用户名: 密码: 验证码:
单自由度实时混合试验的控制方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于地震作用和工程结构的复杂性,结构抗震试验方法的研究显得尤为重要。而近年来一些新兴的结构抗震装置很难用传统的抗震试验方法来检验其抗震性能。实时混合试验方法具有能进行大比例尺甚至足尺试验和实时试验的优良特性,它能够克服传统抗震试验方法的局限性。实时混合试验方法将结构分为数值子结构和实验子结构,通过传递系统(作动器或振动台)来实现实验子结构和数值子结构之间的边界条件的协调。传递系统的动力特性会影响整个实时混合试验系统的稳定和精度,因此,用控制方法消除传递系统动力特性的影响有十分重要的意义。
     本文研究了实时混合试验中的控制方法,主要的研究内容如下:
     1、对于非线性结构实时混合试验的等效力控制方法,本文采用滑动模态控制器代替PID控制器作为等效力控制方法的外部控制器。针对实时混合试验,研究了滑动模态控制器的设计方法,进行了线性和非线性试件的数值仿真和实时混合试验。仿真及试验结果验证了本文方法的良好控制效果。
     2、针对非匹配不确定性设计滑动模态控制器作为等效力控制方法的外部控制器,讨论了关键参数对等效力控制性能的影响,分析了采用这种滑动模态控制器的等效力控制方法的稳定性。数值仿真结果表明滑动模态控制对非线性试件是有较好的控制效果。
     3、针对等效力控制方法的时滞采用了自适应预测补偿算法来补偿,分析了自适应参数对时滞补偿效果的影响。线弹性试件的数值仿真和试验表明这种方法比单纯的等效力控制方法稳定性更好,非线性试件的实时混合试验结果表明这种方法比固定时滞补偿能得到更好的补偿效果。
     4、针对实时混合试验速度、加速度控制的问题,提出了基于显式积分算法的等效力控制方法。磁流变阻尼器试件的实时混合试验证明了基于Newmark显式方法的等效力控制方法的可行性,纯惯性试件的实时混合仿真验证了基于L稳定实时协调显式算法的等效力控制方法的可行性。
     5、对动力子结构试验中的加速度控制方法进行了研究,将前置滤波结合后置滤波来控制动力子结构试验中加速度响应高频振荡,采用压差反馈控制来削弱台面加速度响应噪声。纯惯性试件的振动台混合试验验证了试验平台的性能,圆柱形调谐液体阻尼器(CTLD)的振动台混合试验验证了CTLD能够较好地控制结构在地震中的加速度响应。
Seismic tests play an essential role in structural engineering due to thecomplicacy of the seismic excitation and structures. Meanwhile, there are someshortcomings of traditional hybrid testing methods, e.g. pseudo-dynamic testingmethod, to assess seismic behaviour of a structure, especially when a rate-dependent control device is installed in the target structure. In order to solve thisproblem, Real-time Hybrid Testing (RHTing) method was proposed, which ischaracterized by testing a structure with a large-scale or even full-scale specimen inreal-time. With this method, the tested structure is divided into two parts, i.e.numerical substructure and experimental substructure, and the coordination of theboundary condition between them is achieved by loading with a transfer system(typically an actuator or a shaking table). One of the key problems of the method isthe dynamics of the transfer system which can affect the stability and accuracy ofthe results; hence it is of great importance to weaken or eliminate this effect.
     This dissertation focuses on control strategies in the RHTing. Main researchwork and findings are summarised as follows.
     1、The Sliding Mode Controller(SMC) is used as the outer controller in theEquivalent Force Control Method (EFCM) instead of a PID controller consideringthe possible nonlinearity in the RHTing. The design approach of SMC is studied forRHTing. Real-time hybrid tests and numerical simulations are carried out with alinear or nonlinear specimen. Good control effects of the EFCM together with theSMC are validated by test and simulation results.
     2、The SMC in the EFCM is designed considering the unmatched uncertainties aswell. The effects of key parameters on performance of the SMC are discussed. Thestability of the EFCM with this method is analysed according to Lyapunov theorem.Finally, the effectiveness of the SMC is verified by numerical simulations of aRHTing with a nonlinear specimen.
