用户名: 密码: 验证码:
水泥混凝土路面传力杆的传荷失效机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传力杆与混凝土接触面的损坏是引起水泥凝土路面传力杆装置发生传荷失效,并造成道路横向缩缝结构过早损坏的重要原因之一。针对水泥混凝土路面传力杆的传荷失效问题,本文以模型分析法研究了传力杆的力学特性,以试验的方式展示了传力杆在多种破坏模式下的失效过程,从传力杆与混凝土接触面力学性能退化及混凝土保护层开裂两个角度揭示了传力杆发生传荷失效现象的物理机理。以建立理论模型的方式将传力杆的三种传荷失效过程进行力学简化,应用数值方法模拟了三种破坏过程中传力杆周边混凝土内的裂纹演化行为,进而提出了水泥混凝土路面缩缝结构临界车辆轴载控制指标的试验及数值计算方法。本文的工作可以总结如下:
     首先,建立了考虑传力杆与混凝土、面层与基层接触面力学行为的水泥混凝土路面三维有限元模型。通过改变车辆轴载大小、温度梯度条件及缩缝结构组合特征,研究了传力杆的力学特性,确定了水泥混凝土路面缩缝结构易发生损坏的最不利位置。在此基础上,开发了传力杆与混凝土接触面力学性能试验系统,并针对传力杆的多种失效模式设计了相应的试验方案。
     其次,利用试验系统,开展了传力杆试件的静力极限、拟静力疲劳及加速锈蚀试验,模拟传力杆与混凝土接触面在三种破坏模式下的失效过程。以试验过程中采集的声发射信号为基础,从传力杆与混凝土接触面力学性能退化及混凝土保护层开裂等角度探讨了传力杆在三种破坏模式下的传荷失效机理,进而提出了缩缝结构临界车辆轴载的试验方法。
     然后,根据传力杆与混凝土接触面破坏过程中的物理现象,抽象出传力杆的极限破坏行为力学模型、疲劳松动行为力学模型及传力杆-锈蚀产物-混凝土保护层耦合作用力学模型。应用数值方法,模拟了三种失效模式下传力杆周边混凝土内的裂纹演化行为,进而提出了缩缝结构临界车辆轴载的数值计算方法。
     最后,提出了增加传力杆在除冰盐环境中服役耐久性的改进措施。设计了新型钢质传力杆的构造形式,开发了不影响钢质传力杆锚固端力学性能的耐久型防锈涂料,研究了非金属GFRP传力杆的设计、验算方法。
     上述研究有助于正确地评估传力杆的工作状态,了解传力杆在不同破坏模式下的失效过程;同时,为设计更加耐久的传力杆装置提供了可借鉴的方案,为减少水泥混凝土路面横向缩缝结构的破坏提供一定的依据和参考。
Damage of the contact interface between dowel bar and concrete (CIDC) is themain reason for the transferring failure of dowel bar and early damage of shrinkjoints in the cement concrete pavements (CCP). Focused on the problem oftransferring failure, mechanical characteristics of dowel bar were studied in t histhesis. The failure process of dowel bar under different damage mode was explodedby means of tests, and the physical mechanics of transferring failure were presentedby the following two aspects: mechanical performance degradation of CIDC;cracking of covering layer.3types of transferring failure of dowel bar weremechanically simplified by means of theoretical model establishment, and the crackextension in the peripheral concrete of dowel bar was simulated by numericalmethod. And then the test and numerical calculation method of critical guidepostsof vehiculary axel load were indicated. The work in this thesis can be summarizedas the follows:
     First of all, the three-dimensional finite element model of CCP was established,the different contact situations of dowel bar to concrete and surface to base wereconsidered. By varying the combination characteristic of axel load, temperature andshrink joints, the mechanical characteristics of dowel bar were researched. Theunfavorable position of shrink joint where is most easily to be damaged was located.On this basis, testing system of CIDC was developed. According to differentdamage modes, different test schemes were accordingly designed.
     Secondly, by using the testing system, limited bearing capacity test, fatigue testand accelerated corrosion test were separately implemented to simulate the failureprocess under three damage modes of CIDC. Based on the obtained signal of soundemission test, the mechanics of transferring failure under three types of differentdamage modes was studied in the perspective of CIDC’s mechanical performancedegradation and cracking of covering layer. And then the test method of criticalvehicle axel load of shrink joint structure was proposed.
     Once again, according to the physical phenomenon of CIDC during its damageprocess, the following models of dowel bar were abstracted. They are limited damage model, fatigue loose model, dowel bar-corrosion product-covering layercoupled model. By applying numerical method, crack extension behavior in theposition of peripheral concrete of dowel bar was simulated under the three failuremodes. And then the numerical calculation method of critical vehicle axel load ofshrink joint structure was indicated.
     Finally, the durability improve method of dowel bar under the cryohydriccircumstance was proposed. Structural form of newtype steel dowel bar wasdesigned. Endurance coating mixture was developed, which is not affecting themechanical performance of steel dowel bar’s anchored-end. Design and checkmethod of GFRP dowel bar was also studied.
     Researches in this thesis are conducive to correctly evaluate the work status ofdowel bars, and also let people know about the failure process of dowel bar underdifferent damage modes. At the same time, offered engineers a referential scheme todesign more durable dowel bars, and presented a series of references to reduce thedamage of transverse shrink joint of CCP structure.
引文
[1]2011年公路水路交通运输行业发展统计公报[EB/OL].北京:中华人民共和国交通运输部,2012[2012-4-25].http://ww.oc.gov.cn/huzhan/ongjigongbao/enxigongbao/gyegongbao/201204/t20120425_1231778.html.
