用户名: 密码: 验证码:
重力循环供暖末端设备及运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
降低以供暖为主的建筑能耗,利用工业余热和可再生能源等低温能源供暖,实现能源的梯级利用是目前建筑能源领域的重点课题。我国的低温能源极其丰富,能够提供大量的可用于供暖的低温热水。但是,目前针对低温供暖末端设备的研究相对较少,产品种类单一且具有一定的适用局限性。重力循环供暖末端设备以毛细管网为换热芯,可使用30℃的热水进行采暖,从而对其他类型供暖末端设备难以使用的低品位热源加以利用。设备从概念提出到应用于实际工程,有很多问题需要解决,例如,该设备中的毛细管尺寸介于常规管与微细管之间,其阻力特征的基本规律描述尚不清楚;设备换热时,存在着对流换热和辐射换热,特别在增加蓄热相变板而进行蓄放热时,还同时存在着导热和相变换热,换热机理非常复杂;另外,设备的整体换热及流动阻力等性能参数也均是空白。
     本文首先对设备运行特性进行研究。通过毛细管单管层流向湍流转变的临界雷诺数和阻力特性的实验,得到了其从层流向湍流转捩的临界雷诺数,表明其流动阻力特性与典型的常规管相吻合。进一步,对试制样机的阻力特性、散热特性、供冷特性和传热规律等进行实验研究。阻力实验表明设备阻力较大,设备设计中毛细管网宽度不应超过1m;供冷特性实验得到了样机利用温度较高的冷冻水供冷时的供冷能力数据,为设备的进一步优化研究提供了基础;传热规律的分析结果表明样机运行时内部温度场和进、出风口处的温度场在宽度方向上具有一致性,可依据此特点简化计算模型。
     在设备结构参数优化研究中,本文通过数值模拟的方法得到了设备内部温度分布的特性和散热量,分析并优化了设备外罩高度、厚度、进风口尺寸、出风口尺寸和毛细管网间距等结构参数,并将各参数对散热量的影响近似拟合成关于Ra数的关系式。为验证优化结果,将优化设备安装在实际工程中,并对应用现场的散热效果进行实验测试。测试结果表明设备结构合理,应用效果良好,能够满足房间耗热量需求。在此基础上,根据设备运行特点和供暖效果提出了标准工况和经济性指标。
     在设备的供暖和供冷特性研究以及工程应用中发现,该设备适合与热泵热源联合使用,如果设备增加蓄热功能,能够在间歇运行的建筑内充分利用电网的峰谷特性,对电网起到削峰填谷的作用。为开发并研究设备的蓄热特性,试制了蓄热材料并将其与设备结合。蓄热材料以有机材料癸酸和高聚乙烯为原料,具有相变温度低、蓄热时不流动等特点,并且均匀性和稳定性良好,相变性能明显改善。本文以铝合金板为框架材料,与上述材料结合形成相变板,并提出了相变板与设备的结合方式。
     在对设备蓄热特性的研究中发现,带有相变板的重力循环供暖末端设备蓄放热机理及特性非常复杂,对流换热、辐射换热、导热和相变换热同时发生。为研究并优化设备的蓄热性能,本文依据设备运行特点建立数学模型,通过程序计算得到设备蓄热时的运行特性,并以蓄热时间为限制因素优化与设备结合的相变板厚度。
     为了研究设备蓄热功能的地区适用性,本文通过对数学模型的求解,分别得到夏热冬冷地区和寒冷地区的设备运行特点。研究结果表明设备的蓄热功能应用在夏热冬冷地区更为适合,基于以上结果本文提出了设备在该地区的运行方案及经济性分析。
     重力循环供暖末端设备可采用低温热水供暖、高温冷水供冷,并具有蓄热的能力。该设备的研发为低温末端的应用提供了一种新的选择,拓展了低温热源用于供暖的空间。本文所做的工作,为该新型低温供暖末端设备的进一步研究和应用提供了理论和实践基础,将促进该设备更快地走向工程应用。
Reducing energy comsumption from building heating, utilizing industrial wasteheat or renewable energy, and therefore realizing the cascade utilization of energy areseveral major important research subjects in current building energy field. In China, alarge amount of low temperature hot water which is produced from low temperatureresources has a great potential to be reused for building heating. However, current studyon low temperature heating devices is relatively rare, and the products are limited inapplication. The newly developed gravity-powered heating terminal device consists of aseries of capillary tubes in which the running water for heating is as low as30℃, so itcould fully utilize the low-grade heat resoureces which are unusable by other heatingterminal devices. Meanwhile, there are so many subjects should be studied and solvedfor this device from theory to application. For instance, the size of capillary tube isbetween conventional and micro tubes, of which resistance characteristic is unclear. Inadditon, the mechanism of heat transfer is extremly complex especially when thestorage effect has to be considered when the phase change material is added. Lastly, theperformance parameters such as total heat transfer and flow resistance for the wholedevice set are unknown.
