用户名: 密码: 验证码:
木质生物质各组分热解过程和热力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质是目前唯一能够同时提供固体、液体和气体燃料的可再生能源。然而由于生物质结构复杂,其热解也是一个包含物理化学变化的复杂过程。为了揭示热解过程中生物质及生物质组分的吸放热规律,以及组分间的相互影响规律,本文采用热分析技术及热重分析技术对生物质及其组分热解过程进行了研究,所做的工作主要有如下几个方面:
     采用热重分析仪(TG)和同步热分析仪(STA)对纤维素、木聚糖、木质素以及混合组分进行了热解研究,结果表明纤维素和木聚糖均有一狭窄的快速热解温度区间,在此对应温度区间有一明显的吸热峰,吸热量为547.98J/g和45.01J/g。木质素的热解温度范围比较宽,在320~500℃之间有两处放热趋势。木聚糖与纤维素的混合组分热解过程有两个失重峰,随着组分中比重的变化两个热失重峰此消彼长。木聚糖对纤维素的热解具有较大的抑制作用,纤维素的热解失重峰移往高温区,最大失重速率有较大幅度的减小,纤维素对木聚糖的热解影响较小。失重峰对应区域检测到两个独立的吸热峰,木聚糖吸热峰受组分中比重的变化影响较小,而纤维素吸热峰随着纤维素比重的下降而明显减小。纤维素与木质素的混合组分热解仅有一个主要由纤维素热解引起的失重峰,纤维素开始热失重温度有所提前,而峰值温度往后延,且最大失重值有较大的减小。在纤维素与木质素二比一混合时检测到纤维素的吸热峰,其它比例样品则未检测到吸热峰。木聚糖与木质素的混合组分热解也只有一个主要由木聚糖热解引起的失重峰,热解区域稍往高温区移动。木聚糖吸热峰仅在木聚糖含量较高时出现。
     利用热重与傅立叶红外光谱联用技术(TG-FTIR)和热重质谱联用技术(TG-MS)对生物质组分及其混合组分进行热解和产物分析。FTIR检测到的热解产物主要包括H_2O、CH_4、CO_2、CO和有机化合物,水分的析出几乎在整个热解过程,其余产物的析出温度对应于各自热失重区域。混合组分热解产物析出规律总体上是两者热解产物析出的叠加,其中CH_4、酸类、醛类、酚类和CO的产率增大,而CO_2的析出量有较大幅度下降。TG-MS的结果表明木聚糖与纤维素热解产物主要集中在快速热失重阶段,而木质素产物析出量较少,具有较宽的析出区域,混合组分热解的TG-MS结果与TG-FTIR结果相似。
     利用绝热加速量热仪(ARC)进行了多种生物质及生物质组分的慢速热解,检测热解过程的吸放热情况,结果显示在缓慢升温过程中,木聚糖在204.5~232.2℃之间有一尖锐的放热峰,放出热量约为566.205J/g,而纤维素的放热峰在242.3~260.5℃之间,放热量约为655.225J/g,木质素却在133.3~292.2℃有吸热趋势,抽提物在98.1~186.1℃之间出现吸热趋势。木聚糖与纤维素的混合组分在180~277℃之间有两个放热峰,与单独热解时相比放热提前,纤维素的放热则受到明显抑制。木聚糖与木质素进行混合热解时,检测到一个放热峰,木质素的加入对木聚糖的放热抑制明显,木质素含量越多混合组分放热越微弱。纤维素与木质素进行混合热解时,木质素的加入导致放热量大为减少。木质生物质热解过程中一般均有两个相连的放热峰出现,分别来源于半纤维素和纤维素,而且木质素的吸热趋势同样被检测到。各生物质的起始放热温度在190℃前后,第一个峰值温度在220℃左右,第二个放热峰峰值集中在255℃前后,放出的热量也不尽相同。
     采用惰性溶剂分别从山毛榉和杨木木屑中抽提得到相应的抽提物及抽提残渣,对抽提物、抽提残渣及生物质原样进行结构表征,并利用TG-FTIR和管式炉进行热解。结果表明,抽提物结构中含有羟基、羧基、苯环和酯带等,而抽提物的去除没有改变生物质的基本结构,对其热失重行为的影响也很小。TG实验中抽提物的主要热失重区间为227~450℃,在227~300℃之间有一肩状峰,DTG峰值温度为362.9℃,最大失重速率为4.28%/min,剩余残渣为30.82%。FTIR检测到的产物主要有水、CH_4、CO_2、CO、酸类物质、芳烃类物质、酚类物质和烷烃类物质。管式炉热解实验结果表明,抽提物热解液体产物含有多核芳香烃类、烷烃类、酯类、酚类、酮类等物质。抽提残渣液体产物中酚类的总量和种类均比生物质原样多,其他产物则有所减少。
     利用加压热重仪对纤维素进行了热重分析,获得了不同升温速率(5、10、20K/min)和不同压力(0.1、0.5、1、1.5、2MPa)条件下的TG曲线,并通过热分析数学方法获得热解动力学参数。结果表明,提高升温速率,热解区间均往高温区移动。增大压力,热解区间均往移低温区,热解时间缩短,剩余残渣百分比增大。热解活化能随着压力的增大或升温速率的提高而增大,热解活化能和指前因子存在着较好的补偿效应。
Biomass is the only renewable energy which could provide fuels in solid, liquid andgaseous. However, due to the complexity structure of biomass, its pyrolysis behavior is also acomplex procedure with chemical and physical changes. In order to reveal the regulations ofendothermal or exothermal during biomass pyrolysis and interaction between components, thepyrolysis process of biomass and its components had been investigated by thermal analysis andthermogravimetric analysis methods. The main contents of the work are summarized asfollows:
     The pyrolysis characteristics of microcrystalline cellulose, xylan, lignin and their mixtureshad been investigated by Thermogravimetric analyzer (TG) and Simultaneous thermal analyzer(STA). The results showed that both cellulose and xylan were fast pyrolyzed in a narrowtemperature ranges, in which an obvious endothermic peak has been observed with theabsorbed heat of547.98J/g and45.01J/g. Lignin was with a wide pyrolysis temperature region,with two heat releasing trends in the range of320~500℃. There were two weight loss peaks indifferent ratios of xylan and cellulose mixed components, and the two weight loss peaks wereinversely proportional to the ratio of xylan and cellulose. In addition, the pyrolysis of cellulosewas inhibited grater by xylan and the weight loss peak was shifted to higher temperature, andthe maximum weight loss rate was decreased sharply. While the xylan pyrolysis was lessaffected by cellulose. Two independent endothermic peaks had been detected in correspondingDTG peaks temperature region. The peak of xylan is less impacted by ratio of xylan, however,the peak of cellulose decreased largely when the ratio of cellulose decreased either in DTG orin DSC curves. There was only one weight loss peak in cellulose-lignin mixtures pyrolysiswhich main caused by the degradation of cellulose. The addition of lignin, the weight lossstarting temperature of cellulose was forward, the peak temperature was increased and themaximum weight loss rate was decreased largely. On DSC curve, the endothermic peak was only been detected in sample C2L1(ratio of cellulose and lignin is2:1). There was only oneweight loss peak caused by xylan during the pyrolysis of the mixtures of xylan and lignin, andthe peak temperature is higher than that of xylan pyrolysis individually. There was anendothermic peak when the ratio of xylan was higher than that of lignin.