    [2]胡迟春,王端宜, Wang K J,等.水泥混凝土路面传力杆相关问题的研究综述[J].中外公路,2009,29(2):82-86.
    [3]黄仰贤.路面分析与设计[M].北京:人民交通出版社,1998.
    [4]唐伯明,蒙华,刘志军.欧美水泥混凝土路面设计使用现状综述[J].公路,2003,10:37-39.
    [5] American Association of State Highway and Transportation Officials. Guide forDesign of Pavement Structures [R]. AASHTO,1993,1998.
    [6] American Concrete Pavement Association. Joints and Jointing Practices [R].ACPA,2005.
    [7] Teller L W, Sutherland E C. The Structural Design of Concrete Pavements: Part5An Experimental Study of the Westergaard Analysis of Stress Conditionsin Concrete Pavement Slabs of Uniform Thickness[J]. Public Roads,1943,23(8):167-212.
    [8] Teller L W, Cashell H D. Performance of Dowels Under Repetitive Loading [J].Public Roads,1958,30(1):1-24.
    [9] Portland Cement Association. Design for Concrete Pavements, Portland CementAssociation [R]. PCA,1984.
    [10] American Association of State Highway and Transportation Officials. Guidefor Design of Pavement Structures[R]. AASHTO,1986,1993,2004.
    [11] Japan Road Association. Design and Construction Guidelines for CementConcrete Pavement[S]. Tokyo: Japan Road Association,2012.4.
    [12]蒋应军,戴经梁.传力杆与混凝土界面的接触应力[J].中国公路学报,2007,20(2):29-34.
    [13]周德云,姚祖康.水泥混凝土路面接缝传荷能力的分析[J].同济大学学报,1993,21(1):57-65.
    [14] Colley B E, Humphrey H A. Aggregate Interlock at Joints in ConcretePavements [R]. Washington D C: Highway Research Record No.189,1967:1-18.
    [15]中华人民共和国行业标准.公路水泥混凝土路面设计规范(JTG D40-2011)[S].北京:人民交通出版社,2011.
    [16] Portland Cement Association. Devoted to Concrete Roads, Streets&Alleys[G]. Concrete Highways and Public Improvements Magazine,1922.
    [17]郭大智,冯德成.层状弹性体系力学[M].哈尔滨:哈尔滨工业大学出版社,2001:117-121.
    [18]朱照宏,王秉纲,郭大智.路面力学计算[M].北京:人民交通出版社,1985,60-76.
    [19] Friberg B F. Design of Dowels in Transverse Joints of Concrete Pavements.Transactions of American Society of Civil Engineers,1940(195):1076-1095.
    [20] Westergaard H M. Analytical Tools for Judging Results of Structural Tests ofConcrete Pavements[J]. Public Roads,1933,14(10):185-188.
    [21] Westergaard H M. Stresses in Concrete Runways of Airports [C]. WashingtonD C: Highway Research Board,1939,19:197-202.
    [22] Heinrichs K W, Liu M J, Derter S H. Rigid Pavement Analysis and Design [R].Report No.FHWA-RD-88-068, Federal Highway Administration,1989.
    [23] Timoshenko S P. On the Correction for Shear of the Differential Equation forTransverse Vibrations of Prismatic Bars[J]. Philosophical Magazine,1921(245):744-746.
    [24] Bradbury R D, Gage R B. Design of Joints in Concrete Pavements, HighwayResearch Board Proceedings [C]. Washington D C: HRB,1932(12):105-141.
    [25] Bradbury R D. Load and Deflection Characteristics of Dowels in TransverseJoints of Concrete Pavements[C].18th Highway Research Board, NationalResearch Council,1938:156-157.
    [26] Bradbury R D. Reinforced Concrete Pavements[R]. Washington D C: WireReinforcement Institute,1938.
    [27] Tabatabaie A M, Barenberg E J. Structural Analysis of Concrete PavementJoints[D]. Chicago: University of Illinois,1977.
    [28] Tabatabaie A M, Barenberg E J. Structural Analysis of Concrete PavementSystems[J]. Transportation Engineering Journal,1980,106(5):493-506.
    [29] Guo E H, Sherwood J A, Snyder M B. Component Dowel Bar Model forLoad-Transfer Systems in PCC Pavements[J]. Transpation of ASCE,1995,121(3):289-298.
    [30] Ioannides A M, korovesis G T. Analysis and Design of Doweled Slab-on-GradePavement Systems[J]. Journal of transportation engineering,1992,118(6):745-768.
    [31] Crovetti J A. Design and Evaluation of Jointed Concrete Pavement SystemsIncorporating Open-Graded Permeable Bases[D]. Urbana: University ofIllinois at Urbana-Champaign,1994.
    [32] Ioannides A M, Alexander D R, Hammons M I, et al. Application of ArtificialNeural Networks to Concrete Pavement Joint Evaluation[J]. Journal of theTransportation Research Board,1996,1540:54-64
    [33] Zollinger D G, Bush N, Xin D, et al. Performance of Continuously ReinforcedConcrete Pavements. Volume VI-CRC Pavement Design, Construction, andPerformance[R]. National Technical Information Service,1999,2.
    [34] Hammons M I, Anastosios I M. Developments in Rigid Pavement ResponseModeling[R]. Technical Report, US Army Corps of Engineers,1996,8.
    [35] Eom I S, Parsons I D, Keith H. Nonlinear Analysis of the Load TransferMechanism in Rigid Pavement Systems Considering Various InterfaceConditions[D]. Urbana: University of Illinois at Urbana-Champaign.2000,12.