     This thesis studies several operating characteristics of the device firstly. Thecritical Reynolds number in the capillary tube indicating the transition from laminarflow to turbulent flow is obtained by experiment and the flow resistance characteristicof capillary single tube is comparable with typical normal tube. Further, a series ofexperiments on the resistance, heat dissipation, cooling characteristics and heat transferlaw for sample device were conducted. The resistance experiment shows that the devicehas higher resistance, so the width of capillary network should not be more than1m; thecooling characteristic experiment obtains the cooling data when the sample device coolsusing high temperature chilled water, which provides theoretical basis for furtheroptimization; the analysis of heat transfer law shows that the internal temperature fieldand air inlet and outlet have consistency in the width direction during the sample devicerunning, and this characteristic could help to simplify computation model.
     The characteristics of internal temperature distribution within the device and heatdissipating capacity are obtained through the method of numerical simulation in theparameter optimization research for device structure. Also, this thesis proposes theoptimal parameters such as device enclosure height, enclosure width, inlet size, outletsize, and distance between neighboring capillary tubes, and fits the relations aboutRayleigh number based on these parameters for heat dissipating capacity. Based on theoptimization of structure parameters, an optimal device is designed and applied in the projects to testify the optimization results. Test results show that the improved devicehas reasonable structure, effctive application, and could satisfy the room heatcomsumption. Based on the device operation characterics and heating effect, thestandard condition and ecnomical index are proposed.
     During the research on device heating and cooling characteristic and application, itindicates that this device is suitable to use by combing with heat pumps. And if storageequipment is added, the device could store heat at night when the power demand is lowand could release heat during daytime when the power demand is high. In this way, thisdevice could balance the power demands, hence reduce cost. This study uses capric acidand high density polyethylene as material, which has the characteristics such as lowerphase change temperature and immobilization during heat storaging, and it has gooduniformity and stability. To integrate the phase change material to gravity-poweredheating terminal device, aluminum alloy plates are used as the frame, and a proto typeof phase change board is fabricated and filled with the device.
     This thesis studies the heat storage characteristic of the device. The heat storagingand releasing mechanism and characteristics of the gravity-powered heating terminaldevice with phase change plate are extremly complex. Convective heat transfer,radiation, heat conduction and phase change heat transfer occur simultaneously. In orderto study and optimize the device heat storage characteristic, this work obtains theoperation characteristics when the device is storaging heat through mathematicalmodeling and procedure, and optimizes the thickness of phase change plate with theconstraint of heat storage time.
     In order to study region applicability of the heat storage effect, this thesis studiesthe operating characteristics in hot summer and cold winter regions as well as coldregions through mathematical modeling. Results show that this device is more suitablein hot summer and cold winter regions, and also this study obtains the operation schemeand economical analysis results for this kind of region.
     Gravity-powered heating terminal device could heat with hot water of lowtemperature and cool with cold water of high temperature, and is capble of storing heat.The development of this device offers a new choice for the application of lowtemperature terminal, and expands the space of the use of low temperature heat sourcefor heating. The works in this thesis provide both theoretical and practical basis for thefurther research and application of new low temperature heating terminal device, andpromote the engineering application of this device.
引文
[1]张振国.我国地热产业化发展与资源可持续利用[C].全国地热产业可持续发展学术研讨会论文集.2005:3-5.
    [2]林丽,郑秀华,詹美萍.地热能源利用现状及发展前景[J].资源与产业,2006,8(3):20-23.
