用户名: 密码: 验证码:
路堤荷载下土工格栅—夯实水泥土楔形桩复合地基承载机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探索一种能较好适应软土路基加固需求的新方法,本文基于对楔形桩、柔性桩复合地基、加筋碎石垫层工作机理等研究成果的分析、归纳、整理,并考虑公路荷载的特点,创造性地提出了土工格栅-夯实水泥土楔形桩双向增强体复合地基加固软土的新技术。采用模型试验、三维数值模拟和理论分析相结合的方法,较为系统地研究了楔形桩的沉桩效应、土工格栅加筋碎石垫层的工作特性、夯实水泥土楔形桩复合地基和土工格栅-夯实水泥土楔形桩复合地基的承载特性,以及路堤荷载下夯实水泥土桩复合地基变形规律。本文开展了下列工作:
     (1)通过静力沉桩模型试验,获得了等截面桩与楔形桩在静力沉桩中桩周土的竖向位移、径向位移、沉桩贯入力与沉桩深度的规律,以及桩周土最大竖向位移和径向位移的位置和大小。
     (2)采用模型试验结合三维数值模拟的方法,研究了刚性基础下碎石垫层和加筋碎石垫层的工作特性,分析了垫层厚度、土工格栅、格栅层数、格栅铺设位置等参数变化对碎石垫层和加筋碎石垫层变形模量、竖向应力场、沉降变形的影响。
     (3)为揭示夯实水泥土楔形桩复合地基、土工格栅-夯实水泥土楔形桩复合地基的承载特性,进行了大比例模型试验,获得了有无土工格栅碎石垫层下夯实水泥土圆柱形桩复合地基、夯实水泥土楔形桩复合地基的桩-土平均沉降差、桩体应力、平均桩-土应力比、平均沉降、桩身轴力等随荷载变化的规律。
     (4)基于剪切位移法,引入Mylonakis&Gazetas桩-土相互作用及温克尔地基模型,导出了复合地基中桩-桩、桩-土及土-土相互作用柔度系数计算式;在此基础上,考虑垫层的影响,提出了路堤荷载作用下桩-土-垫层共同作用分析的新方法,并利用Matlab软件编制了相应的计算程序对夯实水泥土桩复合地基的工作性状进行了分析,获得了地基下反力的分布特征、最佳的楔角范围,以及垫层厚度、垫层模量、荷载等因素对复合地基桩-土沉降差的影响,为夯实水泥土楔形桩复合地基的承载力与沉降计算提供理论基础。
     (5)基于一定的假设,并将桩-土复合加固区与变形影响范围内的天然地基视为一个整体,构造出了满足位移边界条件的位移分量表达式,利用位移变分法,建立了路堤荷载作用下地基变形分析的近似解析算法,推导出了荷载作用范围内地基的平均沉降与荷载关系的近似解析算式。并编制相关计算程序,结合模型试验结果分析了地基表面沉降分布规律、土的侧向位移随深度的变化规律、荷载与平均沉降的关系。
     本文研究结果表明:1)楔形桩能有效地增强桩与桩周土的相互作用,夯实水泥土楔形桩的桩侧摩阻力主要分布在集中在沿桩深度的上半段,比夯实水泥土圆柱形桩更适宜加固深厚软土地基;2)夯实水泥土楔形桩复合地基能有效地减小地基沉降与桩-土沉降差,提高地基承载力与桩-土应力比,且楔角越大,楔形桩改善复合地基工作性状的作用越明显;3)土工格栅能有效提高碎石垫层刚度,改善垫层的工作性能;4)土工格栅-夯实水泥土楔形桩复合地基的工作性状明显优于土工格栅-夯实水泥土圆柱形桩复合地基的工作性状。
In order to explore a new method for reinforcing soft subgrade, based on analysing, concluding and coordinating the research results of working mechanism on tapered pile, composite foundation with flexible piles and reinforced gravel bed cushion, and considering the characteristics of highway load, a new technique on reinforcing soft ground, two-direction reinforced composite foundation with tapered rammed cement-soil columms and geogrids, was proposed in this dissertation. Using some methods containing large scale model test,3D numerical simulation and theoretical analysis, the piling effects of tapered pile, the working characteristics of reinforced gravel bed cushion with geogrids, the bearing behavior of composite foundation with rammed cement-soil columns and composite foundation with tapered rammed cement-soil columns and geogrids, the deformation laws for composite foundation with rammed cement-soil columns under embankment loading was studied repectively. In this dissertation, the main characteristics contribution is as follows:
     (1) By static piling of tapered pile and cylindrical pile model tests, some change laws of vertical displacement of soil surrounding pile, radial displacement of of soil surrounding pile and piling pressure with piling depth increasing had been obtained, respectively. The position and value of maximal vertical displacement and radial displacement of soil surrounding pile had also been obtained.
     (2) Using model tests combined with3D numerical simulation studied on the working characteristics of gravel bed cushion and reinforced gravel bed cushion with geogrids under rigid foundation, respectively. When some parameters, such as the thickness of bed cushion, geogrids, geogrids layers and its lied location, was changed, the deformation modulus, vertical stress field and settlement of gravel bed cushion and reinforced gravel bed cushion with geogrids was analyzed, respectively.
     (3) To disclose the bearing characteristics of composite foundation with rammed tapered cement-soil columns, composite foundation with rammed tapered cement-soil columns and geogrids, a series of large-scale model tests were performed in laboratory, respectively. Some significative results on composite foundation with rammed rammed tapered cement-soil columns and rammed cylindrical cement-soil columns under gravel bed cushion or gravel bed cushion reinforced by geogrids, the relationship between loading and the the average settlement difference between column and soil, column stress, average pile-soil stress ratio, axil force, average settlement, had been obtained, respectively.
