用户名: 密码: 验证码:
隧道施工对上覆高压输电铁塔的影响分析与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于地域特点和走廊条件的限制,常常遇到高压输电铁塔位于隧道上方或在隧道上方附近的情况。自立式高压输电铁塔作为一种高耸空间结构,具有刚度较小、塔基相互独立、对基础沉降差敏感等特点。隧道邻近或者下穿既有高压输电铁塔施工时,极易导致铁塔基础发生不均匀沉降,严重时可致铁塔倒塌,危及电力线路的正常运行和生命财产安全,这不仅会造成重大的经济损失,而且会造成及其严重的社会影响。
     本文以李家冲隧道下穿500kV高压输电铁塔为工程依托,采用数值分析和现场测试相结合的研究手段,在分析隧道施工对上覆高压输电铁塔影响的基础上,重点针对李家冲隧道与500kV高压输电铁塔的具体条件,研究施工方案和技术措施,以及分析应用效果。主要研究成果和结论如下:
     1、以铁塔最大应力达到钢材设计抗压强度为基准,针对典型的不同高度自立式高压输电铁塔,提出了塔基倾斜和铁塔倾斜的允许值。
     2、研究了铁塔位置、隧道洞径、隧道埋深、铁塔型号和铁塔外荷载等因素对上方输电铁塔因隧道施工所引起的变形的影响。比较了隧道施工对不同位置铁塔的影响规律,并对影响范围进行了分区。通过对比计算,获得了不同洞径和不同埋深的隧道施工对铁塔的影响规律,获得了隧道施工对不同高度铁塔的影响规律,获得了铁塔处于不同外荷载时隧道施工对铁塔的影响规律。
     3、针对李家冲隧道下穿高压输电铁塔的工程实例,分析了隧道施工可能导致的铁塔损害情况。对比分析了几种施工风险处治方案的优缺点,建议对李家冲隧道下穿高压输电铁塔时采用框架梁加固铁塔基础方案来规避施工风险。通过数值模拟方法分析了该处治方案的有效性,并通过现场测试方法验证了该处治方案的可行性。
     4、分析表明,采用框架梁加固铁塔基础,将铁塔基础联为一体,增加了四个塔基的整体抗变形能力,有效减小了四个铁塔塔基的不均匀沉降和相邻塔基之间的水平位移差,同时降低了铁塔上杆件的应力增量,降低了施工风险。
     5、通过对李家冲隧道下穿高压输电铁塔的长期观测,得到隧道开挖过程中洞内变形、地表沉降以及铁塔位移和应力变化规律。李家冲三车道大跨度隧道成功下穿高压输电铁塔的工程实践表明,施工过程中所采用的风险处治方案和隧道施工方法是合理的,为类似隧道下穿高耸构筑物提供了类比和参考。
Due to the region characteristic and the constraint of transmission line corridor, high-voltage transmission tower is often located right at the top of tunnel or near the top of the tunnel. Free-standing high-voltage transmission tower, as a towering space structure, has less rigidity. The foundations of tower are independent of each other. Tower is very sensitive to the settlement difference between two adjacent foundations. When tunnel constructed under or nearby the high-voltage transmission tower, the tunnel construction is easily result in uneven settlement of tower foundations. Serious uneven settlement may cause tower collapse. The collapse of tower may endanger the normal operation of the power lines, and it will not only cause significant economic losses, and can cause serious social influence.
     Lijiachong tunnel underneath500kV high-voltage transmission tower is used as engineering example. The numerical analysis and real-time monitoring are used as research methods. The influence of tunnel construction on transmission tower is analyzed. Based on the specific conditions of the Lijiachong tunnel and500kV transmission tower, the construction scheme and technical measures are studied, and the application effect is analyzed. The main research results and conclusions are as follows:
     1. The maximum stress of tower to the design compressive strength of steel is used as benchmark. The allowable value of foundation tilt and tower tilt are put forward, for typical free-standing high-voltage transmission towers with different height.
     2. The influence factors of the location of tower, diameter of tunnel, depth of tunnel, type of tower and external load of tower are studied, for the influence of tunnel construction on transmission tower. The influence of tunnel construction to towers at different position is compared, and the scope of influence is divided into several areas. By comparing calculation, the influence law of tunnel construction on tower is obtained, when the tunnel have different diameter and different deep, and when the tower have different external load. The influence law of tunnel construction on different height towers is obtained.