     3、Adaptive Forward Prediction algorithm(AFP) is utilized to compensate for thetime delay in the EFCM. The effects of the key parameters of AFP on performanceof compensation effects are discussed through numerical simulations. Numericalsimulation and test results with a linear stiffness specimen illustrate that RHTingwith AFP compensation exhibit better performance than the conventional EFCM. Results of real-time hybrid tests with a nonlinear specimen demonstrate that theproposed method exhibits better accuracy than the EFCM with fixed-delaycompensation.
     4、In order to attain better velocity and/or acceleration control performance inRHTing, the EFCM based on an explicit integration method is proposed. Thescheme is firstly formulated with Newmark explicit method, then stability analysisis carried out via spectral stability technique. The feasibility of the approach isverified by RHTing results with a MR damper specimen. The Rosenbrock-based L-Stable Real Time (LSRT) algorithms are also implemented with the similarframework in order to improve acceleration control performance. The feasibility ofthe EFCM based on LSRT is proved by numerical simulations with an inertiaspecimen.
     5、The acceleration control methods in Dynamical Real-time Substructure Testing(DRSTing) are investigated. Firstly, in order to suppress the high frequencyoscillation of the acceleration responses in DRSTing, a pre-filter combined with apost-filter is proposed. In addition, the pressure difference feedback control isapplied to further improve acceleration control performance. The performance ofthe proposed scheme is validated by the DRSTing with a pure inertia specimen. Theproposed scheme is finally applied to DRSTing of a circle tuned liquid damper andfavourable acceleration control effects of the damper to the structure in earthquakeare proved by test results.
引文
[1]杨先碧.日本特大地震引发大海啸[J].生命与灾害,2011,20(4):4-9.
    [2]张勇,冯万鹏,许力生,等.2008年汶川大地震的时空破裂过程[J].中国科学D辑:地球科学,2008,38(10):1186-1194.
    [3]杨广强,Spencer B F,Carison J D, et al.足尺磁流变阻尼器的建模及动态特性[J].地震工程与工程振动,2001,21(4):8-23.
    [4]吴波,李惠,孙科学.形状记忆合金在土木工程中的应用[J].世界地震工程,1999,15(3):1-13.
    [5]湖南大学,太原工业大学,福州大学合编.建筑结构试验[M].第二版.北京:中国建筑工业出版社,1991:74-118.
    [6]樊健生,聂建国,王浩.考虑收缩徐变及开裂影响的组合梁长期受力性能研究(Ⅰ)—试验及计算[J].土木工程学报,2009,42(3):8-15.
    [7]邱法维,潘鹏.结构拟静力加载实验方法及控制[J].土木工程学报,2002,35(1):1-5,10.
    [8]邹昀,吕西林,卢文胜,等.上海环球金融中心大厦整体结构振动台试验设计[J].地震工程与工程振动,2005,25(4):54-59.
    [9]韩俊伟,胡宝生,徐文德,等.三向地震模拟振动台竖向激振系统分析[J].地震工程与工程振动,1996,26(6):114-122.
    [10] Ji X D, Kajiwara K, Nagae T R, et al. A Substructure Shaking Table Test forReproduction of Earthquake Responses of High-rise Buildings[J]. EarthquakeEngineering and Structural Dynamics,2009,38:1381-1399.
    [11] Fang Z. Construction of a Multiple Shaking-table System[R].2ndEFASTWorkshop and4thInternational Conference on Advances in ExperimentalStructural Engineering, Ispra, Italy,29-30June2011.
    [12] Mahin S A, Shing P B. Pseudo Dynamic Method for Seismic Testing[J]. Journalof Structure Engineering, ASCE,1985,111:1482-1503.
    [13]肖岩,胡庆,郭玉荣,等.结构拟动力远程系统试验平台的开发研究[J].建筑结构学报,2005,26(3):122-129.
    [14] Tsutsumi H, Higashiura A. Pseudo Dynamic Testing Method using theNewmark Implicit Integration Method[R]. Proceedings of Ninth Conferenceon Earthquake Engineering,1988.
    [15] Nakashima M, Kato H, Takaoka E. Development of Real-time PseudodynamicTesting[J]. Earthquake Engineering and Structural Dynamics,1992,21:79-92.
    [16] Misselhorn W E, Theron N J, Els P S. Investigation of Hardware-in the-loopfor use in Suspension Development[J]. Vehicle System Dynamics,2006,44(1):65-81.