     (4) Based on the shear displacement method, and the Mylonakis&Gazetas model for interaction between pile and soil, and the E. Winkler's layered foundation model were introduced, the calculation formulae of the flexibility coefficients for interaction between pile and pile, pile and soil, soil and soil were obtained. Considering the performance of cushion, a new analysis method on pile-soil-cushion mutual action under the embankment was suggested, and the correlated program was also developed by Matlab software. The bearing behavior of composite foundation with rammed cement-soil columns was analyzed by the program. It had been obtained, the reaction distribution characteristics of underside soil, the optimal taper scope, and also obtained the influences on differential settlement between pile and soil by some factors, bed cushion thickness, bed cushion modulus, at al. All of these can offered theoretical basis for calculating bearing capacity and settlement of composite foundation with rammed tapered cement-soil columns.
     (5) Based on some assumptions, and regarding reinforcement area and natural foundation as a whole, the adequate displacement components which satisfy the displacement boundary conditions were selected, using the variational method of displacement, approximate analytical algorithm of foundation deformation are established under embankment loads, the approximate analytical formula of the load and the average settlement of groundwork under loading scope were derived. According to the proposed methods, the calculation program was written. Combined with the model tests, it was analyzed by the program, the distribution law for settlement of groundwork surface, the relationship between lateral displacement and depth, the relationship between loading and average settlement.
     The research results in this dissertation indicate that:1) tepered pile can strengthen the interaction between pile and soil surrounding pile, and the skin friction of rammed tapered cement-soil columns distributes mainly the upper half of the column along pile depth, the soft ground is reinforced by rammed tapered cement-soil columns more befittingly than by rammed cylindrical cement-soil columns;2) the composite foundation with rammed tapered cement-soil columns can reduce the settlement and the settlement difference between column and soil, enhance the bearing capacity and the pile-soil stress ratio, and the taper is bigger, the bearing behavior of composite foundation is ameliorated more markedly by tapered pile;3) geogrids can increase the stiffness and improve the working performance of gravel bed cushion;4) the baering behavior of composite foundation with rammed tapered cement-soil columns and geogrids is better than that of composite foundation with rammed cylindrical cement-soil columns and geogrids.
引文
[1]Wei J. Q., M. Hesham EI Naggar. Experimental study of axial behaviour of tapered piles[J]. Canadian Geotechnical Journal,1998,35(4):641-654.
    [2]Mahmoud Ghazavi. Analysis of kinematic seismic response of tapered piles[J]. Geotechnical and Geological Engineering,2007,25 (1):37-44.
    [3]M. Hesham El Naggar, Mohammed Sakr. Evaluation of axial performance of tapered piles from centrifuge tests[J]. Canadian Geotechnical Journal,2000, 37(6):1295-1308.
    [4]John S. Horvath, Thomas Trochalides. A half century of tapered-pile usage at the John F. Kennedy International Airport[C]. Proceedings:15th International Conference on Case Histories in Geotechnical Engineering, New York,2004, 4:1-8
    [5]Jin Qi Wei. Experimental investigation of tapered piles[D]. Ontario:The University of Western Ontario,1998.
    [6]Mohammed M. Z. A. Sakr. Centrifuge modeling of tapered piles in sand[D]. Ontario:The University of Western Ontario,1999.
    [7]Mohammed Sakr, M. Hesham EI Naggar, Moncef Nehdi. Load transfer of fibre-reinforced polymer (FRP) composite tapered piles in dense sand[J]. Canadian Geotechnical Journal,2004,41(1):70-95.
    [8]蒋建平,高广运,顾宝和.扩底桩、楔形桩、等直径桩对比试验研究[J].岩土工程学报,2003,25(6):764-766.
    [9]Whyte D. The overriding aspects of the design of geosynthetic-reinforced pile supported embankments [C]. Proceedings of Contemporary Issues in Foundation Engineering, New York:ASCE publications,2005,29-41.
    [10]Chew S. H., Phoon H. L., Loke K. H., et al. Geotextile reinforced piled embankment for highway bridges[C]. Proceedings of 8th International Conference on Applications of Advanced Technologies in Transportation Engineering. New York:ASCE publications,2004,438-443.
    [11]Stewart M. E., Filz G M. Influence of clay compressibility on geosynthetic loads in bridging layers for column-supported embankments[C]. In: proceedings of Contemporary Issues in Foundation Engineering, New York: ASCE publications,2005,11-25.
    [12]Naughton P. J., Kempton G. T. Comparison of analytical and numerical analysis design for piled embankments [C]. In:proceedings of Contemporary Issues in Foundation Engineering, New York:ASCE publications,2005,42-51.
    [13]饶为国.桩-网复合地基沉降机理及设计方法研究[D].北京:北京交通大学,2002,20-78.
    [14]饶为国.桩-网复合地基原理及实践[M].北京:中国水利水电出版社,2004,31-119.
    [15]苏传政.粉喷桩加土工格栅复合地基处理施工技术[J].葛洲坝集团科技,2001,15(2):6-9.
    [16]熊良根.粉喷桩加土工格栅复合地基处理施工技术浅析.铜业工程,2003,15(3):73-74.
    [17]陈艳平,赵明华,陈昌富,等.土工格室碎石垫层-碎石桩复合地基相似模型试验.中国公路学报,2006,19(1):17-22.
    [18]杨明辉,王娟,赵明华.土工格室+碎石桩复合地基承载机理及承载力计算方法探讨[J].中南公路工程,2005,30(4):5-8
    [19]Xa3иH B.и.锥形短桩[M].北京:中国农业机械出版社,1981.
    [20]Norlund. R. L. Bearing capacity of piles in cohesionless soils[J]. Journal of the Soil Mechanics and Foundations Division. ASCE,1963,89(3):1-36.
    [21]Zil'berberg S. D., Sherstnev, A. D. Construction of compaction tapered pile foundation[J]. Soil Mechanics and Foundation Engineering,1990,27(3): 96-101.
    [22]Ladanyi, B., Guichaoua, A. Bearing capacity and settlement of shaped piles in permafrost[C]. Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco,1985,1421-1427.
    [23]M Hesham El Naggar, Jin Qi Wei. Axial capacity of tapered piles established from model tests[J]. Canadian Geotechnical Journal,1999,36(6):1185-1194.
    [24]M Hesham El Naggar, Jin Qi Wei. Response of tapered piles subjected to lateral loading[J]. Canadian Geotechnical Journal,1999,36(1):52-71.