     Thermogravimetric analyzer coupled with a fourier transform infrared spectroscopy andthermogravimetric analyzer coupled with a mass spectrometry were utilized to analyze thepyrolysis process and on-line analyze the product evolved out during pyrolysis process. H_2O,CH_4, CO_2, CO and other organic compounds were the mainly pyrolysis products. H_2O wasalmost released during the whole pyrolysis procedure and the released temperature of otherproducts was corresponding to weight loss area. The pyrolysis products of the mixedcomponent was the superposition of each biomass components, and the yields of CH_4, acids,aldehydes, phenols and CO were increased while the release of CO_2decreases drastically. Theresults of TG-MS showed that the pyrolysis products of xlyan and cellulose were mainlyreleased in the rapid weight loss phase, and the lignin pyrolysis products was less and had abroader release area. The results of TG-MS analysis of mixed components are similar to that ofTG-FTIR analysis.
     Accelerating Rate Calorimeter (ARC) had been utilized to investigate the pyrolysis ofbiomass components and several types of biomass. The results showed that in the process ofslow heating rate pyrolysis, xylan had a sharp exothermic peak at204.5~232.2℃, and thereleased heat was566.205J/g; cellulose exothermic peak was in the range of242.3~260.5℃and generated655.225J/g heat; lignin pyrolysis showed a endothermic trend between133.3~292.2℃; the extractives also showed a similar tendency between98.1~186.1℃. Themixed components of xylan and cellulose had two exothermic peaks between180~277℃.Compared to the pyrolysis of single component, the start exothermic temperature of xylan andcellulose were all declined. The exothermic reaction of cellulose was distinctively depressed inthe mixed components. There was an exothermic peak had been detected during thexylan-lignin mixtures pyrolysis. The addition of lignin had distinct prevented the heat release of xylan. With the lignin proportion increased, the exothermic peak of xylan became morefaint. The cellulose exothermic peak also depressed by the addition of lignin. There were twoconsequent exothermic peaks during the pyrolysis of each lignocellulosic biomass, and thesetwo peaks came from hemicellulose and cellulose respectively. The endothermic trend of ligninhas also been detected as well. Each biomass released different amount of heat, and the initialtemperature of was around190℃, the first peak was around220℃, the second peak wasconcentrated around255℃.
     Inert solvent was selected to extract beech and poplar sawdust, the correspondingextractives and extracted biomass were obtained. The structure of extractives, extractedbiomass and original biomass had been characterized by Fourier transform infaredspectrometer (FT-IR). TG-FTIR and tube furnace were used to carry out pyrolysis. The resultshowed that the structure of extractives contains hydroxyl, carbonyl, benzene ring and esterbelt, and the removal of extractives did not change the basic structure of biomass and had lesseffect to the behavior of biomass pyrolysis. The mainly weight loss of extractives between227~450°C and a shoulder at227~300°C. DTG peak was362.9°C, the maximum weight lossrate was4.28%/min and the residue was30.82%. The mainly products detected by FTIR werewater, CH_4, CO_2, CO, acids, aromatics, phenols and alkenes. The pyrolysis of tube furnaceshowed that the main liquid products constituents of extractives were aromatic compounds,alkenes, esters, phenols, and ketones. Compared to original biomass, there were more totalcontent and type phenols for extracted biomass pyrolysis. However, the other competitionspecies were less than that of original biomass.
     Thermogravimetric analysis of cellulose was conducted in pressurized thermogravimetricanalyzer. TG curves under different heating rates (5,10,20K/min) and different pressures (0.1,0.5,1,1.5,2MPa) were obtained. Pyrolysis kinetic parameters were gained by thermalanalysis mathematical methodology. The results indicated that when heating rate was raised,the main pyrolysis region shifted to the higher temperature; pressure was enhanced, the mainpyrolysis region moved to the lower temperature, paralysis time became shorter and the ratio of residue raised. The activation energy increased along with the increase of pressure or heatingrate. There was a good compensation effect between preexponential factor and the pyrolysisactivation energy under all kinds of conditions.
