2005,20(2):475-484.
    [69] Kung Y-S, Tsai M-H. FPGA-Based Speed Control IC for PMSM Drive withAdaptive Fuzzy Control[J]. IEEE Transactions on Power Electronics,2007,22(6):2476-2486.
    [70] Jung J-W, Kim T H, Choi H H. Speed Control of a Permanent MagnetSynchronous Motor with a Torque Observer: a Fuzzy Approach[J]. IETControl Theory&Applications,2010,4(12):2971-2981.
    [71] Uddin M N, Radwan T S, Rahman M A. Fuzzy-Logic-Controller-Based Cost-Effective Four-Switch Three-Phase Inverter-Fed IPM Synchronous MotorDrive System[J]. IEEE Transactions on Industry Applications,2006,42(1):21-30.
    [72] Jung J-W, Choi Y-S, Leu V Q, et al. Fuzzy PI-Type Current Controllers forPermanent Magnet Synchronous Motors[J]. IET Electric Power Applications,2011,5(1):143-152.
    [73]瞿博,洪小圆,吕征宇.模糊控制在三相PWM整流器无差拍控制中的应用[J].中国电机工程学报,2009,29(15):50-54.
    [74] Kumar R, Gupta R A, Singh B. Intelligent Tuned PID Controllers for PMSMDrive-A Critical Analysis[C]. IEEE International Conference on IndustrialTechnology. Mumbai:IEEE,2006:2055-2060.
    [75]孙孝峰,邬伟扬,黎顺元,等.三相变流器神经网络滞环控制研究[J].中国电机工程学报,2002,22(10):39-49.
    [76]夏长亮,王娟,史婷娜,等.基于自适应径向基函数神经网络的无刷直流电机直接电流控制[J].中国电机工程学报,2003,23(6):123-127.
    [77]许鹏,郭桂芳,曹军义,等.直流无刷电机神经网络直接转矩控制[J].中国电机工程学报,2009,29(24):192-196.
    [78] Worthmann C, Diana G. Neural Network Current Controller for a BoostRectifier[C]. IEEE International Symposium on Industrial Electronics.Pretoria:IEEE,1998:234-239.
    [79] Blasko V, Kaura V, Niewiadomski W. Sampling Methods for DiscontinuousVoltage and Current Signals and Their Influence on Bandwidth of ControlLoops of Electrical Drives[C]. The12th Annual Conference on Applied PowerElectronics Conference and Exposition. Atlanta:IEEE,1997:1123-1130.
    [80] Springob L, Holtz J High-Bandwidth Current Control for Torque RippleCompensation in PM Synchronous Machines[J]. IEEE Transactions onIndustrial Electronics,1998,45(5):713-721.
    [81] Harnefors L, Nee N P. Model-Based Current Control of AC Machines Usingthe Internal Model Control Method[J]. IEEE Transactions on IndustryApplications,1998,34(1):133-141.
    [82] Jung J, Nam K. A Dynamic Decoupling Control Scheme for High SpeedOperation of Induction Motors[J]. IEEE Transactions on Industrial Electronics,1999,46(1):100-110.
    [83] Blanco F B, Degner M W, Lorenz R D. Dynamic Analysis of CurrentRegulators for AC Motors Using Complex Vectors[C]. IEEE IndustryApplications Conference. St. Louis:IEEE,1998:1253-1260.
    [84] Jeong S J, Song S H. Improvement of Predictive Current Control PerformanceUsing Online Parameter Estimation in Phase Controlled Rectifier[J]. IEEETransactions on Power Electronics,2007,22(5):1820-1825.
    [85] Bae B H, Sul S K. A Compensation Method for Time Delay of Full-DigitalSynchronous Frame Current Regulator of PWM AC Drives[J]. IEEETransactions on Industry Applications,2003,39(3):802-810.
    [86] Ibrahim Y A, Abu-Elnaga M M, El-Sayad M A. Robust Speed Control ofPMSM Drive System with Lag Time Compensation[C]. InternationalConference on Electrical, Electronic and Computer Engineering. Cairo:IEEE,2004:823-829.
