用户名: 密码: 验证码:
双排桩支护结构的数值分析与现场试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的迅速发展和城市化进程的加快,高层、超高层建筑、城市地铁隧道项目大量的建设,都遇到一个共同的问题:深基坑的设计及施工问题,如基坑支护、降水、开挖等等。特别是,近年来有关基坑土方坍塌的事故频频发生,给人民的生命及财产安全造成巨大的影响。因此,如何解决好城市建设项目中的基坑支护及环境效应问题成为岩土工程的热点与难点,技术安全、经济合理的基坑支护结构体系是基坑工程的主要发展方向及研究重点。
     双排桩支护结构由于具有整体刚度大、侧向位移小、不需要设置支撑、施工方便、速度快、不需要工作面等优点,目前广泛应用于边坡加固、边坡抗滑、基坑支护等工程中。但是,双排桩的作用机理及受力特征目前还不清楚,双排桩的设计理论不成熟,主要依靠工程经验。本文在总结前人研究的基础上,以数值模拟与现场试验为研究手段,理论分析方法与工程实践相结合,全面研究双排桩支护结构的要素设计和复合式双排桩的受力及变形特征,研究双排桩的作用机理、探讨土压力的分配规律、分析支护结构的内力及变形规律、对比不同支护方案下的安全性、经济性,为双排桩支护结构的广泛应用及优化设计提供理论支持与工程经验。本文的主要研究内容如下:
     1.回顾总结双排桩支护结构的理论计算方法,对比总结各自的特点及应用范围。
     2.采用FLAC3D数值法模拟双排桩结构的受力状态,研究双排桩支护结构的要素设计,包括:桩距、排距、直径、长度、连梁截面及刚度、基坑深度、土体抗剪强度指标等,寻求双排桩设计最优参数。
     3.采用FLAC3D数值法模拟复合式双排桩支护结构的受力特征,研究不同复合方案下支护结构的内力及变形规律,分析基坑工程的安全系数,并将研究成果应用于太原市平阳景苑的深基坑支护工程中。
     4.将理论研究应用于实践工程中,详细阐述了平阳景苑深基坑支护工程的设计思路、支护选型、模拟计算、方案比选,并最终确定支护方案,为该地区同类基坑工程支护设计提供借鉴。
     5.针对平阳景苑的深基坑支护工程进行现场试验研究,编制详细的试验方案,分析研究了土层的侧向位移、桩体的内力及位移、地表的沉降及位移、锚索拉力、地下水变化、周围建筑物沉降等,并与计算结果对比。
     6.采用不同三轴试验方案,重点研究了土体抗剪强度指标对支护结构受力的影响,并将不同试验方案下测定的指标值带回计算模型中,将计算结果与实测值进行比较。
     通过上述内容的研究,本文在以下方面取定一些研究成果:
     1.研究结果表明,双排桩支护结构的内力及变形特征明显区别于单排桩,最大位移不是发生在桩顶,而是桩顶下2-4m,弯矩曲线出现反弯点,正负最大弯矩差值在减小,受力更加合理。对比结果表明,在桩数相同的条件下,采用双排桩支护结构可以明显减少位移,使结构受力更加合理。
     2.首次全面分析了双排桩支护结构要素设计变化对双排桩的影响,并得出最佳设计参数:排距4~6d(d为支护桩直径),桩距2-4d,桩长1.5~2倍基坑深度,深度在10m以内采用双排桩支护比较合理,连梁必须具有足够刚度,才能发挥其协调的作用。
     3.研究发现,土体抗剪强度指标c,(?)值是影响支护结构内力及变形的最重要两个因素。计算结果显示,c,(?)值变化与支护桩最大水平位移呈双曲线关系,这是本文研究的一大亮点。
     4.首次将复合式双排桩支护结构引入太原地区,工程实践表明是成功的,并节约造价约3000万元,为该地区同类支护工程提供借鉴。
     5.对比分析不同复合方案下双排桩支护结构的受力特点,全面研究不同组合方案的内力及变形规律。研究结果显示,设置锚索、支撑可以明显改善双排桩的受力,限制侧向位移。而同样条件下,设置支撑的支护效果优于锚索,增加锚索或支撑的排数,支护结构的内力及变形没有明显改善,最佳的锚索或支撑的排数为2排。否则的话,前排桩成为主要受力构件,整个体系类似于拉锚结构,发挥不出后排桩的作用,这是本文研究的又一亮点。
     6.关于锚索的作用点位置在本文中也作了重点研究,结果显示:最佳位置是冠梁处,双排桩结构受力最合理。
     7.现场试验显示,深基坑存在显著的空间效应,中间桩体侧向变形大于端部桩体,位移曲线呈“中间大、两头小”的鼓肚状。
     8.对比分析多样单级加荷和单样多级加荷三轴剪切试验测定c,(?)值,研究结果显示,单样多级加荷下测定的c,(?)值偏大,内力及变形值的计算结果与实测结果更接近。查阅文献,还没有找到类似的研究。
With the acceleration of the process of China's rapid economic development and urbanization, the construction of a large number of high-rise, high-rise buildings, urban subway tunnel project, have encountered a common problem:the design and construction of deep foundation pit, Pit Supporting, precipitation, excavation, and so on. In particular, in recent years frequently occur the collapsed accidents of pit earthwork, it give a huge impact on people's lives and property safety. Therefore, how to solve the problem of the foundation pit support and environmental effects in the urban construction projects become a hot and difficult geotechnical technology, security economic rationality Pit Supporting Structure system is the main direction of development and research priorities of the foundation pit engineering.
     Double row pile retaining structure has the overall stiffness, small lateral displacement and do not need to set up support, besides, its construction is convenient, fast, no face, etc. They are widely used in slope reinforcement, slope skid, pit support and other projects. However, the mechanism of double-row piles and force characteristics is unclear, double-row piles immature design theory, mainly relying on engineering experience. On the basis of previous studies, using numerical simulation