引文
[1]李志合,易维明.生物质能源利用及发展[J].山东工程学院学报,2000,14(4):34~38
    [2]周志强.中国能源现状、发展趋势及对策[J].能源与环境,2008,(6):9~10
    [3] Rabinovich O S,Borodulya V A,Vinogradov L M,et al. Fast pyrolysis of an ensemble of biomassparticles in a fluidized bed [J]. Journal of Engineering Physics and Thermophysics,2010,83(4):742~752
    [4] Leung D Y C,Yin X L,Wu C Z. A review on the development and commercialization of biomassgasification technologies in China [J]. Renewable and Sustainable Energy Reviews,2004,8(6):565~580
    [5] McKendry P. Energy production from biomass (part1): overview of biomass [J]. BioresourceTechnology,2002,83(1):37~46
    [6] McKendry P. Energy production from biomass (part2): conversion technologies [J]. BioresourceTechnology,2002,83(1):47~54
    [7] Domalski E S. Thermodynamic data for biomass materials and waste components.[M]//Milne T A. TheASME Research Committee on Industrial and Municipal Wastes. New York; The American Society ofMechanical Engineers.1987
    [8] Vassilev S V,Baxter D,Andersen L K,et al. An overview of the chemical composition of biomass [J].Fuel,2009,89(5):913~933
    [9] Blasi C D. Modeling chemical and physical processes of wood and biomass pyrolysis [J]. Progress inEnergy and Combustion Science,2008,34(1):47~90
    [10] Orfao J,Antunes F,Figueiredo J. Pyrolysis kinetics of lignocellulosic materials-three independentreaction model [J]. Fuel1999,78(3):349~358
    [11] Rao T R,Sharma A. Pyrolysis rates of biomass materials [J]. Energy,1998,23(11):973~978
    [12] Varhegyi G,Antal J J M,Jakab E,et al. Kinetic modeling of biomass pyrolysis [J]. Journal of Analyticaland Applied Pyrolysis,1997,42(1):73~87
    [13] Rodriguez I. Composition related effects on thermal reactivity of organic feedstocks [D]. Washington;University of Washington,1996
    [14] Agblevor F A,Besler S. Inorganic compounds in biomass feedstocks.1. effect on the quality of fastpyrolysis oils [J]. Energy&Fuels,1996,10(2):293~298
    [15] Williams P T,Horne P A. The role of metal salts in the pyrolysis of biomass [J]. Renewable Energy,1994,4(1):1~13
    [16] Turn S Q,Kinoshita C M,Ishimura D M. Removal of inorganic constituents of biomass feedstocks bymechanical dewatering and leaching [J]. Biomass and Bioenergy,1997,12(4):241~252
    [17] Müller-Hagedorn M,Bockhorn H. Pyrolytic behaviour of different biomasses (angiosperms)(maizeplants, straws, and wood) in low temperature pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,2007,79(1-2):136~146
    [18] Zevenhoven O M,Backman R,Skrifvars B J,et al. The ash chemistry in fluidised bed gasification ofbiomass fuels. Part I: predicting the chemistry of melting ashes and ash-bed material interaction [J]. Fuel2001,80(10):1489~1502
    [19] Raveendran K,Ganesh A K,Khilar C. Influence of mineral matter on biomass pyrolysis characteristics[J]. Fuel,1995,74(12):1812~1822
    [20] Blander M. Biomass gasification as a means for avoiding fouling and corrosion during combustion [J].Journal of Molecular Liquids,1999,83(1-3):323~328
    [21] Zevenhoven O M,Backman R,Skrifvars B J,et al. The ash chemistry in fluidised bed gasification ofbiomass fuels. Part II: Ash behaviour prediction versus bench scale agglomeration tests [J]. Fuel,2001,80(10):1503~1512
    [22] Natarajan E,Ohman M,Gabra M,et al. Experimental determination of bed agglomeration tendenciesof some common agricultural residues in fluidized bed combustion and gasification [J]. Biomass andBioenergy,1998,15(2):163~169
    [23] Bridgwater T. Biomass for energy [J]. Joumal of the Science of Food and Agriculture,2006,86(12):1755~1768
    [24] Bridgewater A V,Peacocke G V C. Fast pyrolysis processes for biomass [J]. Renewable andSustainable Energy Reviews,2000,4(1):1~73
    [25] Li X T,Grace J R,Lim C J,et.al. Biomass gasification in a circulating fluidized bed [J]. Biomass andBioenergy,2004,26(2):171~193
    [26] Haykiri-Acma H,Yaman S,Kucukbayrak S. Gasification of biomass chars in steam-nitrogen mixture[J]. Energy Conversion and Management,2006,47(7-8):1004~1013
    [27] Xiao X B,Meng X L,Le D D,et al. Two-stage steam gasification of waste biomass in fluidized bed atlow temperature: Parametric investigations and performance optimization [J]. Bioresource Technology,2011,102(2):1975~1981
    [28] McKendry P. Energy production from biomass (part3): gasification technologies [J]. BioresourceTechnology,2002,83(1):55~63
    [29] Gil J,Corella J,Aznar M P,et al. Biomass gasification in atmospheric and bubbling fluidized bed:Effect of the type of gasifying agent on the product distribution [J]. Biomass and Bioenergy,1999,17(5):389~403
    [30] Lu Y,Guo L,Ji C,et al. Hydrogen production by biomass gasification in supercritical water: Aparametric study [J]. International Journal of Hydrogen Energy,2006,31(7):822~831
    [31] Ni M,Leung D Y C,Leung M K H,et al. An overview of hydrogen production from biomass [J]. FuelProcessing Technology,2006,87(5):461~472
    [32] Magrini-Bair K A,Czernik S,French R,et.al. Fluidizable reforming catalyst development forconditioning biomass-derived syngas [J]. Applied Catalysis A:General,2007,318:199~206
    [33] Wang L J,Weller C L,Jones D D,et al. Contemporary issues in thermal gasification of biomass and itsapplication to electricity and fuel production [J]. Biomass and Bioenergy,2008,32(7):573~581
    [34] Demirba A. Biomass resource faciIities and biomass conversion processing for fuels and chemicals [J].Energy Conversion and Management,2001,42(11):1357~1378
    [35] Wang Y,Yoshikawa K,Namioka T,et al. Perfornlance optimization oftwo-staged gasincation systemfor woody biomass [J]. Fuel Processing Technology,2007,88(3):243~250