    [17] Wu B, Bao H, Ou J, et al. Stability and Accuracy Analysis of Central DifferenceMethod for Real-time Substructure Testing[J]. Earthquake Engineering andStructural Dynamics,2005,34(7):705-718.
    [18] Darby A P, Blakeborough A, Williams M S. Improved Control Algorithm forReal-time Substructure Testing[J]. Earthquake Engineering and StructuralDynamics,2001,30:431-448.
    [19] Wu B, Deng L, Yang X. Stability of Central Difference Method for DynamicReal-time Substructure Testing[J]. Earthquake Engineering and StructuralDynamics,2009,38:1649-1663.
    [20] Zhang Y F, Sause R, Ricles J M. Modified Predictor-corrector NumericalScheme for Real-time Pseudo Dynamic Tests using State-spaceFormulation[J]. Earthquake Engineering and Structural Dynamics,2005,34:271-288.
    [21]吴斌,保海娥.实时子结构实验Chang算法的稳定性和精度[J].地震工程与工程振动,2006,26(2):41-48.
    [22] Bonnet P A, Lim C N, Williams M S, et al. Real-time Hybrid Experimentswith Newmark Integration, MCSmd Outer-loop Control and Multi-taskingStrategies[J]. Earthquake Engneering and Structure Dynamic,2007,36:119-141.
    [23] Bursi O S, Jia C, Vulcan L, et al. Rosenbrock-based Algorithms andSubcycling Strategies for Real-time Nonlinear Substructure Testing[J].Earthquake Engineering and Structural Dynamics,2011,40:1-19.
    [24] Bursi O S, He L, Lamarche C-P, et al. Linearly Implicit Time Integration Methodsfor Real-time Dynamic Substructure Testing[J]. Journal of EngineeringMechanics,2010,136(11):1380-1389.
    [25]王贞.实时混合试验的控制和时间积分算法研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2012:131-160.
    [26] Chen C, Ricles J M, Marullo T M, et al. Real-time Hybrid Testing using theUnconditionally Stable Explicit CR Integration Algorithm[J]. Earthquake andStructural Dynamics,2009,38:23-44.
    [27]李进,王焕定,张永山,等.高阶单步实时动力子结构实验技术研究[J].地震工程与工程振动,2005,25(1):97-101.
    [28] Wu B, Xu G S, Wang Q Y, et al. Operator-splitting Method for Real-timeSubstructure Testing[J]. Earthquake Engineering and Structural Dynamics,2006,35:293-314.
    [29] Jung R Y, Shing P B. Performance Evaluation of a Real-time PseudodynamicTest System[J]. Earthquake Engineering and Structure Dynamics,2006,35:789-810.
    [30] Mosqueda G, Ahmadizadeh M. Combined Implicit or Explicit Integration Stepsfor Hybrid Simulation[J]. Earthquake Engineering and Structural Dynamics,2007,36:2325-2343.
    [31] Wu B, Wang Q Y, Shing P B, et al. Equivalent Force Control Method forGeneralized Real-time Substructure Testing with Implicit Integration[J].Earthquake Engineering and Structural Dynamics,2007,36:1127-1149.
    [32] Wu B, Xu G, Shing P B. Equivalent Force Control Method for Real-timeTesting of Nonlinear Structures[J]. Journal of Earthquake Engineering,2011,15:143-164.
    [33] Chen C, Ricles J M. Analysis of Implicit HHT-α Integration Algorithm forReal-time Hybrid Simulation[J]. Earthquake Engineering and StructuralDynamics,2012,41(5):1021-1041.
    [34] Phillips B M, Spencer B F. Model-Based Feedforward-Feedback TrackingControl for Real-time Hybrid Simulation[J]. NSEL report series report No:NSEL-028, August2011.
    [35] Gao X. Development of a Robust Framework for Real-time Hybrid Simulation:from Dynamical System, Motion Control to Experimental Error Virification[D]West Lafayette: University of Purdue Thesis,2012.
    [36] Gawthrop P J, Wallace M I, Neild S A, et al. Robust Real-time SubstructuringTechniques for Under-damped Systems[J]. Structural Control and HealthMonitoring,2007,14:591-608.
    [37] Gawthrop P J, Wallace M I, Wagg D J. Bound-graph based Substructuring ofDynamical Systems[J]. Earthquake Engineering and Structural Dynamics,2005,34(6):687-703.