and field test research methods, combined theoretical analysis methods and engineering practice, the paper study the design elements of the double row pile retaining structure and composite double the force of the pile deformation characteristics, to study the mechanism of double-row piles、distribution of earth pressure、the analysis the internal forces and deformation law of supporting structure, comparing different support schemes under the security, economy, and provide theoretical support and engineering experience for double row pile retaining structure widely used and optimize the design. The main contents of this paper are as follows:
     1. Reviewed the theory calculation method of double row pile retaining structure, comparative summary of each of the characteristics and scope of application.
     2. Using the FLAC3D numerical methods to simulate the stress state of the structure of the double-row piles to study the design of double row pile retaining structure elements, including:pile spacing, row spacing, diameter, length, coupling beam cross-section and stiffness, pit depth, soil shear strength indicators. Seek the optimal parameters of double-row piles to design.
     3. Using the FLAC3D numerical methods to simulate the characteristics of the composite structure of double-row piles and study the different composite program under the supporting structure of the internal forces and deformation law, meanwhile, analyze the safety factor of the excavation project, and applied research for Taiyuan City Garden deep foundation pit support engineering.
     4. The theoretical research applied to practice engineering, and elaborate Pingyang Jingyuan deep foundation pit support engineering design ideas, supporting selection simulation calculation scheme comparison, and ultimately determine the support program, providing a reference for the similar foundation pit support design of the area.
     5. Pingyang Garden for deep foundation pit engineering field tests, making detailed test plan, analysis of soil lateral displacement, pile internal force and displacement, ground surface settlement and displacement, cable tension, the groundwater level change, settlement of surrounding buildings, and compared with the calculated results.
     6. Adopted different triaxial test program, focuses on the impact force on the supporting structure of the soil shear strength index, and the index value measured under different test programs back to the computational model, the calculated results with the measured values comparison.
     Through the above research, this paper takes some research achievements in the following aspects:
     1. Research results show that the double row pile retaining structure of the internal forces and deformation characteristics significantly different from the single row of piles, the maximum displacement does not occur in the top of the pile, but the top of the pile under2~4m, bending moment curve inflection point is, positive and negative difference of maximum bending moment is reducing,the force is more reasonable. The comparison results show that, in the same number of piles, double row pile retaining structure can significantly reduce the displacement, make the structure more reasonable stress.