    [36] Kawser M J,Nash F A. Oil palm shell as a source of phenol [J]. Journal of Oil Palm Research,2000,12:86~94
    [37] Sensoz S,Can M. Pyrolysis of pine chips:1. effect of pyrolysis temperature and heating rate on theproduct yields [J]. Energy Sources,2002,24(4):347~355
    [38] Gercel H F. The effect of a sweeping gas flow rate on the fast pyrolysis of biomass [J]. Energy Sources,2002,24(7):633~642
    [39] Cetin E,Moghtaderi B,Gupta R,et.al. Influence of pyrolysis conditions on the structure andgasification reactivity of biomass chars [J]. Fuel2004,83(16):2139~2150
    [40] Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks [J]. Energy Conversion andManagement,2004,45(5):651~671
    [41] Demirba A,Arin G. An overview of biomass pyrolysis [J]. Energy Sources,2002,24(5):471~482
    [42] Milosavljevic I,Suuberg E M. Cellulose thermal decomposition kinetics: Global mass loss kinetics [J].Industrial&Engineering Chemistry Reaearch,1995,34(4):1081~1091
    [43] Stenseng M,Jensen A,Dam-Johansen K. Investigation of biomass pyrolysis by thermogravimetricanalysis and differential scanning calorimetry [J]. Journal of Analytical and Applied Pyrolysis,2001,58-59:765~780
    [44] Yip J,Chen M J,Szeto Y S,et al. Comparative study of liquefaction process and liquefied productsfrom bamboo using different organic solvents [J]. Bioresource Technology,2009,100(24):6674~6678
    [45] Li H,Yuan X Z,Zeng G M,et.al. Liquefaction of rice straw in sub-and supercritical1,4-dioxane-watermixture [J]. Fuel Processing Technology,2009,90(5):657~663
    [46] Mun S P,Jang J P. Liquefaction of cellulose in the presence of phenol using p-toluene sulfonic acid as acatalyst [J]. Journal of Industrial and Engineering Chemistry,2009,15(5):743~747
    [47] Alma M H,Basturk M A. Liquefaction of grapevine cane (Vitis vinisera L.) waste and its application tophenol-formaldehyde type adhesive [J]. Industrial Crops and Products,2006,24(2):171~176
    [48] Ahmadzadeh A,Zakaria S,Rashid R. Liquefaction of oil palm empty fruit bunch (EFB) into phenol andcharacterization of phenolated EFB resin [J]. Industrial Crops and Products2009,30(1):54~58
    [49] Minowa T,Kondo T,Sudirjo S.T. Thermochemical liquefaction of Indonesian biomass residues [J].Biomass and Bioenergy,1998,14(5-6):517~524
    [50] Domínguez A,Menéndez J A,Fernández Y,et al. Conventional and microwave induced pyrolysis ofcoffee hulls for the production of a hydrogen rich fuel gas [J]. Journal of Analytical&Applied Pyrolysis,2007,79(1-2):128~135
    [51] Encinar J M,Beltrán F J,Ramiro A,et al. Pyrolysis/gasification of agricultural residues by carbondioxide in the presence of different additives: influence of variables [J]. Fuel Processing Technology,1998,55(3):219~233
    [52] Chan W C R,Kelbon M,Krieger-Brockett B. Single-particle biomass pyrolysis: correlations of reactionproducts with process conditions [J]. Industrial&Engineering Chemistry Reaearch,1988,27(12):2261~2275
    [53] Maggi R,Delmon B. Comparison between slow and flash pyrolysis oils from biomass [J]. Fuel,1994,73(5):671~677
    [54] Blasi C D,Signorelli G,Russo C D,et al. Product distribution from pyrolysis of wood and agriculturalresidues [J]. Industrial&Engineering Chemistry Reaearch,1999,38(6):2216~2224
    [55] Beaumont O,Schwob Y. Influence of physical and chemical parameters on wood pyrolysis [J].Industrial&Engineering Chemistry Reaearch,1984,23(4):637~641
    [56] Liden A G,Berruti F,Scott D S. A kinetic model for the production of liquids from the flash pyrolysisof biomass [J]. Chemical engineering communications,1988,65(1):207~221
    [57] Li S,Xu S,Liu S,et al. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas [J]. FuelProcessing Technology,2004,85(8-10):1201~1211
    [58] Fagbemi L,Khezami L,Capart R. Pyrolysis products from different biomasses: application to thethermal cracking of tar [J]. Applied Energy,2001,69(4):293~306
    [59] Onay O,Kockar O M. Slow, fast and flash pyrolysis of rapeseed [J]. Renewable Energy,2003,28(15):2417~2433
    [60] Horne P A,Williams P T. Influence of temperature on the products from the flash pyrolysis of biomass[J]. Fuel,1996,75(9):1051~1059
    [61] Dupont C,Chen L,Cances J,et al. Biomass pyrolysis: Kinetic modelling and experimental validationunder high temperature and flash heating rate conditions [J]. Journal of Analytical and Applied Pyrolysis,2009,85(1-2):260~267
    [62] Dobele G,Meier D,Faix O,et al. Volatile products of catalytic flash pyrolysis of celluloses [J]. Journalof Analytical and Applied Pyrolysis2001,58-59(1):453~463
    [63] Dai X,Wu C,Li H B,et al. The fast pyrolysis of biomass in CFB reactor [J]. Energy&Fuels,2000,14(3):552~557
    [64] Cetin E,Gupta R,Moghtaderi B. Effect of pyrolysis pressure and heating rate on radiata pine charstructure and apparent gasification reactivity [J]. Fuel,2005,84(1):1328~1334
    [65] Mok W S L,Antal M J. Effects of pressure on biomass pyrolysis. I. Cellulose pyrolysis products [J].Thermochimica acta,1983,68(2):155~164
    [66] Chen G,Andries J,Luo Z,et al. Biomass pyrolysis/gasification for product gas production: the overallinvestigation of parametric effects [J]. Energy Conversion and Management,2003,44(11):1875~1884
    [67] Zanzi R,Sjostrom K,Bjornbom E. Rapid pyrolysis of agricultural residues at high temperature [J].Biomass and Bioenergy,2002,23(5):357~366
    [68] Ates F,Putun A E,Putun E. Fixed bed pyrolysis of Euphorbia rigida with different catalysts [J]. EnergyConversion and Management,2005,46(3):421~432
    [69] Rapagna S,Tempesti E,Foscolo P U,et al. Continuous fast pyrolysis of biomass at high temperature ina fluidized bed reactor [J]. Journal of Thermal Analysis,1992,38(12):2621~2629