    [3]郑晓菲.高地热利用率温室供热系统及能源配置研究[D].天津:天津大学硕士学位论文,2007:4-6.
    [4]于凤菊.低温地热能的利用研究[D].北京:北京工业大学硕士论文,2003:3-5.
    [5]何梓年,朱敦智.太阳能供热采暖应用技术手册[M].北京:化学工业出版社,2009:13-15.
    [6]戎向阳,高庆龙,闵晓丹.长江上游江水源热泵系统取水设计温度取值研究[J].暖通空调,2011,40(3):108-111.
    [7]陈晓.地表水源热泵系统的运行特性与运行优化研究[D].长沙:湖南大学博士学位论文,2006:12-13.
    [8] Zhuang Z Y,Zhang C H,Wang H Y,et al. Parallel Operation CharacteristicsAnalysis of Sewage Source Heat Pump Units in Winter [J]. Transaction of TianjinUniversity,2010,16(6):461-466.
    [9]孙丽颖,姜益强,姚杨.我国污水资源热能利用潜力分析[J].给水排水,2010,36(7):210-212.
    [10]周耘,王康,陈思明.工业余热利用现状及技术展望[J].科技情报开发与经济,2010,20(23):162-164.
    [11]王建军,蔡九菊,陈春霞.我国钢铁工业余热余能调研报告[J].工业加热.2007,36(2):1-3.
    [12]国德防,祝建军.工业余(废)热在水源热泵中的应用[J].制冷与空调,2008,8(6):140-145.
    [13]赵加宁.低温热水采暖末端装置[M].北京:中国建筑工业出版社,2011:1-2.
    [14]Gerd H, Christoph K, Bjarne W O. Computer Simulation of HydronicHeating/Cooling System with Embedded Pipes [J]. Ashrae Transaction,2000,106(1):702-710.
    [15]狄文静.毛细管供暖饰板材开发与实验研究[D].哈尔滨:哈尔滨工业大学硕士论文,2008:4-5.
    [16]屈东海.热空气辐射供暖[M].北京:建筑工程出版社,1959:7-18.
    [17]Bjarne W O. Radiant Floor Heating in Theory and Practice [J]. ASHRAE Journal,2002,44(7):19-24.
    [18]Oguz B,Suat C. Unsteady Thermal Performance Analysis of a Room with Serialand Parallel Duct Radiant floor Heating System Using Hot Airflow [J]. Energy andBuildings,2004,36(4):579-586.
    [19]Sattari S,Farhanieh B. A Parametric Study on Radiant Floor Heating SystemPerformance [J]. Renewable Energy,2006,31(11):1617-1626.
    [20]Jonn A M,Sture H. Flow Patterns and Thermal Comfort in a Room with PanelFloor and Wall Heating [J]. Energy and Buildings,2008,40(11):524-536.
    [21]Seo J,Jeon J,Lee J H. Thermal Performance Analysis According to WoodFlooring Structure for Energy Conservation in Radiant Floor Heating Systems [J].Energy and Buildings,2011,43(8):2039-2042.
    [22]Andreas K A. Investigation of Thermal Performance of A Passive Solar Buildingwith Floor Radiant Heating [J]. Solar Energy,1997,61(5):337-345.
    [23]Choa S H,Zaheer U M. An Experimental Study of Multiple Parameters SwitchingControl for Radiant Floor Heating Systems [J]. Energy,1999,24(5):433-444.
    [24]Francesco C,Fabio B,Bjarne W O. Floor Heating and Cooling Combined withDisplacement Ventilation: Possibilities and Limitations [J]. Energy and Buildings,2010,42(4):2338-2352.
    [25]Abdelaziz L. Development of a Radiant Heating and Cooling Model for BuildingEnergy Simulation Software [J]. Building and Environment,2004,39(4):421-431.
    [26]王荣光,沈天行,郑维民.太阳能、地热利用与地板辐射采暖[J].建筑节能,2002,37(5):54-61.
    [27]刘鹏,沈晓真,连瑞瑞.低温热水地板辐射采暖技术应用现状[J].低温建筑技术,2010,13(6):114-115.
    [28]Wilkins C K,Kosonen R. Cool Ceiling System: a European Air-ConditioningAlternative [J]. ASHRAE Journal1992,34(8):41-45.