    [25]M Hesham El Naggar, Jin Qi Wei. Uplift behaviour of tapered piles established from model tests[J]. Canadian Geotechnical Journal,2000,37(1):56-74.
    [26]Mahmoud Ghazavi. Response of tapered piles to axial harmonic loading[J]. Canadian Geotechnical Journal,2008,45(11):1622-1628.
    [27]M. Kamran Khan, M. Hesham El Naggar, Mohamed Elkasabgy. Compression testing and analysis of drilled concrete tapered piles in cohesive-frictional soil[J]. Canadian Geotechnical Journal,2008,45(3):377-392.
    [28]Paik Kyuho, Lee Junhwan, Kim Daehong. Axial response and bearing capacity of tapered piles in sandy soil[J]. Geotechnical Testing Journal,2011,34(2): 122-130.
    [29]Mohammed Sakr, M. Hesham EI Naggar. Centrifuge modeling of tapered piles in sand[J]. Geotechnical Testing Journal,2003,26(1):22-35.
    [30]M Hesham El Naggar, Jin Qi Wei. Cyclic response of axially loaded tapered piles[J]. Geotechnical Testing Journal,2000,23(1):100-115.
    [31]Jayantha K. Kodikara, Ian D. Moore. Axial response of tapered piles in cohesive frictional ground[J]. Journal of Geotechnical Engineering,1993, 119(4):675-693.
    [32]Sudhendu Saha, D. P. Ghosh. Vertical vibration of tapered piles[J]. Journal of Geotechnical Engineering,1986,112(3):290-302.
    [33]Junhwan Lee, Kyuho Paik, Deahong Kim, Sungwuk Hwang. Estimation of axial load capacity for bored tapered piles using cpt results in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(9): 1285-1294.
    [34]Nabil F. Ismael. Behavior of step tapered bored piles in sand under static lateral loading[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010, 136(5):669-676.
    [35]M. Sakr, M. H. El Naggar, M. Nehdi. Lateral behaviour of composite tapered piles in dense sand[J]. Geotechnical Engineering,2005,158(3):145-157.
    [36]J. Kodikara, K. H. Kong, A. Haque. Numerical evaluation of side resistance of tapered piles in mudstone[J]. Geotechnique,2006,56(7):505-510.
    [37]Byoung Koo Lee, Jin Seob Jeong, Li Guang Fan, Tae Ki Jin. Free vibrations of tapered piles embedded partially in Winkler type foundations[J]. KSCE Journal of Civil Engineering,1999,3(2):195-203.
    [38]A. M. Rybnikov. Experimental investigations of bearing capacity of bored-cast-in-place tapered piles [J]. Soil Mechanics and Foundation Engineering,1990,27(2):48-52.
    [39]A. L. Gotman. Finite-element analysis of tapered piles under combined vertical and horizontal loadings[J]. Soil Mechanics and Foundation Engineering,2000, 37(1):5-12.
    [40]蒋建平,高广运.桩单位体积承载力问题探讨[J].工业建筑,2006,36(9):43-45,67.
    [41]蒋建平.楔形桩的研究与应用综述[J].施工技术,2006,35(1):37-40.
    [42]孔纲强,杨庆,年廷凯,等.扩底楔形桩竖向抗压和负摩阻力特性研究[J].岩土力学,2011,32(2):503-509.
    [43]吴文兵,王奎华,武登辉,等.考虑横向惯性效应时楔形桩纵向振动阻抗研究[J].岩石力学与工程学报,2011,30(增2):361 8-3625.
    [44]蔡燕燕,俞缙,郑春婷,等.楔形桩桩顶纵向振动阻抗的解析解[J].岩土工程学报,2011,33(增2):392-398.
    [45]刘杰,王忠海.楔形桩承载力试验研究[J].天津大学学报,2002,35(2):257-260.
    [46]成立芹,徐德良.锥形桩在天津地区的试验研究[J].西北农林科技大学学报(自然科学版),2003,31(1):135-138.
    [47]成立芹.一种变截面桩的对比试验研究[J].河北建筑工程学院学报,2004,22(1):11-15.
    [48]邱明国,徐学燕,李海山,等.冻结粉质粘土中锥形桩弹性阶段挤扩效应的研究[J].冰川冻土,2002,24(5):668-671.
    [49]邱明国,徐学燕,蔡永立.冻结粉质粘土中锥形桩的应用研究[J].低温建筑技术,2003,(5):62-64.
    [50]李栋伟,汪仁和,胡璞,等.冻土中锥形桩-土大变形有限元数值分析[J].冰川冻土,2007,29(4):640-644.
    [51]崔灏,胡璞,汪仁和.冻土中锥形桩承载力特性研究[J].低温建筑技术,2005,(6):93-94.
    [52]王幼青,王仙蔚.楔形桩的承载能力研究[J].低温建筑技术,2008,(6):112-113.
    [53]孙平平,金炯兰.楔形桩承载力计算公式的推导与应用[J].港工技术,2009,46(5):10-11.
    [54]王奎华,吴文兵,叶良,等.基于极限平衡理论的楔形桩承载力计算方法[J].建筑科学与工程学报,2009,26(4):108-113.
    [55]戴加东,李俊才.楔形桩的工作性能及应用研究[J].建筑技术开发,2004,31(8):64-65,96.
    [55]曾月进,邵力群,冯礼恭,等.楔形桩的承载力[J].西部探矿工程,2004,(11):6-7.
    [57]胡向奎,秦峰,鲁红军.楔形刚性桩复合地基在工程中的应用[J].煤炭工程,2001,(12):47-50.
    [58]秦美前.碎石桩加锥形桩在软土路基中的应用和研究[J].山西建筑,2006, 32(6):85-86.
    [59]钱大行,王嘉杨.浅谈锥形短桩的性能特点[J].洛阳工业高等专科学校学报,2003,13(4):7-8.
    [60]周天惠,丛强.混凝土锥形管桩技术要点解析[J].低温建筑技术,2005(3):93-94.