    [38]张涛.电液伺服加载系统的LQR控制及在实时子结构试验中的应用[D].哈尔滨:哈尔滨工业大学硕士学位论文,2008:13-25.
    [39]袁涌,熊世树,青木杉彦.基于速度控制型子结构实验的橡胶隔震支座性能研究[J].振动与冲击,2008,27(6):151-154,194.
    [40] Wagg D J, Stoten D P. Substructuring of Dynamical Systems via the AdaptiveMinimal Control Synthesis Algorithm[J]. Earthquake Engineering andStructural Dynamics,2001,30(6):865-877.
    [41] Drury D, Stoten D P, Wagg D J, et al. Advances in Numerical ExperimentalSubstructuring Techniques Using MCS Control[J].12th European Conferenceon Earthquake Engineering,2002, No:277.
    [42] Neild S A, Drury D, Stoten D P. An Improved Substructuring Control StrategyBased on the Adaptive Minimal Control Synthesis Control Algorithm[J].Proceedings of the Institution of Mechanical Engineers, Part I: Journal ofSystems and Control Engineering,2005,219(5):305-317.
    [43] Lim C N, Neild S A, Stoten D P, at al. Real-Time Dynamic SubstructureTesting via an Adaptive Control Strategy[C]. Proceedings of the FirstInternational Conference on Advances in Experimental Structural Engineering,Nagoya, Japan, July2005:393-400.
    [44] Stoten D P, Hyde R A. Adaptive Control of Dynamically SubstructuredSystems: the Single-input Single-output Case[J]. Proceedings of theInstitution of Mechanical Engineers, Part I: Journal of Systems and ControlEngineering,2006,220(2):63-79.
    [45] Stoten D P, Tu J Y, Li G. Synthesis and Control of Generalized DynamicallySubstructured Systems[J]. Proceedings of the Institution of MechanicalEngineers, Part I: Journal of Systems and Control Engineering,2009,223(3):371-392.
    [46] Neild S A, Yang L, Wagg D J. A Modified Model Reference Adaptive ControlApproach for Systems with Noise or Unmodelled Dynamics[J]. Proceedingsof the Institution of Mechanical Engineers, Part I: Journal of Systems andControl Engineering,2008,222(3):197-208.
    [47]邓丽霞.实时子结构实验的自适应控制方法[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007.
    [48] Liu Z, Liu G, Liu J. Neural adaptive sliding mode speed tracking control of a DCMotor[J]. Journal of Systems Engineering and Electronics,2004,15(3):304-308.
    [49] Xiao B, Hu Q, Zhang Y. Adaptive Sliding Mode Fault Tolerant AttitudeTracking Control for Flexible Spacecraft under Actuator Saturation[J]. IEEETransaction on Control Systems Technology,2012,20(6):1605-1612.
    [50] Wu P, Yang M. Integrated Guidance and Control Design for Missile withTerminal Impact Angle Constrain based on Sliding Mode Control[J]. Journalof Systems Engineering and Electronics,2010,21(4):623-628.
    [51] Zhang H, Chen S, Zhou M, et al. Fast Tool Servo Control for Diamond-Cutting Microstructured Optical Components[J]. Journal of Vacuum Science&Technology B: Microelectronics and Nanometer Structures,2009,27(3):1226-1229.
    [52] Yang J N, Wu J C, Agrawal A K. Sliding Mode Control for Nonlinear andHysteretic Structures[J]. Journal of Engineering Mechanics, ASCE,1995,121(12):1330-1339.
    [53]王向英,吴斌,王倩颖.实时子结构实验的滑动模态控制[J].工程力学,2007,24(6):174-179.
    [54] Zhao J, French C, Shield C, et al. Considerations for the Development of Real-time Dynamic Testing using Servo-hydraulic Actuation[J]. EarthquakeEngineering and Structural Dynamics.2003,32:1773-1794.
    [55] Williams D M, Williams M S, Blakeborough A. Numerical Modelling of a Servo-Hydraulic Testing System for Structures[J]. Journal of Engineering Mechanics,ASCE,2001,127(8):816-827.
    [56] Zhao J, Shield C, French C, et al. Nonlinear System Modelling and VelocityFeedback Compensation for Effective Force Testing[J]. Journal of EngineeringMechanics, ASCE,2005,131(3):244-253.
    [57]尹全林.实时子结构试验等效力控制方法中的零点问题[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009:12-28.