     2. For the first time, comprehensive analysis of the double-row pile retaining structure elements of design changes on the double-row piles and optimum design parameters:row spacing:4~6d (d diameter for supporting piles), pile spacing:2~4d, the pile length:1.5to2times pit depth, depth of less than10m double row pile retaining is more reasonable, Even beam must have sufficient stiffness to play its coordinating role.
     3. The study found that soil shear strength index value c,φis the internal force and deformation of supporting structure the two most important factors. Calculations showed that c,φ values change with the support piles maximum horizontal displacement was a hyperbolic relationship, which is a major highlight of this study.
     4. The first time the introduction of the composite double row pile retaining structure in Taiyuan area. Engineering practices show it is successful, and save the cost of about30million yuan, and provide references for the region similar support engineering.
     5. Comparative analysis of double-row piles supporting the mechanical characteristics of the structure under different composite program, a comprehensive study of the different combinations of internal forces and deformation law. The study results showed that, setting the anchor rope, the support can be significantly improved the force of double-row piles, and limited the lateral displacement. Under the same conditions, supporting effect under setting support better than the anchor cable, but increasing the number of rows of the anchor rope or support is no significant improvement in the internal forces and deformation of the supporting structure, the best anchor cable or supporting rows is2. Otherwise, the front row piles to become a major force member, the entire system is similar to anchor the structure, not to play the role of rear pile, which is another highlight of this study.
     6. On the anchor position, in this paper also made a key research, results showed that, the best position is crown beam, at this time, the double-row piles structure stress is the most reasonable; Back row piles can bear the soil pressure; The lateral deformation is the minimum.
     7. Field tests, deep foundation pit has space effect significantly, the pile deformation of between pile is greater than the end pile, displacement curve is " big in the middle, two small " drum belly shape.
     8. Comparative analysis of diverse single-stage loading and single-sample multi-level triaxial shear test measuredc,φ values, the results show that a single kind of multi-level loading measurementcφ value is too large, the internal forces and deformation calculated values c,φ is closer the measured results. Consulting literature, similar studies have not yet found.
引文
[1]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社,1997.
    [2]卢一凡.武汉地区深基坑工程支护结构安全评价研究[D].武汉:华中科技大学,2011.
    [3]赵志缙,赵帆.深基坑工程技术的进步与展望[J].建筑技术,2003,02:88-93.
    [4]李俊才,张倬元,许强.深基坑开挖变形的三维数值模拟研究[J].南京工业大学学报(自然科学版),2005,03:1-7.
    [5]尹双,张仲先,王勇.深基坑支护方案的分析与优化[J].岩土工程技术,2005,03:152-154.
    [6]张贵然.深基坑支护技术的发展和展望[J].洛阳大学学报,2004,02:100-103.
    [7]廖瑛.深基坑及基坑支护结构发展综述[J].科技进步与对策,2003,S1:252-253.
    [8]刘二栓.深基坑工程特点及存在的问题[J].有色金属设计,2004,01:45-47.
    [9]葛恒毕.深基坑工程特点及支护技术在我国的发展[J].山西建筑,2010,v.3609:92-94.
    [10]王曙光.深基坑支护事故处理经验录[M].北京:中国建筑工业出版社,1997.
    [11]唐业清,李启民,雀江余.基坑工程事故分析与处理[M].北京:中国建筑工业出版社,1999
    [12]曾宪明.基坑与边坡事故警示录[M].北京:中国建筑工业出版社,1999.
    [13]孙良涛.大直径双环梁支护结构体系受力性能分析与三维有限元模拟[D].天津:天津大学,2005.
    [14]窦远明.分步开挖过程中基坑支护结构的变形和土压力性状研究[D].天津:天津大学,2001.
    [15]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社,1997.
    [16]万智,王贻荪,李刚.双排桩支护结构的分析与计算[J].湖南大学学报(自然科学版),2001,S1:116-120+131.