    [36] Kim J. ThreeíDimensional Finite Element Analysis of Multi-Layered System:Comprehensive Nonlinear Analysis of Rigid Airport Pavement Systems[D].Urbana: University of Illinois at Urbana-Champaign,2000.
    [37] Shiva S. Characterization of Stresses Induced in Doweled Joints Due toThermal and Impact Loads[D]. West Virginia: College of Engineering andMineral Resources at West Virginia University, Morgantown,2001.
    [38] Cheung Y K, Zienkiewicz O C. Plates and Tanks on Elastic Foundations-AnApplication of Finite Element Method[J]. International Journal of Solids andStructures,1965,(1):451-461.
    [39]曾胜.路面性能评价与分析方法研究[D].长沙:中南大学博士学位论文,2003,6.
    [40] Wang S K, Sargious M, Cheung Y K. Advanced Analysis of Rigid Pavement[J]. Transportation Engineering Journal, ASCE,1972,98(1):37-44.
    [41] Huang Y H, Wang S T. Finite Element Analysis of Concrete Slabs and itsImplication for Rigid Pavement Design[R]. Highway Research Record466,Highway Research Board,1973:55-69.
    [42] Huang Y H, Wang S T. Finite Element Analysis of Rigid Pavements withPartial Subgrade Contact[R]. Highway Research Record485, HighwayResearch Board,1974:39-54.
    [43] Huang Y H. Finite Element Analysis of Slabs on Elastic Solids [J].Transportation Engineering Journal, ASCE,1974,100(2):403-416.
    [44]付立平,姚祖康.砼路面接缝传荷能力的有限元分析[J].同济大学学报(自然科学版),1993,1:2-10.
    [45] Davids W G, Wang Z, Turkiy Y G, et al. Three-Dimensional Finite ElementAnalysis of Jointed Plain Concrete Pavement with EverFE2.2[J].Transportation Research Board,2003,1853(11):92í117.
    [46]陈飞,张宁,林亚萍,等.刚性路面传力杆接缝传荷能力评价新方法[J].交通运输工程学报,2006,6(4):47-51.
    [47]周正峰,凌建明,袁捷.机场水泥混凝土道面接缝传荷能力分析[J].土木工程学报,2009,42(2):112-118.
    [48] Maitra S R, Reddy K S, Ramachandra L S. Load Transfer Characteristics ofDowel Bar System in Jointed Concrete Pavement[J]. Journal of TransportationEngineering,2009,135(11):813-821.
    [49] Wadkar A, Cleary D, Guo E. Load-Transfer Efficiencies of Rigid AirfieldPavement Joints Based on Stresses and Deflections[J]. Journal of Maternials inCivil Engineering,2011,23(8):1171-1179.
    [50]周正峰.水泥混凝土路面接缝传荷能力的研究现状和发展趋势[J].公路,2011,7:49-52.
    [51] Chana P S. Analytical and Experimental Studies of Shear Failures inReinforced Concrete Beams[J]. Proceedings of The Institution of CivilEngineers,1988,12:609-628.
    [52] Karadelis J N. A Numerical Model for the Computation of Concrete PavementModuli: A Non-Destructive Testing and Assessment Method[J]. NDT&EInternational,2000,33(2):77-84.
    [53] Bhattacharya K. Nonlinear Response of Transverse Joints of AirfieldPavements[J]. Journal of Transportation Engineering,2000,4:168-177.
    [54] Shoukry S N, William G W, Riad M Y. Characteristics of Concrete ContactStresses in Doweled Transverse Joints[J]. International Journal of PavementEngineering,2002,3(2):117-129.
    [55]蒋应军.重载交通水泥混凝土路面材料与结构研究[D].西安:长安大学博士学位论文,2005.
    [56]蒋应军,张伟宏.传力杆对接缝传荷能力及临界荷位处应力的影响[J].工程力学,2009,26(3):21-25.
    [57] Riad M Y,Shoukry S N,William G W. Effect of Skewed Joints on thePerformance of Jointed Concrete Pavement Through3D Dynamic FiniteElement Analysis[J]. International Journal of Pavement Engineering,2009,10(4):251-263.
    [58] American Association of State Highway and Transportation Officials. AASHOHighway Definitions [R]. Special Committee on Nomenclature,1968.
    [59] Ahlvin R G, Ulery H H. Tabulated Values for Determining the CompletePattern of Stresses Strains and Deflections Beneath a Uniform Circular Loadon a Homogeneous Half Space[R].Transportation Research Board,1962,342(1):1-13.
    [60] Samuel O A, Robert S. Effects of Heavy Loading on Wisconsin's ConcretePavement[R]. Wisconsin D C: Highway Research Program#0092-05-06,2005.
    [61] Keeton J R, Bishop J A. Load Transfer Characteristics of a Dowelled JointSubjected to Aircraft Wheel Loads[C]. Washington D C: Highway ResearchBoard,1957:190-198.
    [62] Colley B E, Humphrey H A. Aggregate Interlock at Joints in ConcretePavements [C]. Washington D C: Highway Research Board,1967:1í18.
    [63] Porter M, Harrington J, Nathan P. Laboratory Evaluation of Concrete SlabDowels for The Greenstreak Group[R]. Iowa: Iowa State University,2006,7.
    [64] Darter M I, Barenberg E J. Design of Zero-Maintenance Plain Jointed ConcretePavement[R]. New York: Federal Highway Administration, Report No.FHWA-RD-77-111,1977,1.
    [65] Davids W G, Wang Z M.3D Finite Element Analysis of Jointed Plain ConcretePavement with EverFE2.2[R]. Washington D C: Transportation ResearchBoard,2003:68-79.
    [66]张军,李剑波,边惠英.刚性路面缩缝传力杆的受力分析与设计[J].中南公路工程,2001,26(4):7-8.