    [70] Mok W S L,Antal M J. Effects of pressure on biomass pyrolysis. II. Heats of reaction of cellulosepyrolysis [J]. Thermochimica Acta,1983,68(2):165~186
    [71]沈永兵,肖军,沈来宏.木质类生物质的热重分析研究[J].能源研究与利用,2005,3:23~26
    [72]李文,李保庆,孙成功,等.生物质热解、加氢热解及其与煤共热解的热重研究[J].燃料化学学报,1996,24(4):341~347
    [73] Fermoso J,Stevanov C,Moghtaderi B,et al. High-pressure gasification reactivity of biomass charsproduced at different temperatures [J]. Journal of Analytical and Applied Pyrolysis,2009,85(1-2):287~293
    [74] Van den Aarsen F G,Beenackers A A C M,Van Swaaij W P M. Wood Pyrolysis and Carbon DioxideChar Gasification Kinetics in a Fluidized Bed [J]. Fundamentals of Thermochemical Biomass Conversion,1985,691~715
    [75] Beis S H,Onay O,Kockar M. Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameterson product yields and compositions [J]. Renewable Energy,2002,26(1):21~32
    [76] Babu B V,Chaurasia A S. Pyrolysis of biomass: improved models for simultaneous kinetics andtransport of heat, mass and momentum [J]. Energy Conversion and Management2004,45(9-10):1297~1327
    [77] Encinar J M,Beltran F J,Bernalte A,et al. Pyrolysis of two agricultural residues: olive and grapebagasse. influence of particle size and temperature [J]. Biomass and Bioenergy,1996,11(5):397~409
    [78] Adam J,Blazsó M,Mészáros E,et al. Pyrolysis of biomass in the presence of Al-MCM-41typecatalysts [J]. Fuel,2005,84(12-13):1494~1502
    [79] Alves S S,Figueiredo J L. A model for pyrolysis of wet wood [J]. Chemical Engineering Science,1989,44(12):2861~2869
    [80] Demirba A. Effect of initial moisture content on the yields of oily products from pyrolysis of biomass[J]. Journal of Analytical and Applied Pyrolysis,2004,71(2):803~815
    [81] Gray M R,Corcoran W H,Gavalas G R. Pyrolysis of a wood-derived material. Effects of moisture andash content [J]. Industrial&Engineering Chemistry Process Design and Development,1985,24(3):646~651
    [82] Darmstadt H,Pantea D,Sümmchen L,et al. Surface and bulk chemistry of charcoal obtained byvacuum pyrolysis of bark: influence of feedstock moisture content [J]. Journal of Analytical and AppliedPyrolysis,2000,53(1):1~17
    [83] Williams P T,Nugranad N. Comparison of products from the pyrolysis and catalytic pyrolysis of ricehusks [J]. Energy,2000,25(6):493~513
    [84] Ate a F,Pütüna A E,Pütünb E. Fixed bed pyrolysis of Euphorbia rigida with different catalysts [J].Energy Conversion and Management,2005,46(3):421~432
    [85] Chen G,Andries J,Spliethoff H. Catalytic pyrolysis of biomass for hydrogen rich fuel gas production[J]. Energy Conversion and Management,2003,44(14):2289~2296
    [86] Dobele G,Meier D,Faix O,et al. Volatile products of catalytic flash pyrolysis of celluloses [J]. Journalof Analytical and Applied Pyrolysis2001,58-59(1):453~463
    [87] Qi W Y,Hu C W,Li G Y,et al. Catalytic pyrolysis of several kinds of bamboos over zeolite NaY [J].Green Chemistry,2006,8(2):183~190
    [88] Dobele G, Rossinskaja G, Dizhbitea T, et al. Application of catalysts for obtaining1,6-anhydrosaccharides from cellulose and wood by fast pyrolysis [J]. Journal of Analytical and AppliedPyrolysis,2005,74(1-2):401~405
    [89] Mészáros E,Jakab E,Várhegyi G. TG/MS, Py-GC/MS and THM-GC/MS study of the composition andthermal behavior of extractive components of Robinia pseudoacaeia [J]. Journal of Analytical and AppliedPyrolysis,2007,79(1/2):61~70
    [90] Guo X J,Wang S R,Wang K G,et al. Influence of the extractiyes on mechanism of biomass pyrolysis[J]. Journal of Fuel Chemistry and Technology,2010,38(1):42~46
    [91] Nowakowski.D.J, Bridgwatera.A.V, Elliott.D.C, et.al. Lignin fast pyrolysis: Results from aninternational collaboration [J]. Journal of Analytical and Applied Pyrolysis2010,88):53~72
    [92]谭洪,王树荣,骆仲泱,等.木质素快速热裂解试验研究[J].浙江大学学报(工学版),2005,39(5):710~714
    [93] Raveendran K,Ganesh A,Khilar K C. Pyrolysis characteristics of biomass and biomass components [J].Fuel,1996,75(8):987~998
    [94] Shafizadeh F,Fu Y L Pyrolysis of cellulose [J]. Carbohydiate Research,,1973,29(1):113~122
    [95] Wu Y M,Zhao Z L,Li H B et al. Low temperature pyrolysis characteristics of major components ofbiomass [J]. Journal of fuel chemistry and technology,2009,37(4):427~432
    [96] Scheirs J,Camino G,Tumiath W. Overview of water evolutionduring the thermal degradation ofcellulose [J]. European Polymer Journal2001,37(5):933~942
    [97] Ozturk.Z. Pyrolysis of cellulose using a single pulse shock tube [D]. Kancas; Kancas State University,1991
    [98] Soares S,Camino G,Levchik S. Comparative study of the thermal decomposition of pure cellulose andpulp paper [J]. Polymer Degradation and Stability,1995,49(2):275~283
    [99] Patwardhan.P.R,Dalluge.D.L,Shanks.B.H,et.al. Distinguishing primary and secondary reactions ofcellulose pyrolysis [J]. Bioresource Technology,2011,102(8):5265~5269
    [100] Broido A,Nelson M A. Char yield on pyrolysis of cellulose [J]. Combustion and Flame,1975,24:263~268
    [101] Shafizadeh F,Furneaux R H,Stevenson T T. Some reactions of levoglucosenone [J]. CarbohydrateResearch,1979,71(1):169~191
    [102] Shafizadeh F,Lai Y Z,McIntyre C R. Thermal degradation of6-chlorocellulose and cellulose-zincchloride mixture [J]. Journal of Applied Polymer Science,1978,22(5):1183~1193
    [103] Shafizadeh F,Furneaux R H,Stevenson T T,et al. Acid-catalyzed pyrolytic synthesis anddecomposition of1,4:3,6-dianhydro-α-d-glucopyranose [J]. Carbohydrate Research,1978,61(1):519~528
    [104] Shafizadeh F,Furneaux R H,Cochran T G,et al. Production of levoglucosan and glucose frompyrolysis of cellulosic materials [J]. Journal of Applied Polymer Science,1979,23(12):3525~3539