    [61]曹文贵,刘成学,赵明华.变截面桩的屈曲分析[J].湖南大学学报(自然科学版),2004,31(3):55-58.
    [62]申国勤.圆楔形灰土井桩及其复合地基的设计计算[J].山西建筑,2006,32(17):97-98.
    [63]Glen A Lorenzo, Dennes T. Bergado. New consolidation equation for soil-cement pile improved ground[J]. Canadian Geotechnical Journal,2003, 40(2):265-275.
    [64]A. Vatsala, R. Nova, B. R. Srinivasa Murthy. Elastoplastic model for cemented soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2001, 127(8):679-687.
    [65]Ilan Juran, Oraccio Riccobono. Reinforcing soft soils with artificialliy cemented compacted-sand columns [J]. Journal of Geotechnical Engineering,1991, 117(7):1042-1060.
    [66]Nilo Cesar Consoli, Diego Foppa, Lucas Festugato, et al. Key parameters for strength control of artificially cemented soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(2):197-205.
    [67]Jin-chun Chai, Norihiko Miura, Hirofumi Koga. Lateral displacement of ground caused by soil-cement column installation[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(5):623-632.
    [68]Jin-chun Chai, John P. Carter, Norihiko Miura, et al. Improved prediction of lateral deformations due to installation of soil-cement columns [J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(12):1836-1845.
    [69]Sabry A. Shihata. Zaki A. Baghdadi. Long-term strength and durability of soil cement[J]. Journal of Materials in Civil Engineering,2001,13(3):161-165.
    [70]Z. A. Baghdadi, S. A. Shihata. On the durability and strength of soil-cement[J]. Ground Improvement,1999,3(1):1-6.
    [71]Y. S. Fang, Y. T. Chung, F. J. Yu, et al. Properties of soil-cement stabilised with deep mixing method[J]. Ground Improvement,2001,5(2):69-74.
    [72]N.C. Consoli, A.V. da Fonseca, S.R. Silva, et al. Parameters controlling stiffness and strength of artificially cemented soils[J]. Geotechnique,2012, 62(2):177-183.
    [73]K. Alhashimi, T. K. Chaplin. An experimental study of deformation and fracture of soil-cement[J]. Geotechnique,1973,23(4):541-550.
    [74]J. H. Yin, Z. Fang. Physical modelling of consolidation behaviour of a composite foundation consisting of a cement-mixed soil column and untreated soft marine clay[J]. Geotechnique,2006,56(1):63-68.
    [75]Hyug-Moon Kwon, Anh Tuan Le, Ninh Thuy Nguyen. Influence of soil grading on properties of compressed cement-soil [J]. KSCE Journal of Civil Engineering,2010,14(6):845-853.
    [76]Antonio Viana da Fonseca, Rodrigo Caberlon Cruz, Nilo Cesar Consoli. Strength properties of sandy soil-cement admixtures [J]. Geotechnical and Geological Engineering,2009,27(6):681-686.
    [77]Sungmin Yoon, Murad Abu-Farsakh. Laboratory investigation on the strength characteristics of cement-sand as base material[J]. KSCE Journal of Civil Engineering,2009,13(1):15-22.
    [78]韩鹏举,白晓红,赵永强,等.Mg2+和SO42-相互影响对水泥土强度影响的试验研究[J].岩土工程学报,2009,31(1):72-76.
    [79]赫文秀,申向东.掺砂水泥土的力学特性研究[J].岩土力学,2011,32(增1):392-396.
    [80]董晓强,白晓红,杨子超,等.基于电流变化的水泥土损伤统计模型[J].岩土力学,2011,32(增1):160-165.
    [81]王军,丁光亚,潘林有,等.静三轴试验中水泥土力学特性及本构模型研究[J].岩土力学,2010,31(5):1407-1412.
    [82]王立峰,朱向荣.纳米硅水泥土弹塑性本构模型研究[J].浙江大学学报(工学版),2008,42(1):94-98.
    [83]王立峰,黄洪勉.纳米硅水泥土弹塑性有限元分析[J].岩土力学,2009,30(1):143-146.
    [84]王立峰,翟惠云.纳米硅水泥土抗压强度的正交试验和多元线性回归分析[J].岩土工程学报,2010,32(增1):452-457.
    [85]王立峰,夏建中朱向荣.纳米硅水泥土破坏准则研究[J].岩土力学,2006,27(10):1767-1771.
    [86]刘松玉,韩立华,杜延军.水泥土的电阻率特性与应用探讨[J].岩土工程学报,2006,28(11):1921-1926.
    [87]陈四利,宁宝宽,鲍文博,等.水泥土细观破裂过程的损伤本构模型[J].岩土力学,2007,28(1):93-96.
    [88]李建军,梁仁旺.水泥土抗压强度和变形模量试验研究[J].岩土力学,2009,30(2):473-477.
    [89]宋新江,徐海波,王永雷,等.水泥土各向异性变形特性研究[J].岩土力学,2012,32(6):1619-1626.
    [90]白晓红,赵永强,韩鹏举,等.污染环境对水泥土力学特性影响的试验研究[J].岩土工程学报,2007,29(8):1260-1263.
    [91]陈达,庄宁,廖迎娣,等.水泥土力学特性随龄期发展规律试验研究[J].水利水运工程学报,2012,(1):26-29.
    [92]欧明喜,刘新荣,曾芳金.水泥土应变软化特性三轴试验研究[J].工程勘察,2011,(6):1-3,7.
    [93]王兵,杨为民,李占强.击实水泥土强度随养护龄期增长的微观机理[J].北京科技大学学报,2008,30(3):233-238.
    [94]马军庆,王有熙,李红梅,等.水泥土参数的估算[J].建筑科学,2009,25(3):65-68.
    [95]刘飞,翟文静.双灰夯实水泥土强度方差分析研究[J].建筑科学,20109,26(7):5-9.
    [96]徐立胜,陈忠,张研.水泥土搅拌法的室内试验研究[J].河海大学学报(自然科学版),2010,38(4):433-435.