    [29]Jae W J,Stanley A. Mumma. Practical Cooling Capacity Estimation Model for aSuspended Metal Ceiling Radiant Cooling Panel [J]. Building and Environment,2007,42(9):3176-3185.
    [30]Tiberiu C,Joseph V, Frederic K. Evaluation of Thermal Comfort Using CombinedCFD and Experimentation Study in a Test Room Equipped with a Cooling Ceiling[J]. Building and Environment,2009,44(8):1740-1750.
    [31]Miriel J,Serres L,Trombe A. Radiant Ceiling Panel Heating–Cooling Systems:Experimental and Simulated Study of the Performances, Thermal Comfort andEnergy Consumptions [J]. Applied Thermal Engineering,2002,22(16):1861-1873.
    [32]Takehito I,Toshiaki O,Kazuaki B. Thermal Comfort and Energy Consumption ofthe Radiant Ceiling Panel System, Comparison with the Conventional All-AirSystem [J]. Energy and Buildings,1999,30(2):167-175.
    [33]Mostafa R,Amir S. Experimental Study of Radiation and Free Convection in anEnclosure with a Radiant Ceiling Heating System [J]. Energy and Building,2010,44(11):2077-2082.
    [34]Francesco C,Stefano P. C,Marco F. Experimental Evaluation of Heat TransferCoefficients between Radiant Ceiling and Room [J]. Energy and Buildings,2009,41(6):622-628.
    [35]Shigeru O,Hisataka K,Hiromasa Y. A Simplified Calculation Method forEstimating Heat flux from Ceiling Radiant Panels [J]. Energy and Buildings,2010,42(9):29-33.
    [36]陈露.顶板辐射与置换通风复合供冷系统热环境模拟[D].长沙市:中南大学硕士学位论文,2010:8-9.
    [37]邵春廷.毛细管供热辐射板热工性能及设计选择方法研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009:6-12.
    [38]刘若武.风机盘管在采暖改造工程中的应用[J].建筑热能通风空调,2001,(3):65-67.
    [39]邵进良.供暖型风机盘管在供暖分户计量系统中应用的探讨[J].暖通空调,2003,33(1):114-115.
    [40]秦涛,张旭光.风机盘管在供暖系统中的应用[J].洁净与空调技术,2007,(3):57-59.
    [41]李刚,张磊,隋军.采暖型风机盘管的开发及应用[J].建筑热能通风空调,2007,126(3):65-67.
    [42]吴小舟.可利用低温热源的供暖型风机盘管的性能研究及改良实验[D].哈尔滨:哈尔滨工业大学硕士学位论文,2008:3-10.
    [43]Wu X Z,Zhao J N. Experimental Study of Effect of Air Duct Structure on HeatDissipation of Heating-Only Fan Coil [J]. Journal of Hunan University (NaturalSciences Edition),2009,36(5):102-105.
    [44]Wu X Z,Zhao J N. Experiment Study on Heat Dissipation Performance ofHeating-Only Fan Coil [C]. The6th International Symposium on Heating,Ventilating and Air Conditioning,2009:724-731.
    [45]吴小舟,赵加宁,魏建民.供暖型风机盘管散热量计算方法的探讨[J].暖通空调,2010,40(7):63-66.
    [46]胡必俊.供暖散热器的选用[M].北京:机械工业出版社,2008:27-138.
    [47]Zhang C L,Ding G L. Modified General Equation for the Design of CapillaryTubes [J]. ASME Journal of Fluids Engineering,2001,123(4):914-919.
    [48]阿克塞勒·雅恩,郭海新.重力循环式空调[J].暖通空调,1998,28(2):38-41.
    [49]Nestor F D,Jean L,Philippe A. Experimental Study and Modeling of CoolingCeiling Systems Using Steady-State Analysis [J]. International Journal ofRefrigeration,2010,33(4):793-805.
    [50]Nestor F D,Cristian C. Testing and Thermal Modeling of Radiant Panels Systemsas Commissioning Tool [J]. Energy Conversion and Management,2010,51(12):2663-2677.