    [58] Nakata N. Effective Force Testing using a Robust Loop Shaping Controller[J].Earthquake Engineering and Structural Dynamics, DOI:10.1002/eqe.2207.
    [59] Horiuchi T, Inoue M, Konno T, et al. Real-time Hybrid Experimental System withActuator Delay Compensation and its Application to a Piping System with EnergyAbsorber[J]. Earthquake Engineering Structural Dynamics,1999,28:1121-1141.
    [60] Horiuchi T, Konno T. A New Method for Compensating Actuator Delay inReal-Time Hybrid Experiments[J]. Proceedings of the Royal Society ofLondon, Series A (Mathematical, Physical and Engineering Sciences),2001,359:1893-1909.
    [61] Wallace M I, Wagg D J, Neild S A. An Adaptive Polynomial based ForwardPrediction Algorithm for Multi-actuator Real-time Dynamic Substructuring[J].Proceedings of the Royal Society of London, Series A (Mathematical,Physical and Engineering Sciences),2005,2064(461):3807-3826.
    [62] Wallace M I, Sieber J, Neild S A, et al. Stability Analysis of Real-time DynamicSubstructuring using Delay Differential Equation Models[J]. EarthquakeEngineering and Structural Dynamics,2005,34(15):1817-1832.
    [63] Kyrychko Y N, Blyuss K B, Gonzalez-Buelga A. Real-time DynamicSubstructuring in a Coupled Oscillator-pendulum System[J]. Proceedings ofthe Royal Society of London, Series A (Mathematical, Physical andEngineering Sciences),2005,2068(462):1271-1294.
    [64]王倩颖,吴斌,欧进萍.考虑作动器时滞及其补偿的实时子结构实验稳定性分析[J].工程力学,2007,24(2):9-14.
    [65] Jung R Y, Shing P B, Stauffer E, et al. Performance of a Real-time PseudoDynamic Test System Considering Nonlinear Structural Response[J].Earthquake Engineering and Structural Dynamics,2007,36(12):1785-1809.
    [66] Carrion J E, Spencer B F. Model-based Strategies for Real-time HybridTesting[R]. NSEL Report Series Report No: NSEL-006, December2007.
    [67] Chen C, Ricles J M. Improving the Inverse Compensation Method for Real-time Hybrid Simulation through a Dual Compensation Scheme[J]. EarthquakeEngineering and Structural Dynamic,2009,28:1237-1255.
    [68] Chen C, Ricles J M. Tracking Error-based Servo-hydraulic Actuator AdaptiveCompensation for Real-time Hybrid Simulation[J]. Journal of StructuralEngineering,2010,136(4):423-440.
    [69] Chen C, Ricles J M, Sause R, et al. Experimental Evaluation of an AdaptiveInverse Compensation Technique for Real-time Simulation of a Large-scaleMagneto-rheological Fluid Damper[J]. Smart Materials and Structures,2010,19(2):1-12.
    [70] Chen C, Ricles J M. Analysis of Actuator Delay Compensation Methods forReal-time Testing[J]. Engineering Structures,2009,31:2643-2655.
    [71] Wu B, Shi P, Spencer B F. Real-time Hybrid Testing with Equivalent ForceControl Method Incorporating Kalman Filter[C]. Proceedings2ndEFASTWorkshop and4AESE Conference, Ispra, Italy, June2011.
    [72] Wu B, Wang Z, Bursi O. Nearly-perfect Compensation for Time Delay in Real-time Hybrid Simulation[C]. EACS2012-5thEuropean Conference on StructuralControl, Genoa, Italy, June2012. No:245.
    [73] Christenson R, Lin Y, Emmons A, et al. Large-scale Experimental Verificationof Semiactive Control through Real-time Hybrid Simulation[J]. Journal ofStructural Engineering,2008,134(4):522-534.
    [74] Darby AP, Williams M S, Blakeborough A. Stability and Delay Compensation forReal-time Substructure Testing[J]. Journal of Engineering Mechanics,2002,128(12):1276-1284.
    [75] Nguyen T, Dorka U E. Phase Lag Compensation in Real-time SubstructureTesting based on Online System Identification[J]. The14th World Conferenceon Earthquake Engineering, October12-172008, Beijing, China, No:0148.