    [17]王湛,刘冰花.双排桩计算方法探讨[J].东北地震研究,2001,02:64-68.
    [18]李立军.双排桩支护结构中圈梁空间效应的数值模拟分析[J].北京理工大学学报,2012,V.32:446-449.
    [19]杨德健,王铁成.双排桩支护结构优化设计与工程应用研究[J].工程力学,2010,v.27S2:284-288.
    [20]周翠英,尚伟,陈恒等.门架式双排抗滑桩设计计算新模式[J].岩土力学,2005,26(3):441-444.
    [21]杨建斌,潘秋元,朱向荣.深基坑开挖双排桩支护系统性状分析[J].浙江建筑,1995,1:7-10.
    [22]聂庆科,梁金国,韩立君等.深基坑双排桩支护结构设计理论与应用[M].北京:中国建筑工业出版社,2008.
    [23]朱艳红.双排桩结构研究概况[J].港工技术与管理,2003,6:1-5.
    [24]邢世玲,叶见曙,姚晓励.桥梁桩基础有限元模型构建思路与应用[J].特种结构,2010,v.27:77-80.
    [25]申永江,孙红月,尚岳全等.双排抗滑桩桩顶连接方式的优化设计[J].岩石力学与工程学报,2010,v.29:No.234Sl:3034-3038.
    [26]黄嘉福,姜长宇,邢世玲.桥梁桩基础有限元模型研究[J].公路交通科技(应用技术版),2011,v.7:No.7806:161-163.
    [27]瞿国钊,叶相前.桩基础和上部结构联合作用的一个新计算方法[J].湖北水力发电,2002,03:16-18.
    [28]毛晓光,王红梅.桩顶有无连梁的双排抗滑桩数值模拟[J].水运工程,2011,No.45204:19-23.
    [29]夏明耀.多撑式地下连续墙入土深度的模拟试验研究[J].大坝观测与土工测试,1984,02:26-34.
    [30]徐方京,侯学渊.盾尾间隙引起地层移动的机理及注浆方法分析[J].地下工程与隧道,1993,03:12-16.
    [31]高文华,杨林德.软土深基坑围护结构变形的三维有限元分析[J].工程力学,2000,02:134-141.
    [32]俞建霖,龚晓南.深基坑工程的空间性状分析[J].岩土工程学报,1999,01:24-28.
    [33]铁道部第二勘测设计院.抗滑桩设计与计算[M].北京:中国铁道出版社,1983.
    [34]林栋.双排桩深坑支护结构在宏利大厦工程中应用[J].福建建设科技,1994,04:17-19.
    [35]林栋.用双排灌注桩作深基坑围护结构的尝试[J].建筑施工,1994,04:8-9.
    [36]蔡袁强,王立忠,陈云敏等.软土地基深基坑开挖中双排桩式围护结构应用实录[J].建筑结构学报,1997,04:70-76.
    [37]王子辉.非连续双排桩支护结构设计方法研究与工程应用[J].建筑技术开发,2002,02:15-17.
    [38]侯永莉.双排桩支护技术的应用[J].西部探矿工程,2003,06:62-63.
    [39]Franx C, Boonstra G C.Horizontal pressures on pile foundations[C].Proc.2nd ICSMFE. Rorrerdam.1948,4:131-135.
    [40]Heyman L, Boersma F. Bending moments in piles due to lateral earth pressure [C]. Proe.5th ICSMFE. Paris.1961,2:425-429.
    [41]Wenz K P. Large scale tests for determination of lateral loads on piles in soft cohesive soils[C]. Proc.8th ICSMFE. Moscow.1973,2:2.
    [42]Oteo C S. Discussion to Poulos(1973)[J]. JSMFD. ASCE.1974,100(GT4):464-467.
    [43]Nicu N D, Antes D R, Kessler R S. Field measurements on instrumented piles Under an overpass aburment[J]. Highway Research Record.1971,354:90-99.
    [44]DeBeer E E, Wallays M. Forces induced in piles by unsymmetrical surcharges on the soil around the piles[C]. Proc.5th ECSMFE. Madrid.1972,1:325-332.