     3. According to engineering example of Lijiachong tunnel under the high-voltage transmission tower, the damage to tower by the tunnel construction is analyzed. The advantages and disadvantages of several treatment plan of construction risk are compared. The construction scheme using the frame beams to reinforce the foundations of tower to avoid the risk of is suggested. The effectiveness of the treatment scheme is analyzed by numerical simulation method, and the feasibility of the treatment plan is proved by field test method.
     4. Analysis showed that the overall ability to resistance deformation is increased to the foundations of tower by using the frame beams to reinforce the foundations of tower and the independent foundations are connected as a whole. The uneven settlement and the difference of horizontal displacement of foundations are reduced effectively, at the same time, the stress increment of tower member and construction risk is reduced.
     5. Through the long-term monitoring of the construction of Lijiachong tunnel under the tower, the law of the deformation of tunnel, ground settlement, displacement and stress of tower is obtained. The engineering practice, which Lijiachong three lanes large-span tunnel under the high-voltage transmission tower constructed successfully, shows that the risk treatment plan and tunnel construction method are reasonable. The success engineering example provides analogy and reference to similar tunnel under tall buildings.
引文
[1]张殿生.电力工程高压送电线路设计手册[M].北京:中国电力出版社,2003.
    [2]徐茂兵.区间隧道通过既有高压铁塔加固方案[J].现代隧道技术,2002,39(5):48-52.
    [3]阳军生,刘宝琛.城市隧道施工引起的地表移动及变形[M].北京:中国铁道出版社,2002.
    [4]陈洁金.下穿既有设施城市隧道施工风险管理与系统开发[D].长沙:中南大学,2009.
    [5]吴波.复杂条件下城市地铁隧道施工地表沉降研究[D].成都:西南交通大学,2003.
    [6]王树英.隧道施工对邻近扩大基础桥梁结构的影响研究[D].长沙:中南大学,2007.
    [7]南康.双孔平行隧道施工地表位移及变形研究[D].长沙:中南大学,2009.
    [8]李建生.地铁施工对邻近结构物影响分析及其评价软件开发[D].长沙:中南大学,2009.
    [9]贾瑞华.隧道施工对不同基础类型桥梁的影响评价及工程应用[D].长沙:中南大学,2009.
    [10]郭军.地铁隧道开挖诱发的地表沉降对邻近建筑结构的影响研究[D].北京:北京工业大学,2005.
    [11]Peck R B. Deep excavation and tunneling in soft ground[C]. State of the Art Report. Proc.7th Int. Conf. on Soil Mechanics and Foundation Engineering, Mexico City,1969:225-290.
    [12]藤田圭一.从基础工程角度看盾构掘进法[J].隧道译丛,1985,(5):49-63.
    [13]Fang Y S, Lin S J, and Lin J S. Time and settlement in EPB shield tunneling [J]. Tunnels and tunneling,1993, (11):27-28.
    [14]Schmidt B. Settlements and ground movements associated with tunneling in soils [D]. Urbana:University of Illinois,1969.
    [15]Attewell P B, Glossop N H, and Farmer IW. Ground deformations caused by tunneling in soil[J]. Ground Engineering,1978,8(15):32-41.
    [16]Attewell P B, Yeates J and Selby A R. Soil movements indueed by tunneling and the effects on pipelines and struetures[M]. Blaekie and Son, London, 1986.
    [17]O'Reilly M P, New B M. Settlements above tunnels in the united kingdom-their magnitude and prediction[M]. The Institution of Mining and Metallurgy, London,1982.
    [18]New B M, Bowers K. Ground movement model validation at the Heathrow Express Trial Tunnel[J]. Tunnelling'94,1994:310-329.
    [19]刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [20]侯学渊,廖少明.盾构隧道沉降预估[J].地下工程与隧道,1993,(4):24-32.
    [21]Sagaseta C. Analysis of undrained soil deformation due to ground loss[J]. Geotechnique,37(3):301-320.
    [22]Gonzalez C, Sagaseta C. Patterns of soil deformations around tunnels application to the extension of Madrid Metro[J]. Computers and Geotechnics,2001, 28(9):445-468.
    [23]Verruijt A, Booker J R. Surface Settlements due to Deformation of a Tunnel in an Elastic Half Plane[J]. Geotechnique,1996,46(4):753-756.