    [76] Ahmadizadeh M, Mosqueda G, Reinhorn A M. Compensation of ActuatorDelay and Dynamics for Real-time Hybrid Structural Simulation[J].Earthquake Engineering and Structural Dynamics,2008,37:21-42.
    [77]王贞,吴斌.基于最小二乘法的时滞实时在线估计方法[J].振动工程学报,2009,22(6):625-631.
    [78] Lu X L, Wu X H. Study on a New Shear Wall System with Shaking TableTest and Finite Element Analysis[J]. Earthquake Engineering andStructural Dynamics,2000,29:1425-1440.
    [79] Horiuchi T, Nakagawa M, Kasai H. Fundamental Study on Real-time HybridExperiment using Shaking Table[J]. Prepr. of Jpn. Soc. Mech. Eng.,1994,940-26I:433-436.(in Japanese)
    [80] Suwa T, Igarashi A, Iemura H. Basic Algorithm of the Substructure Shaking-table Test Method[J]. Prepr.51st technical conf. Jpn. Soc. Civil. Eng.,1996,9:682-683.(in Japanese)
    [81] Horiuchi T, Inoue M, Konno T. Development of a Real-time HybridExperimental System using a Shaking Table[C]. Proceeding of12WorldConference on Earthquake Engineering,2000, No:0843.
    [82] Neild S A, Stoten D P, Drury D, et al. Control Issues relating to Real-timeSubstructuring Experiments using a Shaking Table[J]. EarthquakeEngineering and Structural Dynamics,2005,34:1171-1192.
    [83] Sivaselvan M V, Reinhorn A M, Shao X, et al. Dynamic Force Control withHydraulic Actuators using added Compliance and DisplacementCompensation[J]. Earthquake Engineering and Structural Dynamics,2008,37:1785-1800.
    [84] Lee S, Park E C, Min K, et al. Experimental Implementation of a BuildingStructure with a Tuned Liquid Column Damper based on the Real-TimeHybrid Testing Method[J]. Journal of Mechanical Science and Technology,2007,21:885-890.
    [85] Lee S, Park E C, Min K, et al. Real-time Substructuring Technique for theShaking Table Test of Upper Substructures[J]. Engineering Structures,2007,29:2219-2232.
    [86] Dorka U E. Real-time Hybrid Simulation using Shaking Tabels[R].risedr.tongji.edu.cn/4th_Kwang...4/Uwe_E_Dorka.pdf
    [87] Igarashi A, Kikuchi Y, Iemura H. Real-time Hybrid Experimental SimulationSystem using Coupled Control of Shaking Table and Hydraulic Actuator[C].The14thWorld Conference on Earthquake Engineering, October12-172008,Beijing, China, No:12-03-0035.
    [88] Nakata N. Acceleration Trajectory Tracking Control for Earthquake Simulators[J].Engineering Structures,2010,32(8):2229-2236.
    [89] Nakata N. A Multi-purpose Earthquake Simulation and a Flexible DevelopmentProblem for Actuator Controller Design[J]. Journal of Vibration and Control,2011,18(10):1552-1560.
    [90] Nakata N, Stehman M. Substructure Shake Table Test Method using a ControlledMass: Formulation and Numerical Simulation[J]. Earthquake Engineering andStructural Dynamics,2011,41(14):1977-1988.
    [91]汪强,王进廷,金峰,等.基于虚拟振动台的实时耦联动力仿真试验[J].地震工程与工程振动,2009,29(6):25-32.
    [92]汪强,王进廷,金峰,等.基于振动台的RTDHT试验及其在双层刚架结构上的应用[J].工程力学,2010,27(10):57-64.
    [93]汪强,王进廷,金峰,等.结构-地基动力相互作用的实时耦联动力试验[J].工程力学,2011,28(2):94-100,185.
    [94]王进廷,汪强,迟福东.振动台实时耦联动力试验系统构建解决方案[J].地震工程与工程振动,2010,30(2):16-23.
    [95]迟福东,王进廷,金峰,等.土-结构-流体动力相互作用的实时耦联动力试验[J].岩土力学,2010,31(12):3765-2770.
    [96]迟福东,王进廷,金峰.实时耦联动力试验的时滞稳定性分析[J].工程力学,2010,9:12-16.
    [97]迟福东,王进廷,汪强,等.考虑补偿的多自由度实时耦联动力试验时滞稳定性分析[J].工程力学,2011,28(4):200-207.