    [45]Marche R, Lacroix Y. Stabilite des culees deponts etabilies sur des pieux Traversant une couche molle[J]. Can.Geotech. J,1972,9(1):1-24.
    [46]Begemann H-K S, DeLeeuw E H. Horizontal earth pressures on piles as a result Of nearby soil fills[C].Proc.5th ECSMFE. Madrid.1972,1:3-9.
    [47]Tschebotariof G P. Foundations, Retaining,and Earth Structures[M]. New York:MCGraw-Hill,1973.
    [48]Springman S M. Lateral loading on piles due to simulated embankment construction[D]. PhD thesis, University of Cambridge,1989.
    [49]Stewart D P, Jewell R J, Randolph M F. Design of piled abutments on soft clay for loading fro. lateral soil movements[J]. Geotechnique,1994,44(2):277-296.
    [50]刘钊.双排支护桩结构的分析及试验研究[J].岩土工程学报,1992,05:76-80.
    [51]张弘.深基坑开挖中双排桩支护结构的应用与分析[J].华北石油设计,1993,31(1):19-24.
    [52]谭永坚,何颐华.粘性土中悬臂双排护坡桩的受力性能研究[J].建筑科学,1993,04:28-34.
    [53]何颐华,杨斌,金宝森等.双排护坡桩试验与计算的研究[J].建筑结构学报,1996,02:58-66.
    [54]黄强.深基坑支护工程设计技术[M].北京:中国建材工业出版社.1995.
    [55]程知言,裘慰伦.双排桩支护结构设计计算方法探讨[J].地质与勘探,2001,02:88-90.
    [56]熊巨华.一类双排桩支护结构的简化计算方法[J].勘察科学技术,1999,02:32-34.
    [57]郑刚,李欣,刘畅等.考虑桩土相互作用的双排桩分析[J].建筑结构学报,2004,01:99-106.
    [58]曹俊坚,平扬,朱长歧等.考虑圈梁空间作用的深基坑双排桩支护计算方法研究[J].岩石力学与工程学报,1999,06:709-712.
    [59]周翠英,刘祚秋,尚伟等.门架式双排抗滑桩设计计算新模式[J].岩土力学,2005,03:441-444.
    [60]戴智敏,阳凯凯.深基坑双排桩支护结构体系受力分析与计算[J].信阳师范学院学报(自然科学版),2002,03:348-352.
    [61]胡敏云,夏永承,高渠清.桩排式支护护壁桩侧土压力计算原理[J].岩石力学与工程学报,2000, 03:376-379.
    [62]胡敏云,夏永承.从深基坑护壁桩桩身弯矩分析桩侧土压力[J].力学与实践,2001,02:16-20.
    [63]蒋良潍,黄润秋,蒋忠信.韶性土桩间土拱效应计算与桩间距分析[J].岩土力学,2006,27(3):445-450.
    [64]大堀晃一.二重矢板式构造(?)力学的特性に关すゐ研究,日本港湾技术研究所报告,1984,23(1).
    [65]徐良德,唐志成,彭隆银.抗滑桩模型试验弹性阶段有限元分析[J].重庆交通学院学报,1988,04:51-60.
    [66]何颐华,杨斌,金宝森等.深基坑护坡桩土压力的工程测试及研究[J].土木工程学报,1997,01:16-24.
    [67]菊池喜昭等.固化处理土中话二重失板护岸构造特性旧本港湾技术研究所报告,997号,2001.
    [68]熊治文,马辉,朱海东.全埋式双排抗滑桩的受力分布[J].路基工程,2002,03:5-11.
    [69]余志成,施文华.深基坑护坡桩技术的几项新发展[J].建筑技术,1994,05:272-279.
    [70]聂庆科,胡建敏,吴刚.深基坑双排桩支护结构上的变形和土压力研究[J].岩土力学,2008,No.15511:3089-3094.
    [71]Duncan JM, Chang CY. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE.1970.