    [67] Snyder M B. Cyclic Shear Load Testing of Dowels in PCC PavementRepairs[R[. Washington D C: Transportation Research Board,1989:246-257.
    [68] Guo H, Dong M. An Analytical Model for Evaluating Computer Programs forStructural Analysis of Jointed Concrete Pavements[R]. Washington D C:Workshop on Load Equivalency,1992,2.
    [69] Buch N, Zollinger D G. Development of Dowel Looseness Prediction Modelfor Jointed Concrete Pavements[R]. Washington D C: Transportation ResearchBoard,1996:21-27.
    [70]张宁,黄晓明.重复荷载下传力杆接缝运行特性[J].东南大学学报,1998,28(2):89-95.
    [71] Abo-Qudais S A, Al-Qadi I L. Dowel Bars Corrosion in Concrete Pavement[J].Canadian Journal of Civil Engineering,2000,27(6):1240-1247.
    [72] Shalaby A, Mufti A. Labortory Evaluation of Concrete-filled GFRP Dowels inJointed Concrete Pavements[R]. Quebec City: Transportation Association ofCanada,2004.
    [73] Andreev G. Brittle Failure of Rock Materials: Test Results and. ConstitutiveModels[M]. Rotterdam/Brookfield: Balkema A A,1995.
    [74]郭少华.混凝土破坏理论研究进展[J].力学进展,1993,2(4):520-527.
    [75] Mindess S. Fraeture proeess zone detection[M]. London: Chapman&Hall,1991.
    [76]杜效鹊,段云岭.准脆性材料中强不连续问题的数值方法若干应用及其研究进展[J].力学进展,2006,36(2):247-263.
    [77]朱万成,赵启林,唐春安,等.混凝土断裂过程的力学模型与数值模拟[J].力学进展,2002,32(4):579-597.
    [78]钱令希,龙驭球,张德良.计算力学[M].北京:中国大百科全书出版社,1985:227-228.
    [79]黄克智,肖纪美.材料的损伤断裂机理和宏微观力学理论[M].北京:清华大学出版社,1999.
    [80]范天佑.断裂理论基础[M].北京:科学出版社,2003.
    [81] Griffith A A. The Phenomena of Rupture and fFlow Insolids[J]. PhilosophicalTransactions of the Royal Society of London,1920,221:163-198.
    [82] Irwin G R. Fracture Dynamics[C].Proceedings of the ASM Symposium onFracturing of Metals. Cleveland, Ohio,1948:147-166.
    [83] Irwin G R. Analysis of Stress and Strains Near the End of a Crack TransversingA Plate [J]. Journal of Applied Mechanics,1957,24:361-364.
    [84] Nevi1le A M. Some Aspects of the Strength of Concrete[J].Civil Engineering,1959,54:1153-1156.
    [85] Kaplan M F. Crack Propagation and the Fracture of Concrete[J]. ACI Journal,1961,58(11):598-610.
    [86] Ouchterlong F. Suggested Methods for Determining the Fracture Toughness ofRock[J]. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1988,25:71-96.
    [87] Standard Test Method for Measurement of Fracture Toughness[S].ASTM,E1820-2011.
    [88] Standard test method for Linear-Elastic Plane-Strain Fracture Toughness KICof Metallic Materials[S].RILEM, E399-09.
    [89] Japan Concrete Institute Standard.Method of Test for Fracture Energy ofConcrete by Use of Notched Beam[S]. JCI-S-001-2003.
    [90] Kesler C E, Naus D J, Lott J L. Fraetur Mechanics Its Applicability to Concretein Mechanical Behavior of Materials[C]. Proeeedings of the InternationalConference on Mechanical Behavior of Materials, Japan,1972,4:113-124.
    [91]于晓中,居襄.断裂力学在水上结构设计中的应用[J].水利学报,1980,5:86-87.
    [92]潘家铮.断裂力学在水工结构设计中的应用[J].水利学报,1980, l:45-59.
    [93] Head A K. On the Growth of Fatigue Crack[J]. The Philosophical Magazine,1953,44(7):7-25.
    [94] Liu H W. Crack Propagation in Thin Metal Sheet under Repeated Loading[D].Illinois: University of Illinois,1959.
    [95] Liu H W. Crack Propagation in Thin Metal Sheet under Repeated Loading[J].ASME Transpration Journal of Basic Engineering,1961:23-32.
    [96] Pairs P C, Endergan F A. A Critical Analysis of Crack Propagation Laws[J].Transaction of the ASME, J.of Basic Engineering,1963,85(1);116-122.
    [97] Mcclintock F A. On the Plasticity of the Growth of Fatigue Crack[J]. Fractureof Solid,1963,20:65-102.
    [98] Frost N E. The Growth of Fatigue Cracks[C]. Sendai: The Japan Society forStrength and Fracture of Materials,1966,1433-1469.
    [99] Bicci R J, Wessel E T, Pairs P C. Extensive Study of Low Fatigue CrackGrowth Rate in A508Steel. ASTM STP513, American Society Test Materials,Philadelphia,1972.
    [100]吴智敏,赵国藩,黄承奎.混凝土疲劳断裂特性[J].土木工程学报,1995(3):59-65.
    [101] Bazant Z P. Crack Band Model for Fracture of Geomaterials[C]. Edmonton:4th International conference on Numerical Methods in Geomechanics,1982,3:1137-1152.
    [102] Rice J R. A Path Independent Integral and the Approximate Analysis of StrainConcentration by Notches and Cracks[J].Journal of App;ied echanics,1968,35:79-386.
    [103] Moura B,Shih C F. A Treatment of Crack Tip Contour Integrals[J].International Journal of Fracture,1987,35:295-310.