    [51]Miriel J.,Serres L A. Trombe. Radiant Ceiling Panel Heating-Cooling Systems:Experimental and Simulated Study of the Performances, Thermal Comfort andEnergy Consumptions [J]. Thermal Engineering,2002,22(16):1861-1873
    [52]杜珂,施秀琴,史勇.某别墅平面式空调系统设计[J].工程建设与设计,2006,(5):5-8
    [53]金梧凤,余铭锡,金光禹.毛细管网系统供冷性能的实验研究[J].暖通空调.2010,40(9):102-106.
    [54]孙娟娟.毛细管平面辐射空调动态仿真及控制系统研究[D].济南:山东建筑大学硕士学位论文,2011:64-65.
    [55]刁建美.毛细管辐射式空调系统的CFD研究[D].沈阳:辽宁工程技术大学硕士学位论文,2009:64-66.
    [56]高志宏.毛细管辐射供冷性能实验研究[J].太阳能学报,2011,32(1):101-106.
    [57]蒋露.毛细管平面空调系统室内热环境数值模拟[D].北京:华北电力大学硕士学位论文,2007:76-78.
    [58]傅允准,蔡颖玲,陈帅.毛细管地板辐射采暖特性试验研究[J].流体机械,2009,37(8):54-57.
    [59]傅允准,蔡颖玲,李晶.毛细管辐射采暖热源方案技术经济分析[J].流体机械,2010,38(1):81-85.
    [60]邵春廷,狄文静,赵加宁.毛细管供热饰板材热工性能及其设计选择方法研究[J].暖通空调,2009,39(11):92-95.
    [61]Yuh C,Wu J C,Tang H. Friction Characteristics of Water, R-134a, and Air inSmall Tubes [J]. Microscale Thermophysical Engineering,2003,40(7):335-348.
    [62]郝鹏飞,何枫,朱克勤.微管道内湍流转捩的实验研究[J].工程力学,2006,23(6):30-34.
    [63]Wang B X,Peng X F,Experimental Investigation on Liquid Forced-ConvectionHeat Transfer Through Micro-channels [J]. International Journal of Heat and MassTransfer,1994,37(1):73-82.
    [64]Peng X F,Peterson G P. Convective Heat Transfer and Flow Friction for WaterFlow in Microchannels Structures [J]. International Journal of Heat and MassTransfer,1996,39(12):2599-2608.
    [65]Peng X F,Peterson G P. The Effect of Thermofluid and Geometrical Parameters onConvection of Liquids through Rectangular Microchannels [J]. International Journalof Heat and Mass Transfer,1995,38(4):755-758.
    [66]Mala G M,Li D. Flow Characteristic of Water in Microtubes [J]. InternationalJournal of Heat and Fluid Flow,1999,20(2):142-148.
    [67]Guo Z Y,Li Z X. Size Effects on Microscale Single-Phase Flow and Heat Transfer[J]. International Journal of Heat and Mass Transfer,2003,46(1):149-159.
    [68]Li Z X,Du D X,Guo Z Y. Experimental Study on Flow Characteristics of Liquidin Circular Tubes [C]. Proceedings of the International Conference on Heat transferand Transport Phenomena in Microscale,Banff,Canada,2000:162-167.
    [69]Celata G P,Cumo M, Guglielmi M. Experimental Investigation of Hydraulic andSingle Phase Heat Transfer in0.130mm Capillary Tube [J]. MicroscaleThermophysical Engineering,2002,6(2):85-97.
    [70]Xu B,Ooi K T,Ong N T. Experimental Investigation of Flow Friction for LiquidFlow in Microchannels [J]. International Comment Heat Mass Transfer,2000,27(8):1165-1176.
    [71]Judy J,Maynes D. Characterization of Frictional Pressure Drop for Liquid Flowthrough Microchannels [J]. International Journal of Heat and Fluid Flow,2002,45(17):3477-3489.
    [72]Liu D,Garimella S V. Investigation of Liquid Flow in Microchannels [C]. The8thAIAA/ASME Joint Thermophysics and Heat Transfer Conference. Louis,Missouri,2002:24-26.
    [73]Zhang Y P,Zhou G. B, Lin K P. Application of Latent Heat Thermal EnergyStorage in Buildings: State-of-The-Art and Outlook [J]. Building andEnvironment,2007,42(6):2197-2209.