    [72]应宏伟,初振环.深基坑带撑双排桩支护结构有限元分析[J].岩石力学与工程学报,2007,No.193:4325-4331.
    [73]蔡袁强,阮连法,吴世明等.软粘土地基基坑开挖中双排桩式围护结构的数值分析及应用[J].建筑结构学报,1999,04:65-71.
    [74]张耀东,俞建霖.深埋重力门架式围护结构性状研究与应用[J].岩石力学与工程学报,2004,09:1578-1584.
    [75]王军,王磊,肖昭然.双排桩支护排距的有限元分析与研究[J].地下空间与工程学报,2005,S1:118-121.
    [76]罗卫华,刘建华.岩质边坡桩柱式桥墩的受力分析研究[J].公路工程,2008,No.12801:1-6.
    [77]司马军.双排桩支护结构研究及优化设计[D].武汉:武汉大学,2006.
    [78]陆培毅,杨靖,韩丽君.双排桩尺寸效应的有限元分析[J].天津大学学报,2006,08:963-967.
    [79]梅传书,徐海峰,严驰.深基坑开挖的有限元模拟与实验研究[J].水文地质工程地质,2000,05:8-11.
    [80]梅传书,严驰,陆红等.高层建筑基坑开挖的数值分析研究及工程应用分析[J]建筑结构学报,2001,03:81-87.
    [81]龚晓南,宋二祥,郭红仙.基坑工程实例(3)[M].北京:中国建筑工业出版社,2010.
    [82]刘国彬,黄院雄,侯学渊.考虑时空效应的等效土体水平抗力系数的取值研究[J].土木工程学报2001,03:97-102.
    [83]李允忠,汪稔.基坑开挖孔隙水压力变化规律试验研究[J].岩土力学,2002,06:813-816.
    [84]姜忻良,宗金辉,孙良涛.天津某深基坑工程施工监测及数值模拟分析[J].土木工程学报,2007,02:79-84.
    [85]缪欢宜.软土地区某深基坑支护与监测实例分析[J].山西建筑,2009,v.3531:101-102.
    [86]韩选江.镇江国贸大厦深基坑支护结构的锚拉试验与检验[J].岩土力学,2003,01:97-102.
    [87]蒋斌松,赵锦桥,孙志刚等.枣林滑坡的滑面强度确定及加固处理[J].工程地质学报,2004,04:417-421.
    [88]沈强,陈从新,汪稔等.边坡抗滑桩加固效果监测分析[J].岩石力学与工程学报,2005,06:934-938.
    [89]刘红帅,薄景山,耿冬青等.岩质滑坡稳定性有限元分析[J].岩土力学,2004,11:1786-1790.
    [90]San-Shyan Lin, Jen-Cheng Liao. Lateral response evaluation of single piles using inclino-meter data. Journal of Geotechnical and Geoenvironmental Engineering,2006.
    [91]薛丽影,杨斌.基坑开挖对周边环境影响的试验研究[J].西北地震学报,2011,v.33S1:185-189.
    [92]王建军.基坑支护现场试验研究与数值分析[D].北京:中国建筑科学研究院,2006.
    [93]王湛,刘冰花.双排桩计算方法探讨[J].东北地震研究,2001,02:64-68.
    [94]张弥.深基坑开挖中双排桩支护结构的应用与探讨[J].地基处理,1993,4(3):42-47.
    [95]厚美瑛,陆坤权.奇异的颗粒物质[J].新材料产业,2001,(2):26-28.
    [96]史海莹.双排桩支护结构性状研究[D].杭州:浙江大学,2010.
    [97]K. Terzaghi. Theoretical soil mechanics, John Wiley&Sons, New York, NY,1943.
    [98]Theoretical soil mechanics(4th edition)[M]. New York:John Wiley&Sons,1947:66-76.
    [99]Richard L H. The arch in soil aching [J]. Journal of Geotechnical Engineering,1985 111(3) :302-318.
    [100]徐良德,项瑛,尹道成等.排架桩与双排单校对比模型试验[C].滑坡文集(第六集),北京:中国铁道出版社,1984:78-83.