    [104] Shivakumar K N, Raju I S. An Equivalent Domain Integral Method forThree-Dimensional Mixed-Mode Fracture Problem[J]. Engineering FractureMechanics,1992,42:935-959.
    [105] Rots J G. Smeared and Discrete Representations of Localized Fraeture[J].International Journal of Fracture,1991,51:45-59.
    [106] Borst R D. Smeared Cracking, Plasticity, Creep, and Thermal Load in aUnified Approach[J]. Computer Methods in Applied Mechanics andEngineering,1987,62:89-110.
    [107] Hillerborg A, Modeer M. Analysis of Crack Formation Crack Growth inConcrete by Means of Frceture Mechanics and Finite Elements[J]. Cementand Concrete Research,1976,6(6):773-782.
    [108] Bazant Z P, Oh B H. Crack Band Theory for Fracture of Conerete[J]. Materialand Strecture,1983,16(93):155-166.
    [109] Borst R, Nuata P. Non-ohrtogonal Cracks in Smeared Finite ElementModel[J]. Engineering Compute,1985,2(l):35-46.
    [110]侯艳丽.砼坝-地基破坏的离散元方法与断裂力学的耦合模型研究[D].北京:清华大学博士学位论文,2005,10.
    [111] Berenblatthe G I. The Formation of Equilibrium Cracks During BrittleFacture[J]. General ideas and hypothesis,1959,23:434-444.
    [112] Dugdale D S. Yielding of Steel Sheets Containing Slits[J]. Joumal of theMechanics and Physics of Solids,1960,8:100-104.
    [113] Hillebrorg A, Modeer M, Petersson P E. Analysis of Crack Formation andCrack Growth in Concrete by Menas of Fracture Mechanics and FiniteElements[J]. Cement and Concerte Research,1976,6(6):773-782.
    [114]方修君,金峰,王进廷.用扩展有限元方法模拟混凝土的复合型开裂过程[J].工程力学,2007,24(9):46-51.
    [115] Dhondt G. Automatic3-D Model I Crack Propagation Calculations with FiniteElements[J].Internation Journal of Numerical Engineering,1998,41(4):737-757.
    [116] Xu X P, Needleman A. Numerical Simulations of Fast Crack Growth in BrittleSolids[J]. Journal Mechanics Physics Solids,1994,42:1397-1434.
    [117] Ortiz M,Leroy Y,NeedlemanA. Afinite element method for localized failureanalysis[J].Compute Method Applied Mechanics Engineering,1987,61:189-214.
    [118] Belvtschko T, Black T. Elastic Crack Growth in Finite Element with MinimalRemeshing [J]. International Journal for Numerical Methods in Engineering,1999,45:601-620.
    [119] Moes N, Dolbw J, Belvtschko T. A Finite Element Method for CrackingGrowth without Remeshing[J]. International Journal for Numerical Methodsin Engineering,1999,46:131-150.
    [120]冯德成,田林,曹鹏.基于扩展有限元方法的路基不均匀沉降纵向裂缝分析[J].工程力学,2011,28(5):149-154.
    [121] Ooi E T, Song C, Loi F T, et al. Automatic Modeling of Cohesive CrackPropagation in Concrete Using Polygon Scaled Boundary Finite Elements [J].Engineering Fracture Mechanics,2012,93(10):13-33.
    [122] Ameen M, Raghu B K, Gopalakrishnan A R. Modeling of ConcreteCracking A Hybrid Technique of Using Displacement DiscontinuityElement Method and Direct Boundary Element Method [J]. EngineeringFracture Mechanics,2012,35(9):1054-1059.
    [123]解德,钱勤,李长安.断裂力学中的数值计算方法及工程应用[M].北京:科学出版社,2009,08.
    [124] Wadkar A, Cleary D, Guo E. Load-transfer Efficiencies of Rigid AirfieldPavement Joints Based on Stresses and Deflections [J]. Journal of Maternialsin Civil Engineering,2011,23(8):1171-1179.
    [125] Reyes E, Galvez J C, Casati M J, et al. An Embedded Cohesive Crack Modelfor Finite Element Analysis of Brick Work Masonry Fracture [J]. EngineeringFracture Mechanics,2009,76(12):1930-1944.
    [126]王端宜,胡迟春,王永斌,等.复合材料作为水泥混凝土路面传力杆的尝试[J].公路,2007,1:32-36.
    [127] Embacher R A, Snyde M B, Odden T D. Using the Minnesota AcceleratedLoading Facility to Test Retrofit Dowel Load Transfer Systems[J].Transportation Research Board of the National Academies,2001,1769(1):134-141.
    [128] Khader A A. Evaluation of MMFX Corrosion-Resistant Steel Dowel Bars inConcrete Pavements[R]. Wisconsin: Wisconsin Department of Transportation,2002,8.
    [129] Porter M, Hughes B W, Barnes B A, et al. Non-Corrosive Tie Reinforcingand Dowel Vars for Highway Pavement Slabs [R]. Iowa: Department andTransportation of Iowa,1993.
    [130] Brown V L, Bartholomew C L. FRP Dowel Bars in Reinforced ConcretePavements[R]. Farmington Hills: American Concrete Institute,1993,9.
    [131]王荣国,武卫莉,谷万里.复合材料概论[M].哈尔滨:哈尔滨工业大学出版社.1999.
    [132]黄士元.混凝土的耐久性与结构物的安全性[J].混凝土与水泥制品,1996,1:4-9.
    [133]邹祖讳.复合材料的结构和性能[M].北京:科学出版社,1999.
    [134]黄丽主.聚合物复合材料[M].北京:中国轻工业出版社,2001.