    [24]Loganathan N, Poulos H G. Analytical Prediction for Tunneling-Induced Ground Movements in Clays[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,9(1):49-58.
    [25]Lee K M, Rowe R K. Subsidence due to tunnelling:Part II-Evaluation of a prediction technique[J]. Canadian Geotechnical Journal,1992,29(5):941-954.
    [26]Bobet A. Analysis solutions for shallow tunnels in saturated ground[J]-ASCE J. Eng. Mech.2001,127(12):1258-1266.
    [27]Chou W I, Bobet A. Predictions of ground deformations in shallow tunnels in clay[J]. Tunnelling and underground space technology,2002,17(1):3-19.
    [28]Muir W A. The Circular Tunnel in Elastic Ground[J]. Geotechnique, 1975,25(1):115-127.
    [29]Chou W L, Bobet A. Predictions of Ground Deformations in Shallow Tunnels in Clay[J]. Tunnelling and Underground Space Technology,2002,17: 3-19.
    [30]陶履彬,侯学渊.圆形隧道的应力场和位移场[J].隧道及地下工程,1986,(1):9-19.
    [31]陆文超,仲政,王旭.浅埋隧道围岩应力场的解析解[J].力学季刊,2003,24(1):409-413.
    [32]晏莉.并行隧道施工相互影响分析及应用研究[D].长沙:中南大学,2008.
    [33]吕爱钟,张璐青.地下隧洞力学分析的复变函数方法[M].北京:科学出版社,2007.
    [34]Litwiniszyn J. Fundamental principles of the mechanics of stochastic medium[C]. Proc of 3rd Conf Theo Appl Mech, Bongalore, India,1957.
    [35]刘宝琛,张家生,廖国华.随机介质理论在矿业中的应用[M].长沙:湖南科学技术出版社,2004.
    [34]刘宝琛,张家生.近地表开挖引起的地表沉降的随机介质方法[J].岩石力学与工程学报.1995,14(4):289-296.
    [36]Liu Baochen. Ground Surface Movement Due to Underground Excavation in China[J]. Comprehensive Rock Engineering. New York:Pergaman Press,1993: 781-817.
    [37]Liu Baochen, Yang Junsheng. Ground surface subsidence and deformation due to construction of a subway by ground freezing method[C]. Proc. of Int. Conf. of 2nd School for Geomechanics, Zawodzie, Piland.1995.
    [38]Yang Junsheng, Liu Baochen. The prediction of ground surface settlement due to tunneling in urban areas[C]. in:progress in safety science and technology, Vol. II. Beijing:Chemical Industry Press,2000:354-361.
    [39]刘宝琛,林德璋.浅部隧道开挖引起的地表移动及变形[J].地下工程,1983(7):1-7.
    [40]阳军生,刘宝琛.挤压盾构隧道施工引起的地表移动及变形[J].岩土力学,1998,19(3):10-13.
    [41]Imamura S, Hagiwara T, et al. Settlement trough above a model shield observed in a centrifuge[J]. Centrifuge,1998:713-719.
    [42]Mair R J, Gunn M J, Oreilly M P. Ground movement around shallow tunnels in soft clay[J]. Tunnels and Tunnelling,1983,14(5):45-48.
    [43]Atkinson J H, Potts D M. Subsidence above shallow tunnels in soft ground[J]. J Geotech Engrg, ASCE,1977:307-325.
    [44]Sang-Hwan Kim. Interaction behaviours between parallel tunnels in soft ground[J]. Tunnelling and Underground Space Technology,2004,19(4-5):448.
    [45]Mair R J. Centrifugal modelling of tunnel construction in soft clay [D]. UK:Cambridge University,1979.
    [46]Taylor R N. Ground movements associated with tunnels and trenches [D]. UK:Cambridge University,1984.
    [47]Grant R J. Movements around a tunnel in two-layer ground [D]. UK:City University,1998.
    [48]Chapman D N, Ahn S K, Hunt D V L, Chan A H C. The Use of Model Tests to Investigate the Ground Displacements Associated with Multiple Tunnel Construction in Soil [J]. Tunnelling and Underground Space Technology,2006, 21(3-4):413-419.
    [49]周小文,濮家骝.砂土中隧洞开挖引起的地面沉降试验研究[J].岩土力学,2002,23(5),559-563.