    [105] Shafizadeh F,Bradbury A G W. Thermal degradation of cellulose in air and nitrogen at lowtemperatures [J]. Journal of Applied Polymer Science,1979,23(5):1431~1442
    [106] Shafizadeh F, Furneaux R H, Stevenson T T, et al.1,5-Anhydro-4-deoxy-d-glycero-hex-1-en-3-ulose and other pyrolysis products of cellulose [J]. Carbohydrate Research,1978,67(2):433~447
    [107] Bradbury A G W,Sakai Y,Shafizadeh F. A kinetic model for pyrolysis of cellulose [J]. Journal ofApplied Polymer Science,1979,23(11):3271~3280
    [108] Boutin O,Ferrer M,Lédé J. Radiant flash pyrolysis of cellulose-Evidence for the formation of shortlife time intermediate liquid species [J]. Journal of Analytical and Applied Pyrolysis,1998,47(1):13~31
    [109] Chan W C R,Kelbon M,Krieger B B. Modelling and experimental verification of physical andchemical processes during pyrolysis of a large biomass particle [J]. Fuel,1985,64(11):1505~1513
    [110] Antal Jr M J. Effects of reactor severity on the gas-phase pyrolysis of cellulose-and kraft lignin-derivedvolatile matter [J]. Industrial&Engineering Chemistry Product Research and Development,1983,22(2):366~375
    [111] Di Blasi C. Kinetic and heat transfer control in the slow and flash pyrolysis of solids [J]. Industrial&engineering chemistry research,1996,35(1):37~46
    [112] Varhegyi G,Antal Jr M J,Szekely T,et al. Simultaneous thermogravimetric-mass spectrometricstudies of the thermal decomposition of biopolymers.1. Avicel cellulose in the presence and absence ofcatalysts [J]. Energy&fuels,1988,2(3):267~272
    [113] Richards G N,Zheng G. Influence of metal ions and of salts on products from pyrolysis of wood:applications to thermochemical processing of newsprint and biomass [J]. Journal of analytical and appliedpyrolysis,1991,21(1):133~146
    [114] Piskorz J,Radlein D S A G,Scott D S,et al. Pretreatment of wood and cellulose for production ofsugars by fast pyrolysis [J]. Journal of Analytical and applied Pyrolysis,1989,16(2):127~142
    [115] Koullas D P,Lois E,Koukios E G. Effect of physical pretreatments on the prepyrolytic behaviour oflignocellulosics [J]. Biomass and Bioenergy,1991,1(4):199~206
    [116] Li S,Lyons-Hart J,Banyasz J,et al. Real-time evolved gas analysis by FTIR method: an experimentalstudy of cellulose pyrolysis [J]. Fuel,2001,80(12):1809~1817
    [117]廖艳芬,王树荣,骆仲泱,等.纤维素热裂解过程动力学的试验分析研究[J].浙江大学学报(工学版),2002,36(2):172~176
    [118]廖艳芬,王树荣,骆仲泱,等.氯化钙催化纤维索热裂解动力学研究[J].燃料化学学报,2005,33(6):692~697
    [119] Shen D K,Gu S. The mechanism for thermal decomposition of cellulose and its main products [J].Bioresource Technology,2009,100(24):6496~6504
    [120] Hajallgol M R,Howard J B,Longwell J P,et.al. Product compositions and kineticsfor rapid pyrolysisof cellulose [J]. Industrial&Engineering Chemistry Process Design and Development,1982,21(3):457~465
    [121]王树荣,郑赟,骆仲泱,等.生物质组分热裂解动力学研究[J].浙江大学学报(工学版),2007,41(4):585~588
    [122] Wang S R,Liu Q,Liao Y F,et al. A study on the mechanism research on cellulose pyrolysis undercatalysis of metallic salts [J]. Korean Journal of Chemical Engineering,2007,24(2):336~340
    [123] McGrath.T.E,Chan.W.G,Hajaligol.M.R. Low temperature mechanism for the formation of polycyclicaromatic hydrocarbons from the pyrolysis of cellulose [J]. Journal of Analytical and Applied Pyrolysis,2003,66(1-2):51~70
    [124] Blasi C D,Lanzetta M. Intrinsic kinetics of isothermal xylan degradation in inert atmostphere [J].Journal of Analytical and Applied Pyrolysis,1997,411(41):287~303
    [125]王树荣,谭洪,骆仲泱,等.木聚糖快速热解试验研究[J].浙江大学学报(工学版),2006,40(3):419~423
    [126]王树荣,郑赟,文丽华,等.半纤维素模化物热裂解动力学研究[J].燃烧科学与技术,2006,12(2):105~109
    [127] Beaumont O. Flash pyrolysis products from beech wood [J]. Wood Fiber Science,1985,17(2):28~39
    [128] Ivan.S,Varhegyi.G,Antal.M.J. Thermogravimetri/mass spectrometric characterization of the thermaldecomposition of4-O-methyl-D-glucurono-D-xylan [J]. Journal of applied polymer science,1988,36(3):721~728
    [129] Yang.H.P,Yan.R,Chen.H.P,et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis [J].Fuel,2007,86(12-13):1781~1788
    [130] Shen D K,Gu S,Bridgwater A V. Study on the pyrolytic behaviour of xylan-based hemicellulose usingTG-FTIR and Py-GC-FTIR [J]. Journal of Analytical and Applied Pyrolysis,2010,87(2):199~206
    [131]彭云云,武书彬.麦草半纤维素的快速热裂解实验研究[J].燃料化学学报,2011,39(1):21~25
    [132]彭云云武书彬. TG-FTIR联用研究半纤维素的热裂解特性[J].化工进展,2009,8):1478~1484
    [133] Peng Y Y,Wu S B. The structural and thermal characteristics of wheat straw hemicellulose [J]. Journalof Analytical and Applied Pyrolysis,2010,88(2):134~139
    [134] Sharma R K,Wooten J B, Baliga V L,et al. Characterization of chars from pyrolysis of lignin [J].Fuel,2004,83(11):1469~1482
    [135] Baumlin S,Broust F,Bazer-Bachi F,et al. Production of hydrogen by lignins fast pyrolysis [J].International Journal of Hydrogen Energy,2006,31(15):2179~2192
    [136] Rutkowski P. Pyrolysis of cellulose, xylan and lignin with the K2CO3and ZnCl2addition for bio-oilproduction [J]. Fuel Processing Technology,2011,9(32):517~522
    [137] Dorrestijn E,Laarhoven L J J,Arends I W C E,et al. The occurrence and reactivity of phenoxyllinkages in lignin and low rank coal [J]. Journal of Analytical and Applied Pyrolysis,2000,54(1):153~192
    [138] Haensel.T,Comouth.A,Lorenz.P,et.al. Pyrolysis of cellulose and lignin [J]. Applied Surface Science,2009,255(18):8183~8189
    [139] Bhaskar.T,Sera.A,Muto.A,et.al. Hydrothermal upgrading of wood biomass: Influence of the additionof K2CO3and cellulose/lignin ratio [J]. Fuel200887(10):2236~2242
    [140] Montané.D,Torné-Fernández V Fierro V. Activated carbons from lignin: kinetic modeling of thepyrolysis of Kraft lignin activated with phosphoric acid [J]. Chemical Engineering Journal,2005,106(1):l~12