    [135]徐新生. FRP筋力学性能及其混凝土梁受弯性能研究[D].天津:天津大学博士学位论文,2007.
    [136]刘小艳,王新瑞,刘爱华.海洋工程中GFRP筋耐久性研究进展[J].水利水电科技进展,2012,32(3):86-89.
    [137]王伟,孟艳玲,钱文军.碱侵蚀环境下FRP筋的耐久性[J].合成树脂及塑料,2009,26(2):27-30.
    [138]张新越,欧进萍. FRP筋酸碱盐介质腐蚀与冻融耐久性试验研究[J].武汉理工大学学报,2007,29(1):33-36.
    [139] Elbady M, Elzaroug O. Behaviour and Design of Structural ConcreteReinforced with CFRP Rebars for Temperature Effects[C]. London:Proceedings of the Fifth International Conference on Fibre-Reinforced Plasticfor Reinforced Concrete Structur,2011.
    [140] Luca A D, Nanni A. FRP Reinforcement For Concrete Structur[M]. Orlando:Wiley Encyclopedia of Composites Publisher,1993.
    [141] Ehsani M R, Sadat M H, Tao S. Bond of Hooked Glass Fiber ReinforcedPlastic (GFRP) Reinforcing Bars to Concrete[J]. ACI Materials Journal,1995,92(4):391-400.
    [142] Shahrooz B M, Boy S, Basehear T M. Flexural Strengthening of Four76-Year-Old T-Beams with various fiber-reinforced polymer systems: testingand analysis[J]. ACI Structural Journal,2002,99(5):681-691.
    [143] Karbhari V M, Chin J M, Hunston D, et al. Durability Gap Analysis for Fiber--Reinforced Polymer Composites in Civil Infrastructure[J]. Journal ofComposites for Construction,2003,7(3):238-247.
    [144] Eddie D, Shalaby A, Rizkalla S. Glass Fiber-Reinforced Polymer Dowels forConcrete Pavements[J]. ACI Structural Journal,2001,3:201-206.
    [145]陈剑,苏跃宏.交通荷载作用下公路路基动力特性的数值模拟研究[J].公路交通科技,2011,28(5):44-48.
    [146]徐鹏,蔡成标.列车-有砟轨道-路基空间耦合动力学模型[J].工程力学,2011,28(3):191-197.
    [147] Cheung Y K, Zienkiewicz O C. Plates and Tanks on Elastic Foundations-AnApplication of Finite Element Method [J]. International Journal of Solids andStructures,1965,(1):451-461.
    [148] Wang S K, Sargious M, Cheung Y K. Advanced Analysis of Rigid Pavement[J]. Transportation Engineering Journal, ASCE,1972,98(1):37-44.
    [149] Riad M Y, Shoukry S N, William G W, et al. Effect of Skewed Joints on thePerformance of Jointed Concrete Pavement Through3D Dynamic FiniteElement Analysis[J]. International Journal of Pavement Engineering,2009,10(4):251-263.
    [150]肖益民,丁伯承.水泥混凝土路面与基层接触状况的研究[J].公路,2009,9:32-33.
    [151] Davids W G, Wang Z, Turkiy Y G, et al. Three-Dimensional Finite ElementAnalysis of Jointed Plain Concrete Pavement with EverFE2.2[J].Transportation Research Board,2003,1853(11):92-117.
    [152]中华人民共和国建设部.通混凝土力学性能试验方法标准(GB/T50081-2002)[S].北京:机械工业出版社,2003.
    [153]田波,姚祖康,赵队家,等.承受特重车辆作用的水泥混凝土路面应力分析[J].中国公路学报,2000,13(2):16-19.
    [154]黄立葵,余进修,孔铭,等.路面结构极限承载能力分析[J].湖南大学学报(自然科学版),2007,34(2):6-10.
    [155] Himeno K, Kamijaima T, Ikeda T.Distribution of Tire Contact Pressure ofVehicles and Its Influence on Pavement Distresses[C]. Washington D C:8thInternational Conference on Asphalt Pavements,1997.129-139.
    [156] Darter M I, Barenberg E J. Design of Zero-Maintenance Plain JointedConcrete Pavement[R]. Federal Highway Administration, Report No.FHWA-RD-77-111,1977,1.
    [157]谢国忠,袁宏,姚祖康.水泥混凝土路面最大温度梯度值[J].华东公路,1982,6:9-20.
    [158]王显利.氯离子侵蚀的钢筋混凝土结构锈蚀损伤[D].大连:大连理工大学博士学位论文,2007,10.
    [159]钱伟长,叶开源.弹性力学[M].北京:科学出版社,1956.
    [160]沈新普,冯金龙,代树红,等.基于DSCM的混凝土结构变形局部化试验[J].沈阳工业大学学报,2008,30(2):213-218.
    [161]谭忆秋,张魁,吴思刚,等.应用数字散斑技术的沥青混合料劈裂应变研究[J].哈尔滨工业大学学报,2009,41(9):56-58.
    [162]陈爱玖,章青,刘仲秋,等.混凝土细观分析的研究现状[J].混凝土,2008,6:21-25.
    [163] Suzuki T, Ogata H, Takada R, et al. Use of Acoustic Emission and X-rayComputed Tomography for Damage Evaluation of Freeze-ThawedConcrete[J]. Construction and Building Materials,2010(24):2347-2352.
    [164]丁幼亮,邓扬,李爱群.声发射技术在桥梁结构健康监测中的应用研究进展[J].防灾减灾工程学报,2010,3(30):341-351.
    [165]王宏伟,骆红云,韩志远等.基于声发射非线性模型的损伤状态转变的评估[J].北京航空航天大学学报,2010,36(10):1225-1228.