    [50]姚燕明,杨龙才,刘建国.地铁车站施工对地面沉降影响的试验分析[J].城市轨道交通研究,2002,(1).70-73.
    [51]漆泰岳,高波,马亮.富水软土地层地铁开挖地表沉降离心模型试验[J].西南交通大学学报,2006,41(2):184-189.
    [52]Rowe R K, LoKY, Kack G J. A method of estimating surface settlement above tunnels constructed in soft ground[J]. Canadian Geotechnical Journal,1983, 20(8):11-22.
    [53]Finno R J, Clough G W. Evaluation of soil response to EPB shield tunnelling[J]. Journal of Geotech. Engineering, ASCE,1985,111(2):155-173.
    [54]Rowe R K, Lee J M. Subsidence due to tunnelling:Part II-evaluation of a prediction and technique[J]. Canadian Geotechnical Journal,1992,29(5):941-954.
    [55]Addenbrooke T I, Potts D M, Puzrin A M. The influence of pre-failure soil stiffness on the numerical analysis of tunnel Construction [J]. Geotechnique,1997. 47(3):693-712.
    [56]Addenbrooke T I. Numerical analysis of tunnelling in stiff clay [D]. Imperial College:University of London,1996.
    [57]Dolezalova M. Approaches to numerical modeling of ground movements due to shallow tunnelling[J]. Soil structure interaction in urban civil engineering, 2002,2:365-373.
    [58]Lee K M, Rowe R K. Deformations caused by surface loading and tunnelling:the role of elastic anisotropy[J]. Geotechnique,1989,39(1):125-140.
    [59]Ito T, Histake K.隧道掘进引起的三维地面沉陷分析[J].隧道译从,1985,(9):46-55.
    [60]Lee K M, Rowe R K. Finite element modeling of the three-dimensional ground deformation due to tunneling in soft cohesive soils:part 1-method of analysis[J]. Computers and Geotechnics,1990,10:87-109.
    [61]Lee K M, Rowe R K. Finite element modeling of the three-dimensional ground deformation due to tunneling in soft cohesive soils:part Ⅱ-results[J]. Computers and Geotechnics,1990,10:111-138.
    [62]张云,殷宗泽,徐永福.盾构法隧道引起的地表变形分析[J].岩石力学与工程学报,2002,21(3):388-392.
    [63]刘招伟,王梦恕,董新平.地铁隧道盾构法施工引起的地表沉降分析[J].岩石力学与工程学报,2003,22(8):1297-1301.
    [64]李桂花.盾构法施工引起的地面沉陷的估算方法[J].同济大学学报,1986,14(2):253-261.
    [65]赵华松,周文波等.双线平行盾构施工引起的土体位移分析及其软件开发[J].上海大学学报,2005,11(4):416421.
    [66]孔思丽.单隧道与双隧道盾构法施工引起的地层变形分析[J].贵州工业大学学报,2006,35(6):82-85.
    [67]胡炜,曾东洋.平行盾构隧道施工地表变位影响因素研究[J].铁道工程学报,2007,(3):50-55.
    [68]施建勇,张静,余才高等.隧道施工引起土体变形的半解析分析[J].河海大学学报:自然科学版,2002,30(6):48-51.
    [69]王穗辉,潘国荣.人工神经网络在隧道地表变形预测中的应用[J].同济大学学报:自然科学版,2001,29(10):1147-1151.
    [70]孙钧,袁金荣.盾构施工扰动与地层移动及其智能神经网络预测[J].岩土工程学报,2001,23(3):261-267.
    [71]周文波.盾构法隧道施工对周围环境影响和防治的专家系统[J].地下工程与隧道,1993,(4):120-138.
    [72]廖少明.盾构法隧道施工环境影响及其保护的专家系统研究[D].上海:同济大学,1991.
    [73]邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社,1998.
    [74]蒲武川,廖红建,邵珠山.地下隧洞对地面沉降影响的数值分析[J].地质与勘探,2003,39(8):145-148.
    [75]Lee C J, Jacobsz S W. The influence of tunnelling on adjacent piled foundations [J]. Tunnelling and Underground Space Technology,2006,21:430.
    [76]胡海波.地铁隧道穿越既有桥梁及地裂缝带施工的现场监测与数值模 拟研究[D].长沙:中南大学,2009.