    [74]Py X,Olives R,Mauran S. Paraffin Porous-Graphite-Matrix Composite as a Highand Constant Power Thermal Storage Material [J]. International Journal of Heat andMass Transfer,2001,44(14):2727-2737.
    [75]Mills A,Farid M,Selman J R,Hallaj S. Thermal Conductivity Enhancement ofPhase Change Materials Using a Graphite Matrix [J]. Applied ThermalEngineering,2006,26(14):1652-1661.
    [76]肖敏,龚克成.良导热、形状保持相变蓄热材料的制备及性能[J].太阳能学报,2001,22(4):427-430.
    [77]Xiao M,Feng B,Gong K. Preparation and Performance of Shape StabilizedPhase Change Thermal Storage Materials with High Thermal Conductivity [J].Energy Conversion and Management,2002,43(1):103-108.
    [78]Sari A,Karaipekli A. Thermal Conductivity and Latent Heat Thermal EnergyStorage Characteristics of Paraffin/Expanded Graphite Composite as Phase ChangeMaterial [J]. Applied Thermal Engineering,2007,27(8):1271-1277
    [79]Zhang Y P,Ding J H,Wang X. Influence of Additives on Thermal Conductivityof Shape-Stabilized Phase Change Material [J]. Solar Energy Materials&SolarCells,2006,90(12):1692-1702.
    [80]Inaba H,Tu P. Evaluation of Thermophysical Characteristics on Shape-StabilizedParaffin as a Solid-Liquid Phase Change Material [J]. Heat and Mass Transfer,1997,32(4):307-312.
    [81]Ye H,Ge X S. Preparation of Polyethylene-Paraffin Compound as a Form-StableSolid-Liquid Phase Change Material [J]. Solar Energy Materials&Solar Cells,2000,64(1):37-44.
    [82]叶宏,葛新石.一种定形相变材料的结构和理化分析[J].太阳能学报,2000,21(4):417-424.
    [83]闫全英,王威.低温定形相变材料在相变墙体中应用的可行性研究[J].新型建筑材料,2005,2:58-59.
    [84]闫全英,王威.低温相变石蜡储热性能的实验研究[J].太阳能学报,2006,27(8):805-810.
    [85]秦鹏华,杨睿,张寅平.定形相变材料的热性能[J].清华大学学报,2003,43(6):833-835.
    [86]Zhou G. B,Zhang Y P,Wang X. An Assessment of Mixed Type PCM-Gypsumand Shape-Stabilized PCM Plates in a Building for Passive Solar Heating [J]. SolarEnergy,2007,81(11):1351-1360.
    [87]Lin K P,Zhang Y P,Xu X. Experimental Study of Under-floor Electric HeatingSystem with Shape-Stabilized PCM Plates [J]. Energy and Buildings,2005,37(9):215-220.
    [88]Nagasakat Y,Nagashima A. Absolute Measurement of The Thermal Conductivityof Electrically Conducting Liquids by the Transient Hot-Wire Method [J].Measurement Science and Technology,1981,14(12):1435-1440.
    [89]Liang X G. The Boundary Induced Error on the Measurement of ThermalConductivity by Transient Hot Wire Method [J]. Measurement Science andTechnology,1995,6(5):467-471.
    [90]Frusteri F,Leonardi V,Vasta S. Thermal Conductivity Measurement of a PCMBased Storage System Containing Carbon fibers [J]. Applied ThermalEngineering,2005,25(9):1623-1633.
    [91]Zhang Y P,Jiang Y. A Simple Method, the T–History Method, of Determining theHeat of Fusion, Specific Heat and Thermal Conductivity of Phase-Change Materials[J]. Measurement Science and Technology,1999,10(3):201-205.
    [92]宋又王.用奇异摄动法解圆柱体的凝固问题[J].工程热物理学报,1981,2(4):359-365.
    [93]Hong H K,Yong S. Accuracy Improvement of T-History Method for MeasuringHeat of Fusion of Various Materials [J]. International Journal of Refrigeration,2004,27(4):360-366.
    [94]Jong H P,Kim J J,Kang C D. A study of Accurate Latent Heat Measurement fora PCM with a Low Melting Temperature Using T-History Method [J]. InternationalJournal of Refrigeration,2006,29(7):1225-1232.