    [98] Chi F D, Wang J T, Jin F. Delay-dependent Stability and added Damping ofSDOF Real-time Dynamic Hybrid Testing[J]. Earthquake Engineering andEngineering Vibration,2010,9(3):425-438.
    [99]李振宝,唐贞云,纪金豹.基于多振动台的土-结相互作用动力子结构试验方法研究[J].结构工程师,2011,27(S1):76-81.
    [100]李振宝,李晓亮,唐贞云,等.基于振动台的动力子结构试验界面反力获取方法[J].地震工程与工程振动,2011,31(3):65-70.
    [101]周大兴,闫维明,陈彦红,等.神经网络在振动台子结构试验中的应用[J].振动与冲击,2011,30(12):14-18.
    [102]孟凡涛,赵建峰,于广明.实时子结构混合试验中的数值积分方法对比分析[J].地震工程与工程振动,2011,31(5):60-67.
    [103]王向英.子结构地震模拟振动台混合试验方法研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:94-107.
    [104]王向英,田石柱.子结构地震模拟振动台混合试验原理与实现[J].地震工程与工程振动,2009,29(4):46-52.
    [105]王向英,田石柱,张洪涛,等.位移控制的子结构地震模拟振动台混合试验方法[J].世界地震工程,2009,25(2):30-35.
    [106]杨现东.振动台子结构试验的数值仿真分析[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007.
    [107]Chen C, Ricles J M. Stability Analysis of Explicit Integration Algorithms withActuator Delay in Real-time Hybrid Testing[J]. Earthquake Engineering andStructural Dynamics,2008,37:597-613.
    [108]Bursi O S, Gonzalez-Buelga A, Vulcan L, et al. Novel Coupling Rosenbrock-based Algorithms for Real-time Dynamic Substructure Testing[J]. EarthquakeEngineering and Structural Dynamics,2008,37(3):339-360.
    [109]Chang S Y. Error Propagation in Implicit Pseudodynamic Testing of NonlinearSystems[J]. Journal of Engineering Mechanics, ASCE,2005,131(12):1257-1269.
    [110]李妍.防屈曲支撑的抗震性能与子结构试验方法[D].哈尔滨:哈尔滨工业大学博士学位论文,2007:82-124.
    [111]Utkin V I. Sliding Mode Control Design Principles and Applications toElectric Drives[J]. IEEE Transactions on Industrial Electronics,1993,40(1):23-35.
    [112]Edwards C, Spurgeon S K. Sliding Mode Control Theory and Applications[M].Taylor&Francis,1998:37,68-72.
    [113]Slotine J J, Li W. Applied Nonlinear Control[M]. Pearson Education,2004:276-303.
    [114]Dorf R C, Bishop R H. Modern Control Systems[M]. Eleventh Edition.Pearson Education,2008:791-804.
    [115]Mahieddine M S, Chrifi-Alaoui L, Van A V, et al. Sliding Mode Control ofNonlinear SISO Systems with both Matched and Unmatched Disturbances[J].International Journal of Sciences and Techniques of AutomaticControl&Computer Engineering,2008,2(1):350-367.
    [116]高为炳.变结构控制原理与设计方法[M].北京:科学出版社,1995:122-124.
    [117]Lee K J, Kim H M, Kim J S. Design of a Chattering-free Sliding Mode Controllerwith a Friction Compensator for Motion Control of a Ball-screw System[J].Proceedings of the Institution of Mechanical Engineers, Part: Journal of Systemsand Control Engineering,2004,218:369-380.
    [118]欧进萍.结构振动控制—主动、半主动和智能控制[M].北京:科学出版社,2003:66-67.
    [119]Wu B, Wang Q, Ou J. Sliding Mode Control of Structural Vibration withUnmatched Uncertainty[C]. Proceedings of the International Symposium onNetwork and Center-based Research for Smart Structures Technologies andEarthquake Engineering, Osaka, Japan,2004.
    [120]吴斌,尹全林,张涛.实时子结构试验中液压伺服加载系统数值模型[J].哈尔滨工业大学学报(自然科学版),2002,42(12):1855-1859.
    [121]Astrom K J, Hagglund T. Revisiting the Ziegler-Nichols Step ResponseMethod for PID Control[J]. Journal of Process Control,2004,14:635-650.