    [141] Demirba A. Mechanisms of liquefaction and pyrolysis reactions of biomass [J]. Energy Conversionand Management,2000,41(6):633~646
    [142]姚燕,王树荣,郑赟,等.基于热红联用分析的木质素热裂解动力学研究[J].燃烧科学与技术,2007,13(1):50~54
    [143] Nunn T R,Howard J B,Longwell J P,et al. Product compositions and kinetics in the rapid pyrolysisof milled wood lignin [J]. Industrial&Engineering Chemistry Process Design and Development,1985,24(3):844~852
    [144] Jakab.E, Faix.O, Till.F. Thermal decomposition of milled wood lignins sthdied bythermogravimetry/mass spectrometry [J]. Journal of Analytical and Applied Pyrolysis,1997,40(41):171~186
    [145] Liu.Q,Wang.S.R,Zheng.Y et.al. Mechanism study of wood lignin pyrolysis by using TG-FTIRanalysis [J]. Journal of Analytical and Applied Pyrolysis,2008,82(1):170~177
    [146] Alén R,Kuoppala E,Oesch P. Formation of the main degradation compound groups from wood and itscomponents during pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,1996,36(2):137~148
    [147] Gani.A,Naruse.I. Effect of cellulose and lignin content on pyrolysis and combustion characteristics forseveral types of biomass [J]. Renewable Energy,2007,32(4):649~661
    [148] Shen D K,Gu S,Bridgwater A V. The thermal performance of the polysaccharides extracted fromhardwood: Cellulose and hemicellulose [J]. Carbohydrate Polymers,2010,82(1,2):39~45
    [149]黄娜.生物质三组分热裂解特性及其动力学研究[D].北京;北京化工大学,2007
    [150]王刚,李文,薛钦昭,等.生物质化学组分在空气和合成气下的热重行为研究[J].燃料化学学报,2009,37(2):170~176
    [151] Wang G,Li W,Li B Q,et al. TG study on pyrolysis of biomass and its three components under syngas[J]. Fuel,2008,87(4-5):552~558
    [152] Couhert.C,Commandre.J.M,Salvador.S. Is it possible to predict gas yields of any biomass after rapidpyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin?[J]. Fuel,2009,88(3):408~417
    [153] Worasuwannarak.N,Sonobe.T,Tanthapanichakoon.W. Pyrolysis behaviors of rice straw, rice husk, andcorncob by TG-MS technique [J]. Journal of Analytical and Applied Pyrolysis,2007,78(2):265~271
    [154] Hosoya.T,Kawamoto.H,Saka.S. Cellulose-hemicellulose and cellulose-lignin interactions in woodpyrolysis at gasification temperature [J]. Journal of Analytical and Applied Pyrolysis,2007,80(1):118~125
    [155] Hosoya.T,Kawamoto.H,Saka.S. Pyrolysis behaviors of wood and its constituent polymers atgasification temperature [J]. Journal of Analytical and Applied Pyrolysis,2007,78(2):328~336
    [156] Wang S R,Guo X J,Wang K G. Influence of the interaction of components on the pyrolysis behaviorof biomass [J]. Journal of Analytical and Applied Pyrolysis,2011,91(1):183~189
    [157] Haykiri-Acma.H,Yaman.S,Kucukbayrak.S. Comparison of the thermal reactivities of isolated ligninand holocellulose during pyrolysis [J]. Fuel Processing Technology2010,91(1):759~764
    [158] Singh.K,Risse.M,Das.K.C,et.al. Determination of Composition of Cellulose and Lignin MixturesUsing Thermogravimetric Analysis [J]. Journal of Energy Resources Technology,2009,131(2):1~6
    [159] Fushimi C,Katayama S,Tsutsumi At Elucidation of interaction among cellulose,lignin and xylanduring tar and gas evolution in steam gasification [J]. Journal of Analytical and Applied Pyrolysis,2009,86(1):82~89
    [160] Fushimi C,Katayama S,Tasaka K,et al. Elucidation of the interaction among cellulose,xylan,andlignin in steam gasification of woody biomass [J]. AIChE Journal,2009,55(2):529~537
    [161]黄娜,高岱巍,李建伟,等.生物质三组分热解反应及动力学的比较[J].北京化工大学学报,2007,34(5):463~466
    [162] Wagner M.热分析应用基础[M].陆立明编译,上海;东华大学出版社.2010
    [163]刘振海,徐国华,张洪林,等.热分析与量热仪及其应用[M].北京:化学工业出版社,2010.
    [164] Lanzetta M,Di Blasi C,Buonanno F. An experimental investigation of heat-transfer limitations in theflash pyrolysis of cellulose [J]. Industrial&engineering chemistry research,1997,36(3):542~552
    [165] Stiles H N,Kandiyoti R. Secondary reactions of flash pyrolysis tars measured in a fluidized bedpyrolysis reactor with some novel design features [J]. Fuel,1989,68(3):275~282
    [166]徐朝芬,孙学信.用TG-DTG-DSC研究生物质的燃烧特性[J].华中科技大学学报(自然科学版),2007,35(3):126~128
    [167] He F,Yi W M,Bai X Y. Investigation on caloric requirement of biomass pyrolysis using TG-DSCanalyzer [J]. Energy conversion and management,2006,47(15):2461~2469
    [168] Hannsson K M,Samuelsson J,Tullin C,et al. Formation of HNCO, HCN, and NH3from the pyrolysisof bark and nitrogen-containing model compounds [J]. Combust Flame,2004,137(3):265~277
    [169] Ponder G R,Richards G N. Thermal synthesis and pyrolysis of a xylan [J]. Carbohydrate Research,1991,218:143~155
    [170] Ferdous D,Dalai A K,Bej SK,et al. Production of H2and medium Btu gas via pyrolysis of lignins ina fixed bed reactor [J]. Fuel processing technology,2001,70(1):9~26
    [171]谭洪,王树荣,骆仲泱,等.生物质三组分热裂解行为的对比研究[J].燃料化学学报,2006,34(1):61~65
    [172] Worasuwannarak N,Sonobe T,Tanthapanichakoon W. Pyrolysis behaviors of rice straw, rice husk, andcorncob by TG-MS technique [J]. Journal of Analytical and Applied Pyrolysis,2007,78(2):265~271
    [173] Hosoya T,Kawamoto H,Saka S. Solid/liquid-and vapor-phase interactions between cellulose-andlignin-derived pyrolysis products [J]. Journal of Analytical and Applied Pyrolysis,2009,85(1):237~246
    [174]傅智敏.绝热加速量热法在反应性物质热稳定性评价中的应用[D].北京;北京理工大学,2002
    [175]钱新明,刘丽,张杰.绝热加速量热仪在化工生产热危险性评价中的应用[J].中国安全生产科学技术,2005,1(4):13~18
    [176]熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定[J].粮食与饲料工业,2005,8(2):40~41
    [177] Rath J,Wolfinger M G,Steiner G,et al. Heat of wood pyrolysis [J]. Fuel,2003,82(1):81~91
    [178] Kilzer F J,Broido A. Speculation on the nature of cellulose pyrolysis [J]. Pyrodynamics,1965,2(151-163):151~163