    [77]陈学峰,曲强,蒋小锐.铁路框架地道桥受下穿隧道施工影响的研究[J].铁道部标准设计,2004,(8):36-37.
    [78]马涛.隧道施工引起的地层位移及其对邻近地下管线的影响分析[[)].长沙:长沙理工大学,2005.
    [79]刘海燕,姜玉松.隧道开挖对地表及建筑物影响研究与分析[J].西部探矿工程,2005,106(3):108-109.
    [80]陶禹.地铁施工对周边建筑物的影响及控制[J].铁道勘测与设计,2004,135(3):70-72.
    [81]麻永华,贺善宁.建筑物下浅埋暗挖隧道施工技术研究[J].隧道及地下工程,2004,(12):74-77.
    [82]Zaretskii Y K, Karabaev M I, Khachaturyan N S. Construction monitor of a Shallow tunnel in the lefortovo district of Moscow[J]. Soil Mechanics and Foundation Engineering,2004,41(2):45-51.
    [83]Shahin H M, Nakai T, Hinokio M, et al. Influence of surface loads and construction sequence on ground response due to tunneling[J]. Soil and Foundation, 2004,44(2):71-84.
    [84]南京地铁首条矿山法隧道贯通[N],新华日报,2002-04-30(C01).
    [85]黄沛.隧道施工对全风化花岗岩地区地表构筑物影响的研究[D].西安:西安建筑科技大学,2010.
    [86]陈荣国.大断面偏压浅埋隧道两台阶四步法施工方法初探[J].中华建设,2011,(5):108-109.
    [87]张华林,杨元洪,阳军生,等.传感器在监测隧道开挖对上方铁塔影响的应用[J].传感器与微系统,2011,30(10):150-152.
    [88]杨元洪.李家冲大跨度隧道施工与上覆高压输电铁塔相互影响分析[D].长沙:中南大学,2011.
    [89]Hualin Zhang, Junsheng Yang, Yuanhong Yang. Numerical Analysis of the Influence of Tunnel Construction on High-voltage Transmission Tower[J]. Advanced Materials Research,2012,368-373:2521-2525.
    [90]秦庆芝,曹玉杰,毛彤宇,等.特高压输电线路煤矿采动影响区铁塔基础设计研究[J].电力建设,2009,30(2):18-21.
    [91]史振华.采空区输电线路直线自立塔基础沉降及处理方案[J].山西电力技术,1997,17(3):18-20,35.
    [92]查剑锋,郭广礼,狄丽娟,等.高压输电线路下采煤防护措施探讨[J]. 矿山压力与顶板管理,2005,(1):112-114.
    [93]张建强,赵凤山,张全录,等.乌海伊临220kV高压输电线50号塔基地下采空区的稳定性分析[J].工程地质学报,2004,12(S):302-306.
    [94]张建强.采空区架空输电线路安全性评估及预防技术研究[D].洛阳:华北电力大学,2008.
    [95]张建强,杨昆,王予东,等.煤矿采空区地段高压输电线路铁塔地基处理的研究[J].电网技术,2006,30(2):30-34.
    [96]张晨,刘明雄,杨宪斌.500kV送电线路矿区塔基稳定性评价[J].西部探矿工程,2007,12:118-120.
    [97]赵环.架空送电线路通过沁水煤田塔位的稳定性分析[J].岩土工程界,2004,7(10):52-55.
    [98]李逢春,郭广礼,邓喀中.开采沉陷对架空输电线路影响预测方法及其应用[J].矿业安全与环保,2002,29(2):18-20.
    [99]张联军,王宇伟.高压输电铁塔下采煤技术研究[J].河北煤炭,2002,(4): 12-13.
    [100]张文,刘玉河,孙檀森.龙口洼里煤矿高压铁塔下采煤的观测[J].矿山测量,1999,(4):17-19.
    [101]陈海波.急倾斜煤层采空区某铁塔变形治理与监测[J].岩土力学,2003,24(S):427-430.
    [102]陈海波,陈富生.采空区架空送电线路塔基稳定性评价[J].电力勘测,2001,(1):30-32.
    [103]代建国,刘靖国,郑宇清.500 kV托源线采空区对线路运行的影响及对策分析[J].科技情报开发与经济,2008,18(33):198-199.