    [101]李小军,陈映华,宣庐峻.采用水上深基坑围护法建造特大型船坞坞口的创新设计[J].岩土工 程学报,2006,S1:1560-1564.
    [102]杨育文,蒋涛,刘秀萍等.深基坑工程实例及系统开发[J].岩土工程学报,2006,S1:1845-1848.
    [103]杨曼,李博.国内外基坑发展概况[J].山西建筑,2007,24:123-124.
    [104]史佩栋等.深基础工程特殊技术问题[M].北京:人民交通出版社2004.
    [105]龚晓南.深基坑工程设计施工手册[M].北京:中国建筑工业出版社,2001.
    [106]龚晓南.基坑支护实例3[M].北京:中国建筑工业出版社,2001.
    [107]申永江.边坡工程中抗滑桩的效果评价与优化设计[D].杭州:浙江大学,2009.
    [108]Itasca Consulting Group, Inc. Fast Lagrangian Analysis of Continua in 3 Dimensions FISH in FLAC3D [M]. U. S. A.,2002.
    [109]Itasca Consulting Group, Inc. Fast Lagrangian Analysis of Continua in 3 Dimensions Example Applications [M]. U. S. A.,2002.
    [110]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008.
    [111]顾宝和,周红.基坑工程若干基本问题的讨论—基坑开挖与支护研讨会综述[J].工程勘察,1997,03:12-17.
    [112]方高奎.双排桩复合锚杆支护结构的数值模拟分析[D].郑州:郑州大学,2011.
    [113]史江伟.双排桩—锚杆支护结构的数值模拟[D].太原:太原理工大学,2012.
    [114]田雪梅.双排桩支护结构的理论分析及数值计算[D].太原:太原理工大学,2012.
    [115]张军舰,左红伟,徐永.对多级加荷三轴固结不排水剪切试验应用的探讨[J].烟台大学学报(自然科学与工程版),2006,01:58-62.
    [116]车承国.对一个试样多级加荷三轴剪切试验的探讨[J].电力勘测计,2003,01:33-36.
    [117]陈华辰,马履霞.一个试样多级加荷三轴压缩试验方法适用性的探讨[J].勘察科学技术,2004,04:33-36.
    [118]李立军,梁仁旺.双排桩支护结构中圈梁空间效应的数值模拟分析[J].北京理工大学学报(自然科学版),2012,v.43:446-449.
    [119]张维正.深基坑周边建筑物沉降预测与支护结构变形研究[D].辽宁工程技术大学,2007.
    [120]郑丹.三轴试验单试样多级加荷的适用性分析[J].土工基础,2005,05:75-77.
    [121]GB/T50123-1999,土工试验方法标准[S].北京:中国建筑工业出版社,1999.
    [122]孙书伟,林杭,任连伟.FLAC3D在岩土工程中的应用[M].中国水利水电出版社,2011.
    [123]彭文斌. FLAC3D实用教程[M].机械工业出版社,2008
    [124]FLAC3D version 4.0 Example Application. ITASCA.
    [125]李立军,梁仁旺.排距对双排桩结构体系性状影响的数值分析[J].太原理工大学学报,2012,v.43:216-218.
    [126]王建军.基坑支护现场试验研究与数值分析[D].北京:中国建筑科学研究院,2006.
    [127]李必刚.武汉轨道交通4号线铁机村站施工安全监测[D].武汉:武汉理工大学,2011.
    [128]杜向锋.基坑变形监测方案设计实例[J].大众科技,2010,No.13006:110-111+76.
    [129]GB/50497-2009,建筑基坑工程监测技术规范[S].北京:中国建筑工业出版社,2009.
    [130]宗金辉.深基坑开挖有限元模拟及现场实测研究[D].天津:天津大学,2006.
    [131]吴刚,白冰,聂庆科.深基坑双排桩支护结构设计计算方法研究[J].岩土力学,2008,No.15410:2753-2758.
    [132]白冰,聂庆科,吴刚等.考虑空间效应的深基坑双排桩支护结构计算模型[J].建筑结构学报,2010,v.3108:118-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700