    [95]Marin J M,Zalba B. Cabeza L F. Determination of Enthalpy–Temperature Curvesof Phase Change Materials with the Temperature-History Method: Improvement toTemperature Dependent Properties [J]. Measurement Science and Technology,2003,14(2):184-189.
    [96]张寅平,胡汉平,孔祥冬.相变贮能—理论和应用[M].合肥:中国科学技术大学出版社,1996:30-31.
    [97]Eckert E R G.,Goldstein R J,Ibele W E, et al. Heat Transfer-a Review of1994Literature [J]. Int. J. Heat Transfer,1997,40(2):3729-3804.
    [98]Mehmet E. Thermal Performance of a Solar-Aided Latent Heat Store Used forSpace Heating Pump [J]. Solar Energy,2000,69(1):15-20.
    [99]叶宏,葛新石,焦冬生.带定形PCM的相变贮能式地板辐射采暖系统热性能的数值模拟[J].太阳能学报,2002,23(4):482-487.
    [100]王雯斐.结合夜间通风的相变混凝土复合墙体动态热特性仿真研究[D].哈尔滨:哈尔滨工业大学硕士论文,2009:31-47.
    [101]杨灵艳.三套管蓄能太阳能与空气源热泵集成系统实验与模拟[D].哈尔滨:哈尔滨工业大学博士论文,2009:134-136.
    [102]蔡增基,龙天渝.流体力学泵与风机(第四版)[M].北京:中国建筑工业出版社,1999:124-125.
    [103]杨庆华,陈春光,宋志明.雷诺实验仪的改进与创新[J].实验室研究与探索,2007,26(12):54-56.
    [104] Sharp K V,Adrian R J. Transition from Laminar to Turbulent Flow in LiquidFilled Microtubes [J]. Experiments in Fluids,2004,36(5):741-747.
    [105]章熙民,任泽霈.传热学(第四版)[M].北京:中国建筑工业出版社,2001:163-164.
    [106]王补宣.工程传热传质学[M].北京:科学出版社,1982:39-44.
    [107] J. P.霍尔曼著.马庆芳译.传热学[M].北京:人民教育出版社,1979:254-259.
    [108] Silva A K,Gosselin L. Optimal Geometry of L and C-Shaped Channels forMaximum Heat Transfer Rate in Nature Convection [J]. International Journal ofHeat and Mass Transfer,2005,48(3):609-620.
    [109] Zalba B,Marin J,Cabeza L F,Mehling H. Review on Thermal EnergyStorage with Phase Change: Materials, Heat Transfer Analysis and Applications [J].Applied Thermal Engineering,2003,23(2):51-83.
    [110]方春香.中低温定形相变储能材料的研究[D].北京:北京工业大学硕士论文,2006:5-10.
    [111] Murat K,Khamid M. Solar Energy Storage Using Phase Change Materials [J].Renewable and Sustainable Energy Reviews,2007,11(9):1913–1965
    [112] Hasnain S M. Review on Sustainable Thermal Energy Storage Technologies, PartI: Heat Storage Materials and Techniques [J]. Energy Conversion andManagement,1998,39(11):1127-1138.
    [113] Maria N D,Takayuki W. Performance Investigation of the Capric and LauricAcid Mixture as Latent Heat Energy Storage for a Cooling System [J]. SolarEnergy,2002,72(3):205-215.
    [114] Peippo k,Kauranen P,Lund P D. A Multi-Component PCM Wall Optimized forPassive Solar Heating [J]. Energy and Buildings,1991,17(4):259-270.
    [115] Gan. G,Riffat SB. A Numerical Study of Solar Chimney for Natural Ventilationof Building with Heat Recovery [J]. Applied Thermal Engineering,1998,18(12):1171-1187.
    [116]陆亚俊,马最良,邹平华.暖通空调[M].北京:中国建筑工业出版社,2002:196-197.
    [117]陆耀庆.实用供热空调设计手册(第二版)[M].北京:中国建筑工业出版社,2008:216-223.
    [118]付祥钊,张慧玲,黄光德.关于中国建筑节能气候分区的探讨[J].暖通空调,2008,38(2):44-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700