    [97]马海龙,陈云敏.水泥土桩桩土应力分担及曲线形式研究[J].岩石力学与工程学报,2006,25(增2):4112-4119.
    [98]马海龙.水泥土桩复合地基荷载传递及变形的原位试验研究[J].土木工程学报,2006,39(9):103-107,127.
    [99]马海龙,陈云敏.水泥土桩长等对承载力及模量影响的定量分析[J].岩土工程学报,2003,25(6):720-723.
    [100]秦然,陈征宙,董平.水泥土桩复合地基桩土应力比的一种解析算法[J].岩土力学,2001,22(1):96-98.
    [101]郑俊杰,黄海松.水泥土桩复合地基桩土应力比的解析算法[J].岩土力学,2005,26(9):1432-1436.
    [102]吴雄志.水泥土桩单桩荷载传递及临界桩长研究[J].岩土力学,2004,25(9):1491-1494.
    [103]林奕禧,张伟丽,黄良机,等.水泥土搅拌桩复合地基承载力折减系数α和β的试验研究[J].岩石力学与工程学报,2009,28(增2):3815-3820.
    [104]宁宝宽,刘斌,陈四利.环境侵蚀对水泥土桩承载力影响的试验及分析[J]. 东北大学学报(自然科学版),2005,26(1):95-98.
    [105]宁宝宽,陈四利,刘斌.水泥土桩的环境侵蚀效应试验研究[J].建筑结构,2005,35(7):4143.
    [106]郑刚,刘松玉.对水泥土桩承载力确定的几个问题的分析[J].东南大学学报(自然科学版),2001,31(5):62-66.
    [107]曾庆军,廖建春,莫海鸿,等.大面积荷载下超长水泥土搅拌桩承载性状的有限元分析[J].中国港湾建设,2006,(2):5-7,33.
    [108]张伟丽,蔡健,林奕禧,等.垫层对水泥土搅拌桩复合地基沉降的影响研究[J].岩土力学,2010,31(12):4027-4032.
    [109]周敏锋,张克绪,张尔齐.峰值后软化水泥土桩复合地基工作机制研究[J].土木工程学报,2007,40(4):92-97.
    [110]周敏锋,张克绪,刘红卫.峰值后软化水泥土桩复合地基性能模拟分析[J].哈尔滨工业大学学报,2007,39(2):225-228.
    [111]袁波,冯永,徐良明.粉土和粉质黏土中夯实水泥土桩复合地基承载力研究[J].铁道建筑,2010,(9):69-72.
    [112]郭忠贤,杨志红,宋杰,等.夯实水泥土桩的荷载传递特性[J].岩土力学,2000,21(3):284-288.
    [113]郭忠贤,杨志红,王占雷.夯实水泥土桩复合地基桩土应力比的研究[J].工程勘察,2006,(6):10-13.
    [114]郭忠贤.桩长、面积置换率对复合地基设计参数的影响[J].四川建筑科学研究,2006,32(6):132-136.
    [115]郭忠贤,杨志红,王占雷.夯实水泥土桩荷载传递规律的试验研究[J.].岩土力学,2006,27(11):2020-2024.
    [116]郭忠贤,张岩俊.夯实水泥土桩承载机理及临界桩长的研究[J].工业建筑,2006,36(12):56-59.
    [117]郭忠贤.夯实水泥土桩试验研究及数值分析[J].勘察科学技术,2006,(1):34-36,57.
    [118]郭忠贤,王占雷,杨志红.夯实水泥土桩复合地基承载力性状试验研究[J].岩石力学与工程学报,2006,25(7):1494-1501.
    [119]郭忠贤,王占雷,杨志红.夯实水泥土桩复合地基共同作用的试验研究[J].岩土力学,2007,28(4):763-768,773.
    [120]郭忠贤,霍达,张明聚.基于载荷试验的夯实水泥土桩复合地基模糊随机可靠度分析[J].北京工业大学学报,2007,33(4):382-387.
    [121]郭忠贤,霍达,张明聚.夯实水泥土桩复合地基承载特性分析[J].北京工 业大学学报,2009,35(8):1045-1053.
    [122]杨志红,郭忠贤.夯实水泥土桩复合地基垫层效应研究[J].岩土工程学报,2010,32(增2):578-581.
    [123]司海宝,肖昭然.夯实水泥土桩复合地基载荷试验及数值模拟[J].岩土工程学报,2011,33(增2):480-484.
    [124]王维玉,赵拓,丁继辉.夯实水泥土桩复合地基动力特性和时程响应影响因素分析[J].工程力学,2011,28(增2):187-191.
    [125]张厚先,胡长明,郭文涛.夯实水泥土桩复合地基的优化设计研究[J].武汉理工大学学报,2009,31(8):72-75.
    [126]周敏娟,丁军霞,周乔勇.高速公路夯实水泥土桩复合地基工程特性敏感因素分析[J].铁道建筑,2009,(10):67-70.
    [127]Radhey S. Sharma, B. R. Phani Kumar, G Nagendra. Compressive load response of granular piles reinforced with geogrids[J]. Canadian Geotechnical Journal,2004,41(1):187-192.
    [128]M. R. Karim, G Manivannan, C. T. Gnanendran, et al. Predicting the long-term performance of a geogrid-reinforced embankment on soft soil using two-dimensional finite element analysis [J]. Canadian Geotechnical Journal, 2011,48(5):741-753.
    [129]C. Kevin Lyons, Jonathan Fannin. A comparison of two design methods for unpaved roads reinforced with geogrids[J]. Canadian Geotechnical Journal, 2006,43(12):1389-1394.
    [130]H. A. Alawaji. Creep and rate of loading effects on geogrid-reinforced sand[J]. Geotechnical and Geological Engineering,2005,23(5):583-600.
    [131]A. F. Zidan. Numerical study of behavior of circular footing on geogrid-reinforced sand under static and dynamic loading[J]. Geotechnical and Geological Engineering,2012,30(2):499-510.
    [132]E. C. Shin, D. H. Kim, B. M. Das. Geogrid-reinforced railroad bed settlement due to cyclic load[J]. Geotechnical and Geological Engineering,2002,20(3): 261-271.