    [166]张力伟.混凝土损伤检测声发射技术应用研究[D].大连:大连海事大学博士学位论文,2012,5.
    [167] Weidlich W, Huebner H. Dynamics of Political Opinion Formation IncludingCatastrophe Theory[J]. Journal of Economic Behavior&Organization,2008,67(1):1-26.
    [168]田卿燕,傅鹤林.基于灰色突变理论的块裂岩质边坡崩塌时间预测[J].华南理工大学学报(自然科学版),2009,37(12):122-126.
    [169]纪洪广.混凝土材料声发射性能研究与应用[M].北京:煤炭工业出版社,2004.
    [170]刘培洵,刘力强,黄元敏,等.声发射定位的稳健算法[J].岩石力学与工程学报,2009,(S1):2760-2764.
    [171]张明,李仲奎,杨强,等.准脆性材料声发射的损伤模型及统计分析[J].岩石力学与工程学报,2006,25(12):2493-2501
    [172]段跃华.基于X-ray CT的沥青混合料粗集料基础特性研究[D].华南理工大学博士学位论文,2011.
    [173]高英力,胡柏学,罗阳青.工业CT层析扫描技术在混凝土微结构研究中的应用现状浅析[J].公路工程,2010,35(1);60-63.
    [174]王阵地,姚燕,王玲.冻融循环-氯盐侵蚀-荷载耦合作用下混凝土中钢筋的锈蚀行为[J].硅酸盐学报,2011,39(6):1022-1027.
    [175]王林科,周军,马永欣.一般大气环境中钢筋的锈蚀机理与体积膨胀系数[J].西安建筑科技大学学报,1997,29(4);443-446.
    [176]田志宏,张秀华,田志广. X射线衍射技术在材料分析中的应用[J].工程与试验,2009,49(3):40-42.
    [177]陈小平,王向东,米丰毅,等.氯离子环境下混凝土钢筋的锈蚀过程[J].腐蚀与防护,2011,32(3):190-196.
    [178]中华人民共和国行业标准.公路工程水泥及水泥混凝土试验规程(JTGE30-2005)[S].北京:人民交通出版社,2005.
    [179]纪洪广.混凝土材料声发射性能研究与应用[M].北京:煤炭工业出版社,2004.
    [180]吴胜兴,王岩,沈德建.混凝土及其组成材料轴拉损伤过程声发射特性试验研究[J].土木工程学报,2009,46(7):21-27.
    [181] Yang Z F. Assessing Cumulative Damage in Concrete and Quantifying ItsInfluence on Life Cycle Performance Modeling[D]. West Lafayette: PurdueUniversity,2004
    [182]国防科技工业无损检测人员资格鉴定与认证培训检测编审委员会.声发射检测[S].北京:机械工业出版社,2005.
    [183]骆英,于长煦,顾爱军.应用声发射技术的钢筋与混凝土粘结滑移特性研究[J].实验力学,2011,26(4):343-348.
    [184]江见鲸,李杰,金伟良.高等混凝土结构理论[J].北京:中国建筑工业出版社,2007.
    [185] Rots J G. Smeared and Discrete Representations of Localized Fraeture[J].International Journal of Fracture,1991,51:45-59.
    [186] Borst R D. Smeared Cracking,Plasticity,Creep,and Thermal Loadin-aUnified Approach[J].Computer Methods in Applied Mechanics andEngineering,1987,62:89-110.
    [187]曹鹏,冯德成,曹一翔.沥青混凝土小梁断裂路径数值模拟研究[J].公路,2012,6:92-95.
    [188]曹鹏,冯德成,田林,等.基于弹塑性损伤理论的水泥稳定基层养生期裂缝形成机理分析[J].工程力学,2011,28(SI):99-102.
    [189] Embacher R A, Snyde M B, Odden T D. Using the Minnesota AcceleratedLoading Facility to Test Retrofit Dowel Load Transfer Systems[J].Transportation Research Board of the National Academies,2001,1769(1):134-141.
    [190] Belvtschko T, Black T. Elastic Crack Growth in Finite Element with MinimalRemeshing [J]. International Journal for Numerical Methods in Engineering,1999,45:601í620.
    [191] Moes N, Dolbw J, Belvtschko T. A Finite Element Method for CrackingGrowth without Remeshing [J].International Journal for Numerical Methodsin Engineering,1999,46:131-150.
    [192]孟凡深,陈守开,郭磊.基于子模型法的碾压混凝土坝孔口结构施工期温度应力研究[J].农业工程学报,2012,28(9):90-95.
    [193] Desal C S, Abel J F. Introduction to the Finite Element Method[M]. New York:Van Nostrand Reinhold,1972.
    [194]颉志强,强晟,许朴,等.水管冷却混凝土温度场和应力场计算的有限元子结构法[J].农业工程学报,2011,27(5):13-18
    [195]中华人民共和国建设部.普通混凝土力学性能试验方法标准(GB/T50081-2002)[S].北京:机械工业出版社,2003.
    [196]左文锌.基于双K模型的纤维混凝土I型断裂特性研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2010,6.
    [197] Saleh A, Aliabadi M. Crack Growth Analysis in Concrete Using BoundaryElement Method [J]. Engineering Fracture Mechanics,1995,51:533-545.
    [198] Xie M, Gerstle W. Energy-based Cohesive Crack Propagation Modeling[J].Journal of Engineering Mechanics,1995,121:1349-1358.
    [199] Cendon D A, Galvez J C, Elices M, et al. Modelling the Fracture of Concreteunder Mixed Loading [J].International Journal of Fracture,2000,103:293-310.