    [87] Astorm J, Hang C C, Lim B C. A New Smith Predictor for Controlling aProcess with an Integrator and Long Dead Time[J]. IEEE Transactions onAutomatic Control,1994,39(2):486-495.
    [88] Ovaska S J, Vainio O. Predictive Compensation of Time-Varying ComputingDelay on Real-Time Control Systems[J]. IEEE Transactions on ControlSystems Technology,1997,5(5):523-526.
    [89] Moon H, Kim H, Youn M. A. Discrete-Time Predictive Current Control forPMSM[J]. IEEE Transactions on Power Electronics,2003,18(1):464-472.
    [90] Hoang L, Slimani K, Viarouge P. Analysis and Implementation of a Real-Time Predictive Current Controller for Permanent-Magnet Synchronous ServoDrives[J]. IEEE Transactions on Industrial Electronics,1994,41(1):110-117.
    [91] Mossoba J, Lehn P. A Controller Architecture for High Bandwidth ActivePower Filters[J]. IEEE Transactions on Power Electronics,2003,18(1):317-325.
    [92] Abu-Rub H, Guzinski J, Krzeminski Z, et al. Predictive Current Control ofVoltage-Source Inverters[J]. IEEE Transactions on Industrial Electronics,2004,51(3):585-593.
    [93] Betz R E, Cook B J, Henriksen S J. A Digital Current Controller for ThreePhase Voltage Source Inverters[C]. IEEE Industry Applications Conference.New Orleans:IEEE,2003:722-729.
    [94] Henriksen S J, Betz R E, Cook B J. Practical Issues with Predictive CurrentControllers[C]. Australasian Universities Power Engineering Conference.Perth WA:ACPE,2001:526-531.
    [95] Bode G, Loh P C, Newman M J, et al. An Improved Robust Predictive CurrentRegulation Algorithm[J]. IEEE Transactions on Industry Applications,2005,41(6):1720-1733.
    [96] Abu-Rub H, Guzinski J, Krzeminski Z, et al. Predictive Current Control ofVoltage Source Inverters[J]. IEEE Transactions on Industrial Electronics,2004,51(3):585-593.
    [97] Malesani L, Mattavelli P, Buso S. Robust Dead-Beat Current Control forPWM Rectifier and Active Filters[J]. IEEE Transactions on IndustryApplications,1999,35(3):613-620.
    [98] Mossoba J, Lehn P W. A Controller Architecture for High Bandwidth ActivePower Filters[J]. IEEE Transactions on Power Electronics,2003,18(1):317-325.
    [99] Mattavelli P, Spiazzi G, Tenti P. Predictive Digital Control of Power FactorPreregulators with Input Voltage Estimation Using Disturbance Observers[J].IEEE Transactions on Power Electronics,2005,20(1):140-147.
    [100]Buso S, Fasolo S, Mattavelli P. Uninterruptible Power Supply MultiloopEmploying Digital Predictive Voltage and Current Regulators[J]. IEEETransactions on Industry Applications,2001,37(6):1846-1854.
    [101]Saggini S, Stefanutti W, Tedeschi E, et al. Digital Deadbeat Control Tuningfor DC–DC Converters Using Error Correlation[J]. IEEE Transactions onPower Electronics,2007,22(4):1566–1570.
    [102]Correa P, Pacas M, Rodriguez J. Predictive Torque Control for Inverter-FedInduction Machines[J]. IEEE Transactions on Industrial Electronics,2007,54(2):1073-1079.
    [103]Mohamed Y A R I, El-Saadany E F. An Improved Deadbeat Current ControlScheme with a Novel Adaptive Self-Tuning Load Model for a Three PhasePWM Voltage-Source Inverter[J]. IEEE Transactions on Industrial Electronics,2007,54(2):747-759.
    [104]Mohamed Y A R I, El-Saadany E F. Robust High Bandwidth Discrete-TimePredictive Current Control with Predictive Internal Model-A UnifiedApproach for Voltage-Source PWM Converters[J]. IEEE Transactions onPower Electronics,2008,23(1):126-136.