    [133]Rong Chen, Maotian Luan, Dongxue Hao. Improved simulation method for soil-geogrid interaction of reinforced earth structure in FEM[J]. Transactions of Tianjin University,2011,17(3):220-228.
    [134]刘春,赵洪波,白世伟.土工格栅在治理软土路基沉降问题中的研究[J].岩土力学,2003,24(6):1070-1073.
    [135]李志清,胡瑞林,付伟,等.土工格栅在加固高速公路路堤中的应用研究[J].岩土力学,2008,29(3):795-799.
    [136]刘文白,周健.土工格栅与土界面作用特性试验研究[J].岩土力学,2009,30(4):965-970.
    [137]徐超,廖星樾.土工格栅与砂土相互作用机制的拉拔试验研究[J].岩土力学,2011,32(2):423-428.
    [138]杨庆刚,黄晓明,柴建峰.土工格栅路堤加筋效果的影响因素分析[J].工程地质学报,2006,14(1):131-137.
    [139]胡幼常,邓伟,林汉清,等.双向土工格栅加筋土回弹模量试验研究[J].岩土力学,2008,29(3):759-763.
    [140]杨庆,张克,栾茂田,等.土工格栅加筋砂土地基性能模型试验研究[J].大连理工大学学报,2006,46(3):390-394.
    [141]刘春.土工格栅加筋垫层控制地基沉降的试验研究[J].河南大学学报(自然科学版),2007,37(4):425-428.
    [142]马时冬.土工格栅加筋垫层的效果检验[J].岩石力学与工程学报,2005,24(3):490-495.
    [143]陈榕,栾茂田,赵维.土工格栅拉拔试验及筋材摩擦受力特性研究[J].岩土力学,2009,30(4):960-964.
    [144]杨广庆,李广信,张保俭.土工格栅界面摩擦特性试验研究[J].岩土工程学报,2006,28(8):948-952.
    [145]汪益敏,李庆臻,高水琴.差异沉降对土工格栅加筋路堤工作性能影响的试验研究[J].华南理工大学学报(自然科学版),2011,39(9):68-74.
    [146]史旦达,刘文白,水伟厚,等.单、双向塑料土工格栅与不同填料界面作用特性对比试验研究[J].岩土力学,2009,30(8):2237-2244.
    [147]吕伟华,缪林昌,王非.基于不完全土拱效应的土工格栅加固机制与设计方法[J].岩石力学与工程学报,2012,31(3):633-639.
    [148]胡启军,谢强,卿三惠.加筋碎石垫层中双层土工格栅拉力特性试验研究[J].岩土力学,2007,28(4):799-802.
    [149]杨明辉,赵明华,吴亚中.基于正交理论的土工格室垫层碎石桩复合地基优化设计[J].公路,2004,(1):68-71.
    [150]蒋鹏飞,赵明华,杨明辉,等.土工格室+碎石桩复合地基室内模型承载试验研究[J].中南公路工程,2004,29(2):23-27.
    [151]赵明华,杨明辉,吴亚中,等.土工格室+碎石桩复合地基承载机理及其试验研究[J].公路交通科技,2005,22(11):6-9,29.
    [152]陈艳平,赵明华,陈昌富,等.土工格室碎石垫层-碎石桩复合地基相似模型试验[J].中国公路学报,2006,19(1):17-22.
    [153]蒋鹏飞,陈昌富,赵明华,等.土工格室垫层+碎石桩复合地基在高速公路软基处理中的应用与研究[J].公路,2006,(4):135-139.
    [154]杨明辉,王娟,赵明华.土工格室+碎石桩复合地基承载机理及承载力计算方法探讨[J].中南公路工程,2005,30(4):5-8,21.
    [155]赵明华,张玲,蒋德松.土工格室+碎石桩处治软土路基设计计算方法[J].公路交通科技,2008,25(4):47-51.
    [156]杨宇,陈昌富,赵明华.水平加筋与散体材料桩组合型复合地基承载力计算[J].公路交通科技,2008,25(6):35-39,49.
    [157]赵明华,刘敦平,张玲.双向增强体复合地基工后沉降分析[J].公路交通科技,2008,25(10):26-30.
    [158]赵明华,刘敦平,张玲.双向增强体复合地基桩土应力比计算[J].工程力学,2009,26(2):176-181.
    [159]赵明华,龙军,张玲.双向复合地基的有限差分法分析[J].湖南大学学报(自然科学版),2009,36(6):1-6.
    [160]赵明华,孙建兵,张永杰.基于Winkler模型的双向增强体复合地基沉降计算[J].岩土力学,2010,31(11):3459-3463,3474.
    [161]赵明华,龙军,张玲.桩承加筋垫层复合地基桩土应力比分析[J].公路交通科技,2010,27(10):29-34.
    [162]赵明华,龙军,张玲,等.双向增强体复合地基沉降分析[J].公路交通科技,2011,28(4):6-11.
    [163]赵明华,张玲,赵衡.双向增强复合地基沉降计算方法研究[J].岩土力学,2011,32(9):2741-2746.
    [164]程栋栋,闫澍旺,侯晋芳,等民.桩与土工格栅联合作用对高速公路路堤地基承载力影响的有限元分析[J].岩土力学,2007,28(增):886-890.
    [165]闫澍旺,程栋栋,侯晋芳,等.桩与土工加筋层对公路路堤地基承载力的影响[J].中国公路学报,2008,21(4):30-36.
    [166]肖宏,蒋关鲁,魏永幸.桩网结构模型试验柔性拱研究[J].岩土力学,2008,29(11):3032-3036.
    [167]曹新文,卿三惠,周立新.桩网复合地基土工格栅加筋效应的试验研究[J].岩石力学与工程学报,2006,25(增1):3162-3167.
    [168]陈仁朋,徐正中,陈云敏.桩承式加筋路堤关键问题研究[J].中国公路学报,2007,20(3):7-12.
    [169]邹左胜.桩-网复合地基性状影响因素三维数值模拟分析[J].中外公路,2012,32(2):7-11.