    [179] Goyal H B,Seal D,Saxena R C. Bio-fuels from thermochemical conversion of renewable resources: areview [J]. Renewable and Sustainable Energy Reviews,2008,12(2):504~517
    [180] Shafizadeh F. Introduction to pyrolysis of biomass [J]. Journal of Analytical and Applied Pyrolysis,1982,3(4):283~305
    [181] Tang M M,Bacon R. Carbonization of cellulose fibers-I. Low temperature pyrolysis [J]. Carbon,1964,2(3):211~220
    [182] Bacon R,Tang M M. Carbonization of cellulose fibers-II. Physical property study [J]. Carbon,1964,2(3):221~225
    [183]南京林产工业学院.木材热解工艺学[M].北京:中国林业出版社,1993
    [184] Becidan M,Varhegyi G,Hustad J E,et al. Thermal decomposition of biomass wastes.A kinetic study[J]. Ind Eng Chem Res,2007,46(8):2428~2437
    [185] Bridgewater A V,Peacocke G V C. Fast pyrolysis processes for biomass [J]. Renewable SustainableEnergy Rev,2000,4(1):1~73
    [186] Demral L,Sevgi S. Structural analysis of pyrolysis products from pyrolysis of hazelnut (CorylusAvellana L.) bagasse [J]. Energy Sources Part A,2006,28(12):1159~1168
    [187] Ranzi E,Cuoci A,Faravelli T,et al. Chemical kinetics of biomass pyrolysis [J]. Energy Fuels,2008,22(6):4292~4300
    [188] Shebani A N,Van Reenen A J,Meincken M. The effect of wood extractives on the thermal stability ofdifferent wood species [J]. Thermochimica Acta,2008,471(1):43~50
    [189] Sanderson M,Egg R P,Wiselogel A E. Biomass losses during harvest and storage of switchgrass [J].Biomass Bioenergy,1997,12(2):107~114
    [190] Demirbas A. Estimating of structural composition of wood and non-wood biomass samples [J]. EnergySources,2005,27(8):761~767
    [191] Meszaros E,Jakab E,Varhegyi G. TG/MS, Py-GC/MS and THM-GC/MS study of the composition andthermal behavior of extractive components of Robinia pseudoacaeia [J]. J Anal Appl Pyrolysis,2007,79(1/2):61~70
    [192] Wang Y P,Wu L B,Wang C,et al. Investigating the influence of extractives on the oil yield and alkaneproduction obtained from three kinds of biomass via deoxy-liquefaction [J]. Bioresource Technology,2011,102(14):7190~7195
    [193]王树荣,谭洪,骆仲泱,等.木聚糖快速热解试验研究[J].浙江大学学报(工学版),2006,40(3):419~423
    [194]廖艳芬,骆仲泱,王树荣,等.纤维素快速热裂解机理试验研究Ⅰ.试验研究[J].燃料化学学报,2003,31(2):133~138
    [195] Edward B S,Alan I G,Jeffrey I S. A model that distinguishes the pyrolysis of D-glucose,D-fructose,and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation [J]. Journalof Analytical and Applied Pyrolysis,2003,66(1/2):29~50
    [196] Biagini E,Fantei A,Tognotti L. Effect of the heating rate on the devolatilization of biomass residues[J]. Thermochimica Acta,2008,472(1):55~63
    [197] Shuangning X,Zhihe L,Baoming L,et al. Devolatilization characteristics of biomass at flash heatingrate [J]. Fuel,2006,85(5):664~670
    [198] Demirbas A. Effects of temperature and particle size on bio-char yield from pyrolysis of agriculturalresidues [J]. Journal of Analytical and Applied Pyrolysis,2004,72(2):243~248
    [199] Zanzi R,Sj str m K,Bj rnbom E. Rapid pyrolysis of agricultural residues at high temperature [J].Biomass and Bioenergy,2002,23(5):357~366
    [200] Cetin E,Gupta R,Moghtaderi B. Effect of pyrolysis pressure and heating rate on radiata pine charstructure and apparent gasification reactivity [J]. Fuel,2005,84(10):1328~1334
    [201] Onay O. Influence of pyrolysis temperature and heating rate on the production of bio-oil and char fromsafflower seed by pyrolysis, using a well-swept fixed-bed reactor [J]. Fuel Processing Technology,2007,88(5):523~531
    [202] Dupont C,Chen L,Cances J,et al. Biomass pyrolysis: Kinetic modelling and experimental validationunder high temperature and flash heating rate conditions [J]. Journal of Analytical and Applied Pyrolysis,2009,85(1):260~267
    [203] Sathe C,Hayashi J,Li C Z,et al. Combined effects of pressure and ion-exchangeable metallic specieson pyrolysis of Victorian lignite [J]. Fuel,2003,82(3):343~350
    [204] Tao W,Zou Y R,Carr A,et al. Study of the influence of pressure on enhanced gaseous hydrocarbonyield under high pressure-high temperature coal pyrolysis [J]. Fuel,2010,89(11):3590~3597
    [205] Porada S. The influence of elevated pressure on the kinetics of evolution of selected gaseous productsduring coal pyrolysis [J]. Fuel,2004,83(7):1071~1078
    [206]熊源泉,郑守忠,章名耀.加压条件下半焦燃烧特性的试验研究[J].锅炉技术,2001,32(11):12~14
    [207] Sun C L,Xiong Y Q,Liu Q X,et al. Thermogravimetric study of the pyrolysis of two Chinese coalsunder pressure [J]. Fuel,1997,76(7):639~644
    [208] Whitty K,Backman R,Hupa M. Influence of pressure on pyrolysis of black liquor:1. Swelling [J].Bioresource Technology,2008,99(3):663~670
    [209] Whitty K,Kullberg M,Sorvari V,et al. Influence of pressure on pyrolysis of black liquor:2. Charyields and component release [J]. Bioresource Technology,2008,99(3):671~679
    [210] Tomeczek J,Gil S. Volatiles release and porosity evolution during high pressure coal pyrolysis [J].Fuel,2003,82(3):285~292
    [211] Wannapeera J,Worasuwannarak N. Upgrading of woody biomass by torrefaction under pressure [J].Journal of Analytical and Applied Pyrolysis,2012,(96):173~180
    [212]肖军,沈来宏,王泽明,等.生物质加压热重分析研究[J].燃烧科学与技术,2005,11(5):415~420
    [213]崔亚兵,陈晓平,顾利锋.常压及加压条件下生物质热解特性的热重研究[J].锅炉技术,2004,35(4):12~15
    [214]邓霞.生物质催化加压热解及气化实验研究[D].南京;东南大学,2008
    [215]陈晓平,谷小兵,段钰锋,等.气化半焦加压着火特性及燃烧稳定性研究[J].热能动力工程,2005,20(2):153~157
    [216] Okumura Y,Sugiyama Y,Okazaki K. Evolution prediction of coal-nitrogen in high pressure pyrolysisprocesses [J]. Fuel2002,81(18):2317~2324
    [217]胡荣祖,高胜利,赵凤起,等.热分析动力学[M].北京:科学出版社,2001
    [218]陈祎,罗永浩,陆方,等.生物质废弃物的热解研究[J].燃料化学学报,2007,35(3):370~374
    [219]于娟,章明川,沈轶,等.生物质热解特性的热重分析[J].上海交通大学学报,2002,36(10):1475~1478

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700