    [105]Mohamed Y A R I, El-Saadany E F. Adaptive Discrete-Time Grid-VoltageSensorless Interfacing Scheme for Grid-Connected DG-Inverters Based onNeural-Network Identification and Deadbeat Current Regulation[J]. IEEETransactions on Power Electronics,2008,23(1):308-321.
    [106]Holtz J, Stadtfeld S. A Predictive Controller for the Stator Current Vector ofAC Machines Fed from a Switched Voltage Source[C]. International PowerElectronics Conference. Tokyo:JIEE,1983:1665-1675.
    [107]Khambadkone A, Holtz J. Low Switching Frequency and High DynamicPulsewidth Modulation Based on Field-Orientation for High-Power InverterDrive[J]. IEEE Transactions on Power Electronics,1992,7(4):627-632.
    [108]Depenbrock M. Direct Self-Control (DSC) of Inverter-Fed InductionMachine[J]. IEEE Transactions on Power Electronics,1988,3(4):420-429.
    [109]Flach E, Hoffmann R, Mutschler P. Direct Mean Torque Control of anInduction Motor[C]. The7th European Conference on Power Electronics andApplications. Trondheim:IEEE,1997:672-677.
    [110]Mutschler P. A New Speed-Control Method for Induction Motors[C]. PowerConversion Intelligent Motion Europe. Nuremberg:PCIM,1998:131-136.
    [111]Low K S, Zhuang X. Robust Model Predictive Control and Observer forDirect Drive Applications[J]. IEEE Transactions on Power Electronics,2000,15(6):1018-1028.
    [112]Kennel R, Linder A, Linke M. Generalized Predictive Control (GPC)-Readyfor Use in Drive Applications[C]. IEEE32nd Annual Power ElectronicsSpecialists Conference. Vancouver:IEEE,2001:1839-1844.
    [113]Rodríguez J, Pontt J, Silva C, et al. Predictive Control of a Three-PhaseInverter[J]. Electronics Letters,2004,40(9):561-562.
    [114]Linder A, Kennel R. Direct Model Predictive Control-A New DirectPredictive Control Strategy for Electrical Drives[C]. European Conference onPower Electronics and Applications. Dresden:IEEE,2005:1-10.
    [115]Rodríguez J, Pontt J, Silva C, et al. Predictive Current Control of a VoltageSource Inverter[J]. IEEE Transactions on Industrial Electronics,2007,54(1):495-503.
    [116]Papafotiou G, Geyer T, Morari M. A Hybrid Model Predictive ControlApproach to the Direct Control Problem of Induction Motors[J]. InternationalJournal of Robust Nonlinear Control,2007,17(17):1572-1589.
    [117]Seok J K, Lee J K, Lee D C. Sensorless Speed Control of NonsalientPermanent Magnet Synchronous Motor Using Rotor Position Tracking PIController[J]. IEEE Transactions on Industrial Electronics,2006,53(2):399-405.
    [118]Garcia D, Karimi A, Longchamp R. Robust Proportional Integral DerivativeController Tuning with Specifications on the Infinity-Norm of SensitivityFunctions[J]. Proceedings of IET Control Theory and Applications,2007,1(1):263-272.
    [119]Uddin M N, Abido M A, Rahman M A. Development and Implementation of aHybrid Intelligent Controller for Interior Permanent Magnet SynchronousMotor Drives[J]. IEEE Transactions on Industry Applications,2004,40(1):68-76.
    [120]Uddin M N, Abido M A, Rahman M A. Real-Time Performance Evaluation ofa Genetic-Algorithm-Based Fuzzy Logic Controller for IPM Motor Drives[J].IEEE Transactions on Industry Applications,2005,41(1):246-252.
    [121]Rahman M A, Hoque M A. On-Line Adaptive Artificial Neural NetworkBased Vector Control of Permanent Magnet Synchronous Motors[J]. IEEETransactions on Energy Conversion,1998,13(4):311-318.