    [170]唐文成,蒋军,孙凤玲,等.桩承加筋土复合地基试验及稳定研究[J].低温建筑技术,2011,(5):84-86.
    [171]连峰,龚晓南,赵有明,等.桩-网复合地基加固机理现场试验研究[J].中国铁道科学,2008,29(3):7-12.
    [172]连峰,龚晓南,崔诗才,等.桩-网复合地基承载性状现场试验研究[J].岩土力学,2009,30(4):1057-1062.
    [173]戴洪军,刘欣良,任治军,等.圆形煤场中桩-网复合地基原体试验研究[J].岩土力学,2011,32(2):487-494.
    [174]王瑞芳,皮菊华.土工格栅与碎石桩联合处理软土路基的对比[J].武汉大学学报(工学版),2011,44(1):86-89,93.
    [175]崔澈,张志耕,闫澍旺.碎石桩联合土工格栅复合地基处理湿地软基的机制研究[J].岩土力学,2009,28(6):1764-1768.
    [176]杨瑞,闫澍旺,崔澈.碎石桩与土工格栅联合加固高原湿地软路基机理研究[J].公路交通科技,2006,23(6):36-39.
    [177]徐林荣,牛建东,吕大伟,等.软基路堤桩-网复合地基试验研究[J].岩土力学,2007,28(10):2149-2154,2160.
    [178]肖宏,罗强,邓江东,等.混凝土夯扩桩和土工格室加固铁路基床试验研究[J].岩土力学,2008,29(8):2157-2162.
    [179]钱劲松,凌建明.路基拓宽工程中桩承式加筋路堤处理的数值分析[J].交通运输工程学报,2008,8(5):67-71.
    [180]刘俊飞,赵国堂.路基工程中CFG桩桩筏复合地基与桩网复合地基对比[J].铁道建筑,2009,(7):31-35.
    [181]陈国栋,梁永辉,詹金林.高压旋喷桩复合地基在世博项目中的应用[J].岩土工程学报,2010,32(增2):414-417.
    [182]吴九江,程谦恭,王寒冰,等.超大面积深厚软土桩-网复合地基承载性状分析[J].工业建筑,2012,42(5):106-114.
    [183]高胜利,魏宏,刘天福.路堤荷载下带帽桩-网复合地基桩土应力比研究[J].铁道建筑,2010,(12):63-65.
    [184]费康,刘汉龙,高玉峰.路堤下现浇薄壁管桩复合地基工作特性分析[J].岩土力学,2004,25(9):1390-1396.
    [185]朱明双,王金昌,朱向荣.路堤荷载下现浇筒桩复合地基性状分析[J].浙江大学学报(工学版),2006,40(12):2186-2190.
    [186]俞缙,周亦涛,鲍胜,等.柔性桩承式加筋路堤桩土应力比分析[J].岩土工程学报,2011,33(5):705-713.
    [187]杨庆刚,黄晓明.分级加载条件下粉喷桩联合土工格栅加固软基的数值模拟[J].公路交通科技,2008,25(2):34-39.
    [188]孙献国,张思峰,陈文.粉喷桩与土工格栅联合加固技术的现场试验研究[J].山东大学学报(工学版),2004,34(5):72-75.
    [189]刘观仕,孔令伟,李雄威,等.高速公路软土路基拓宽粉喷桩处治方案分析与验证[J].岩石力学与工程学报,2008,27(2):309-315.
    [190]刘俊新,谢强,文江泉,等.粉喷桩-土工格栅复合地基应力现场测试研究[J].岩土力学,2007,28(2):376-380.
    [191]李小山,傅军.高填土路堤粉喷桩和土工格栅联合加固性状的数值分析[J].四川建筑科学研究,2012,38(6):129-132.
    [192]闫澍旺,周宏杰,崔溦,等.水泥土桩与土工格栅联合加固沟谷软基机理研究[J].岩土力学,2005,26(4):633-637.
    [193]崔溦,闫澍旺.水泥土桩联合土工格栅复合地基的离心模型试验研究[J].岩土力学,2008,29(5):1315-1319.
    [194]徐建平,周健,许朝阳,等.沉桩挤土效应的模型试验研究[J].岩土力学,2000,21(3):235-238.
    [195]周火垚,施建勇.饱和软黏土中足尺静压桩挤土效应试验研究[J].岩土力学,2009,30(11):3291-3296.
    [196]Vesic A. S. Expansion of cavities in infinite soil mass[J]. Journal of Mechanics and Foundation Engineering, ACSE,1972,98(3):265-290.
    [197]Carter J. P., Booker J. R., Yeung S. K. Cavity expansion in cohesive frictional soil[J]. Geotechnique,1986,36(3):349-358.
    [198]Sagaseta C. Analysis of undrained soil deformation due to ground loss[J]. Geotechnique,1987,37(3):301-320.
    [199]Sagaseta C. Prediction of ground movements due to pile-driving in clay[J]. Journal of Geotechnical and Geoenvironental Engineering,2001,127(1): 55-66.
    [200]胡伟,刘明振.非饱和土中球形孔扩张的弹塑性分析[J].岩土工程学报,2006,28(10):1292-1297.
    [201]梅国雄,宋林辉,宰金珉,等.静压沉桩挤土机理探讨及有限元分析[J].计算力学学报,2008,25(5):660-664.
    [202]高子坤,施建勇.考虑桩体几何特征的压桩挤土效应理论解答研究[J].岩 土工程学报,2010,32(6):956-962.
    [203]Randolph M. F., Carter J. P., Wroth C. P. Driven piles in clay the effects of installation and subsequent consolidation[J]. Geotechnique,1979,29(4): 361-393.
    [204]Chopra M. B., Dargush G. F. Finite-element analysis of time-dependent large-deformation problems[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1992,16(2):101-130.
    [205]郑俊杰,邢泰高,赵本.沉桩挤土效应的参变量有限元分析[J].岩土工程学报,2005,27(7):796-799.
    [206]鹿群,龚晓南,崔武文,等.静压单桩挤土位移的有限元分析[J].岩土力学,2007,28(11):2426-2430.