    [104]袁广林,杨庚宇,张云飞.地表变形对输电铁塔内力和变形的影响规律[J].煤炭学报,2009,34(8):1043-1047.
    [105]袁广林,张云飞,陈建稳等.塌陷区输电铁塔的可靠性评估[J].电网技术,2010,34(1):214-218.
    [106]杨风利,杨靖波,韩军科,等.煤矿采空区基础变形特高压输电塔的承载力计算[J].中国电机工程学报,2008,29(1):100-106.
    [107]王秀格,乔兰,孙歆硕.地下采空区上输电塔基稳定性的数值模拟[J].金属矿山,2008,(3):110-113,143.
    [108]孙冬明,夏军武,常鸿飞.地下开采后送电线路铁塔的受力性能研究[J].武汉理工大学学报,201.0,32(10):58-61.
    [109]张学东,裴红兵,许敏.处理采空区铁塔倾斜的一种新方法[J].山西 电力,2010,(3):63-64.
    [110]石振东,都汉涛.矿井开采对地面输电线路影响分析[J].矿山测量,2010,(5):74-75.
    [111]季善浩,李勃.煤矿采空区220 kV输电线路转角塔基础沉降及处理[J].山东电力技术,2011,(2):30-33.
    [112]赵海林,孟庆民.乌海地区采空区铁塔基础加固技术比较[J].内蒙古电力技术,2006,24(2):53-54.
    [113]罗文.地表220kV输电线路铁塔下采煤技术措施[J].煤炭工程,2007,(10):51-52.
    [114]文运平,郭文兵,郑彬.高压输电铁塔下采煤的安全性分析[J].煤矿开采,2010,15(4):35-37,11.
    [115]郭文兵,郑彬.地表水平变形对高压线铁塔的影响研究[J].河南理工大学学报:自然科学版,2010,29(6):725-730.
    [116]郭文兵,雍强.采动影响下高压线塔与地基、基础协同作用模型研究[J].煤炭学报,2011,31(7):1075-1080.
    [117]郭文兵,郑彬.高压线铁塔下放顶煤开采及其安全性研究[J].采矿与安全工程学报,2011,28(2):267-272.
    [118]成枢,姜永阐,刁建鹏.地下开采引起的高压线杆倾斜的定量研究[J].矿山测量,2003,(1):52-54.
    [119]郭文兵,邓喀中.高压输电线铁塔采动损害与保护技术现状及展望[J].煤炭科学技术,2011,39(1):97-101.
    [120]GB 50135-2006,高耸结构设计规范[S].北京:中国计划出版社,2007.
    [121]GB 50007-2002,建筑地基基础设计规范[S].北京:中国建筑资讯网,2002.
    [122]DL/T 5219-2005,架空送电线路基础设计技术规定[S].北京:中国电力出版社,2005.
    [123]DL/T 741-2001,架空送电线路运行规程[S].北京:中国电力出版社,2002.
    [124]GB 50545-2010,110KV-750KV架空输电线路设计规范[S].北京:中国计划出版社,2010.
    [125]李宏男,高压输电线路抗震分析与设计[M].北京:中国电力出版社,2009.
    [126]孙燕.500KV输电铁塔结构的几何非线性数值模拟[D].北京:华北电力大学,2007.
    [127]陈昌言,阎善玺等.35-220kV送电线路施工技术[M].北京:中国电力出版社,2002.
    [128]陆蕊.大林线220KV架空送电线路铁塔有限元分析研究[D].南宁:广西大学,2006.
    [129]刘振亚.国家电网公司输变电工程典型设计:500kV输电线路分册[M].北京:中国电力出版社,2007.
    [130]刘振亚.国家电网公司输变电工程典型设计:110kV输电线路分册[M].北京:中国电力出版社,2006.
    [131]刘振亚.国家电网公司输变电工程典型设计:220kV输电线路分册[M].北京:中国电力出版社,2005.
    [132]JTG/T***-2009,公路隧道设计细则[S].北京:人民交通出版社,2008.
    [133]湖南省交通规划勘察设计院.湖南省长沙至湘潭高速公路(复线)第十一合同段两阶段施工图设计(隧道)[Z],长沙,2009.
    [134]JTGF60-2009,公路隧道施工技术规范[S].北京:人民交通出版社,2009.
    [135]JTGD70-2004,公路隧道设计规范[S].北京:人民交通出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700