    [122]Khan M A S K, Rahman M A. An Adaptive Selftuned Wavelet Controller forIPM Motor Drives[C]. IEEE Power and Energy Society General Meeting.Pittsburg:IEEE,2008:1-4.
    [123]王伟,张晶涛,柴天佑. PID参数先进整定方法综述[J].自动化学报,2000,26(3):347-355.
    [124]Jan R, Tseng C, Liu R. Robust PID Control Design for Permanent MagnetSynchronous Motor: a Genetic Approach[J]. Electric Power Systems Research,2008,78(7):1161-1168.
    [125]Espina J, Arias A, Balcells J, et al. Speed Anti-Windup PI Strategies Reviewfor Field Oriented Control of Permanent Magnet Synchronous Machines[C].Compatibility and Power Electronics. Badajoz:IEEE,2009:279-285.
    [126]Cao X Q, Fan L P. Self-Tuning PI Controller for Permanent MagnetSynchronous Motor Based on Iterative Learning Control[C]. IEEE2ndInternational Symposium on Intelligent Information Technology Application.Shanghai:IEEE,2008:756-60.
    [127]Zhu J G, Zhang Z F, Tang R Y. Self-tuning PI Controller Based on NeuralNetwork for Permanent Magnet Synchronous Motor[C]. IEEE4thInternational Conference on Natural Computation. Jinan:IEEE,2008:532-537.
    [128]Du C Y, Yu G R. Optimal PI Control of a Permanent Magnet SynchronousMotor Using Particle Swarm Optimization[C]. IEEE2nd InternationalConference on Innovative Computing, Information and Contro. Kumamoto:IEEE,2007:255-8.
    [129]Wang M S, Shau T C, Chang C M. DSP-Based Auto-Tuning Design ofPermanent Magnet Synchronous Motor Drives[C]. The33rd AnnualConference of the IEEE Industrial Electronics Society. Taipei:IEEE,2007:1044-1048.
    [130]Mudi R K, Dey C, Lee T T. An Improved Auto-Tuning Scheme for PIControllers[J]. ISA Transactins,2008,47(1):45-52.
    [131]Elmas C, Ustun O, Sayan H H. A Neuro-Fuzzy Controller for Speed Controlof a Permanent Magnet Synchronous Motor Drive[J]. Expert Systems withApplications,2008,34(1):657-664.
    [132]Hodel A S, Hall C E. Variable-Structure PID Control to Prevent IntegratorWindup[J]. IEEE Transactions on Industrial Electronics,2001,48(2):442-451.
    [133]Choi J W, Lee S C. Antiwindup Strategy for PI-Type Speed Controller[J].IEEE Transactions on Industrial Electronics,2009,56(6):2039-2046.
    [134]Shin H B. New Antiwindup PI Controller for Variable-Speed Motor Drives[J].IEEE Transactions on Industrial Electronics,1998,45(3):445-450.
    [135]Park J G, Chung J H, Shin H B. Anti-Windup Integral-Proportional Controllerfor Variable-Speed Motor Drives[J]. Journal of Power Electronics,2002,2(2):130-138.
    [136]Krikelis N J. State Feedback Integral Control with ‘Intelligent’ Integrators[J].International Journal of Control,1980,32(3):465-473.
    [137]Ohishi K, Hayasaka E, Nagano T, et al. High-Performance Speed ServoSystem Considering Voltage Saturation of a Vector-Controlled InductionMotor[J]. IEEE Transactions on Industrial Electronics,2006,53(3):795-802.
    [138]Zhang J G, Chen Z M. A New Antiwindup Speed Controller for InductionMotor Drive System[C]. IEEE International Conference on ElectricalMachines and Systems. Shenyang:IEEE,2001:1240-1243.
    [139]Xie D M. Design of H∞Feedback Controller and IP-Position Controller ofPMSM Servo System[C]. IEEE International Conference on Mechatronics andAutomation. Niagara Falls:IEEE,2005:578-583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700