    [207]张明义,邓安福,干腾君.静力压桩数值模拟的位移贯入法[J].岩土力学,2003,24(1):113-117.
    [208]唐世栋,李阳.基于ANSYS软件模拟桩的挤入过程[J].岩土力学,2006,27(6):973-976.
    [209]王幼青.挤土桩水平向挤土位移分析[J].哈尔滨工业大学学报,2003,35(4):472-475.
    [210]罗战友,王伟堂,刘薇.桩-土界面摩擦对静压桩挤土效应的影响分析[J].岩石力学与工程学报,2005,24(18):3299-3304.
    [211]罗战友,龚晓南,王建良,等.静压桩挤土效应的数值模拟及影响因素分析[J].浙江大学学报(工学版),2005,39(7):992-996.
    [212]施建勇,彭劫.沉桩挤土作用的有限元分析[J].东南大学学报,2002,32(1):109-114.
    [213]闰明礼,杨军.CFG桩复合地基的褥垫层技术[J].地基处理,1996,7(3):72-76.
    [214]李宁,韩煊.复合地基中褥垫作用机理研究[J].岩土力学,2000,21(1):10-15.
    [215]李宁,韩煊.褥垫层对复合地基承载机理的影响[J].土木工程学报,2001,34(2):68-73,83.
    [216]刘杰,张可能.复合地基中垫层作用机理[J].中南工业大学学报,2001,32(6):568-572.
    [217]亓乐,施建勇,曹权.刚性桩复合地基垫层合理厚度确定方法[J].岩土力学,2009,30(11):3423-3428.
    [218]亓乐,施建勇,侯仟.复合地基桩体对垫层的刺入量研究[J].岩土力学, 2011,32(3):815-819,824.
    [219]罗强,刘俊彦,张良.土工合成材料加筋砂垫层减小软土地基沉降试验研究[J].岩土工程学报,2003,25(6):710-714.
    [220]黄仙枝,岂连生,白晓红.软土地基土工带加筋碎石垫层的应力扩散研究[J].岩石力学与工程学报,2004,23(17):2992-2997.
    [221]刘毓氚,左广洲,陈福全.加筋垫层应力扩散特性试验研究[J].岩土力学,2007,28(5):903-908.
    [222]张福海,俞仲泉.平面应变条件下土工格室加筋垫层的变形分析[J].岩土力学,2005,26(增):241-243.
    [223]杨明辉,邓岳保,赵明华.基于叠梁试验的土工格室垫层刚度确定方法研究[J].土木工程学报,2011,44(11):87-92.
    [224]龚晓南.复合地基设计和施工指南[M].北京:人民交通出版社,2003.
    [225]叶书麟,地基处理工程实例应用手册[M].北京:中国建筑工业出版社,1998.
    [226]M. Alamgira, N. Miuraa, H.B. Poorooshasbb, et al. Deformation analysis of soft ground rein-forced by columnar inclusions[J], Computers and Geotechnics,1996,18(4):267-290.
    [227]刘杰,张可能.复合地基荷载传递规律及变形计算[J].中国公路学报,2004,17(1):20-23.
    [228]李海芳,温晓贵,龚晓南.路堤荷载下复合地基加固区压缩量的解析算法[J].土木工程学报,2005,38(3):77-80.
    [229]范跃武,周同和.“柔性基础”刚性桩复合地基试验分析与变形计算[J].建筑结构学报,2007,28(6):203-209.
    [230]章定文,刘松玉.路堤荷载下柔性桩复合地基沉降实用计算方法[J].岩土力学,2007,28(6):1133-1138.
    [231]冯瑞玲,谢永利.柔性基础下粉喷桩复合地基的承载力计算[J].土木工程学报,2005,38(5):63-66.
    [232]胡贺松,彭振斌,杨坪,等.软土水泥搅拌桩复合地基沉降特性试验研究[J].中南大学学报(自然科学版),2009,40(3):803-807.
    [233]Randolph, M. F., Worth, C. P. Analysis of deformation of vertically loaded piles[J]. Geotechnical Engineering Division, Proceeding of the American Society of Civil Engineers,1978,104(12):1465-1488.
    [234]Mylonakis G, Gazetas G. Settlement and additional forces of grouped piles in layered soil[J]. Geotechnique,1998,48(1):55-72.
    [235]宰金珉.复合桩基理论与应用[M].北京:中国水利水电出版社,2004.
    [236]龚晓南.广义复合地基理论及工程应用[J].岩土工程学报,2007,29(1):1-13.
    [237]杨涛.路堤荷载下柔性悬桩复合地基沉降分析[J].岩土工程学报,2000,22(6):741-743.
    [238]刘杰,张可能.柔性基础群桩下复合地基荷载传递规律及计算[J].岩土力学,2003,24(2):178-182.
    [239]Claes Alen, Sadek Baker, Per-Evert Bengtsson, et al. Lime-Cement column stabilised soil-A new model for settlement calculation[C]. Proceedings of the Intennational Conference on Deep Mixing-Best Practice and Recent Advances, Stockholm, Swedden,2005,205-212.
    [240]易耀林,刘松玉.路堤荷载下复合地基沉降计算方法探讨[J].工程力学,2009,26(10):147-153.
    [241]N. Loganathan, A. S. Balasubramaniam, D. T. Bergado. Deformation analysis of embankment[J]. Geotechanics Engineering, ASCE,1993,119(8):1185-1206.
    [242]屠毓敏,郑坚.考虑土体侧胀性的路堤沉降分析[J].中国公路学报,2002,15(1):26-28.
    [243]王志亮,李永池.考虑土体侧胀性的路堤沉降计算[J].岩石力学与工程学报,2005,5(10):1772-1777.
    [244]吕文志,俞建霖.柔性基础下桩体复合地基的解析法[J].岩石力学与工程学报,2010,29(2):401-408.
    [245]中交第二公路勘察设计研究院.中华人民共和国行业标准《公路路基设计规范(JTJGD30-2004)》[M].北京:人民交通出版社,2005.
    [246]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700