    [122]王倩颖.实时子结构试验方法及其应用[D].哈尔滨:哈尔滨工业大学博士学位论文,2007:20-34,88-93.
    [123]Kim S B, Spencer B F, Yun C B. Frequency Domain Identification of Multi-input, Multi-output Systems Considering Physical Relationships betweenMeasured Variables[J]. Journal of Engineering Mechanics, ASCE,2005,131(5):461-472.
    [124]Spurgeon S K, Davies R. A Nonlinear Control Strategy for Robust SlidingMode Performance in the Presence of Unmatched Uncertainty[J].International Journal of Control,1993,57(5):1107-1123.
    [125]Davies R, Spurgeon S K. Robust Tracking of Uncertain Systems via aQuadratic Stability Condition[C]. Proceedings of the12thIFAC WorldCongress,10:43-46.
    [126]Wang Y, Feng Y, Yu X, et al. Terminal Sliding Mode Control of MIMO LinearSystems with Unmatched Uncertainties[C]. Industrial Electronics Society,2003,The29thAnnual Conference of the IEEE,2-6November2003,3:1146-1151.
    [127]Zhao F, Liu Y, Yao X, et al. Integral Sliding Mode Control of Time-delay Systemswith Mismatching Uncertainties[J]. Journal of Systems Engineering andElectronics,2010,21(2):273-280.
    [128]Yu S, Fu P, Qiang W. Discrete Quasi-sliding Mode Tracking Controller with TimeDelay Technique[J]. Journal of Systems Engineering and Electronics,1999,10(3):44-49.
    [129]Utkin V I. Sliding Modes in Control and Optimization[M]. Springer-Verlag,1992:44-50.
    [130]Burton J A, Zinober A S. Continuous Approximation of Variable StructureControl[J]. International Journal of Systems Science,1986,17(6):875-885.
    [131]Wallace M I. Real-time Dynamic Substructuring for Mechanical andAerospace Applications; Control Techniques and Experimental Methods[D].Bristol: University of Bristol Thesis,2006.
    [132]ControlDesk Experiment Guide for Release6.3[CP].2008.
    [133]Chang S Y. Explicit Pseudodynamic Algorithm with UnconditionalStability[J]. Journal of Engineering Mechanics, ASCE,2002,128(9):935-947.
    [134]王贞,吴斌.隐式动力子结构试验的稳定性分析[J].湖南大学学报(自然科学版),2009,36(10):23-28.
    [135]Chopra A K. Dynamics of Structures Theory and Applications to EarthquakeEngineering[M]. Second Edition. Pearson Education,2001:39-57.
    [136]Newmark N M. A Method of Computation for Structural Dynamics[J].Journal of the Engineering Mechanics Division, ASCE,1959,85:67-94.
    [137]Stoten D P. Fusion of Kinetic Data using Composite Filters[J].Proceedings ofthe Institution of Mechanical Engineers, Part I: Journal of Systems andControl Engineering,2001,483(215):483-497.
    [138]Wang Q, Wang J T, Chi F D, et al. Real-time Dynamic Hybrid Testing forSoil-structure Interaction Analysis[C]. Proceedings of the Third InternationalConference on Advances in Experimental Structural Engineering, SanFransico,2009, No:59
    [139]Tamura Y, Fujii K, Ohtsuki T, et al. Effectiveness of Tuned Liquid Dampersunder Wind Exicitation[J]. Engineering Structures,1995,17(9):609-621.
    [140]Siddique M R, Hamed M S, Damatty A A. A Nonlinear Numerical Model forSloshing Motion in Tuned Liquid Dampers[J]. International Journal forNumerical Methods in Heat&Fluid Flow,1991,15(3):306-324.
    [141]奥斯特隆姆K J,威顿马克B.计算机控制系统-原理与设计[M].周兆英,等译.第三版.北京:电子工业出版社,2001:222-225.
    [142]潘景龙.单向模拟地震振动台设计中的若干问题讨论[J].哈尔滨建筑工程学院学报,1990,23(2):90-99.
    [143]邱法维.电液伺服地震模拟振动台模拟控制系统理论分析[J].哈尔滨建筑工程学院学报,1989,22(3):100-111.
    [144]MTS. Model793.00System Software[CP].2001:151-195.
    [145]Soong T T, Dargush G F.结构工程中的被动消能系统[M].董平,译.北京:科学出版社,2005:212-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700