    [200] Ozbolt J, Reinhardt H W. Numerical Study of Mixed-Mode Fracture inConcrete[J]. International Journal of Fracture,2002,118:145-161.
    [201] ABAQUS (Version6.5) Benchmark Mannual [Z]. ABAQUS Inc.,2004.1247-1260.
    [202]梁正召.三维条件下的岩石破裂过程分析及数值试验方法研究[D].沈阳:东北大学博士学位论文,2005.
    [203]邬翔,李杰.图像处理在混凝土力学性能研究中的应用[J].建筑材料学报,2009,12(1):12-16.
    [204]吴智敏,赵国藩,黄承奎.混凝土疲劳断裂特性[J].土木工程学报,1995(3):59-65.
    [205] Buccr R J, Clark W G, Paris P C. Fatigue-Crack-Propagation Growth RatesUnder a Wide Variation of△K for an ASTM A517Grade F (T-1) Steel[S].Philadelphia: American Society Test Materials,1972.
    [206] Pairs P C, Bicci R J, Wessel E T. Extensive Study of Low Fatigue CrackGrowth Rate in A508Steel.ASTM STP513[S]. Philadelphia: AmericanSociety Test Materials,1972.
    [207] Rice J R. A Path Independent Integral and the Approximate Analysis of StrainConcentration by Notches and Cracks[J].Journal of Applied Mechanics,1968,35:379-386.
    [208] Moura B, Shih C F. A Treatment of Crack Tip Contour Integrals[J].International Journal of Fracture,1987,35:295-310.
    [209] Shivakumar K N, Raju I S. An Equivalent Domain Integral Method forThree-Dimensional Mixed-Mode Fracture Problem[J]. Engineering FractureMechanics,1992,42:935-959.
    [210] Irwin G R. One Set of Fast Crack Propagation in High Strength Steel andAluminum Alloy[C]. Sagamore Research Conference Proceeding,1956,2:289-305.
    [211] Rybicki E F, Kannimen M F. A Finite Element Calculation of Stress IntensityFactors by a Modified Crack Closure Integral [J]. Engineering FractureMechanics,1977,9:931-938.
    [212] Benzeggagh M L, Kenane M. Measurement of Mixed-Mode DelaminationFracture Toughness of Unidirectional Glass/Epoxy Composites with MixedMode Bending Apparatus[J]. Composites Science and Technology,1996,56(4):439-449.
    [213] Planas J, Elices M, Guinea G V, et al. Generalizations and Specializations ofCohesivecrack Models [J]. Engineering Fracture Mechanics,2003,70:1759-1776.
    [214] Baram J, Rosen M. Fatigue Life Prediction by Distribution Analysis ofAcoustic Emission Signals[J]. Materials Science and Engineering,1979,41(11):25-30.
    [215] Baram J, Rosen M. Prediction of Low-Cycle Fatigue-Life by AcousticEmission-1:2024-T3Aluminum Alloy[J]. Engineering Fracture Mechanics,1981,15:477-486.
    [216] Santosh G, Shah, J M, Kishen C. Use of Acoustic Emissions in FlexuralFatigue Crack Growth Studies on Concrete[J]. Engineering FractureMechanics,2012,87(6):36-47.
    [217]赵艳华,徐世烺,吴智敏.混凝土结构裂纹扩展的双G准则[J].土木工程学报,2004,37(10):14-18.
    [218] Xu Y J, Yuan H. Computational Analysis of Mixed-Mode Fatigue CrackGrowth in Quasi-Brittle Materials Using Extended Finite Element Methods[J].Engineering Fracture Mechanics,2009,76(2):165-181.
    [219] Mall S, Kochhar N K. Characterization of Debond Growth Mechanism inAdhesively Bonded Composites under ModeⅡStatic and Fatigue Lodings[J].Engineering Fracture Mechanics,1988,31:747-758.
    [220]王阵地,姚燕,王玲.冻融循环-氯盐侵蚀-荷载耦合作用下混凝土中钢筋的锈蚀行为[J].硅酸盐学报,2011,39(6):1022-1027.
    [221]王林科,周军,马永欣.一般大气环境中钢筋的锈蚀机理与体积膨胀系数[J].西安建筑科技大学学报,1997,29(4):443-446.
    [222]王显利.氯离子侵蚀的钢筋混凝土结构锈蚀损伤[D].大连:大连理工大学博士学位论文,2007,10.
    [223]张俊芝,郑辉,周建民,王梁英,等.自然扩散法预测感潮环境下混凝土氯离子侵蚀[J].建筑材料学报,2011,14(2):164-168.
    [224]金伟良,王晓舟.基于锈胀开裂路径的混凝土构件耐久性能概率预测模型及应用[J].建筑结构学报,2011,32(1):95-104.
    [225]徐港,徐可,王青,等.钢筋混凝土结构锈胀开裂全过程仿真分析[J].建筑材料学报,2012,15(3):327-332.
    [226]林泳城,杨杰,王珐玮,等.混凝土保护层初始开裂影响因素分析[J].低温建筑技术,2012,4:36-38.
    [227]卢鹏程.基于虚拟裂缝模型的钢筋混凝土最大锈胀力模型[J].混凝土,2010,5:25-28.
    [228]林刚,向志海,刘应华.钢筋混凝土保护层锈胀开裂时间预测模型[J].清华大学学报(自然科学版),2010,50(7):1125-1129.
    [229]李士彬,张鑫,贾留东,等.箍筋锈蚀钢筋混凝土梁的抗剪承载力分析[J].工程力学,2011,28(S1):60-63.
    [230]吕毅刚,张建仁,彭晖,等.锈蚀钢筋混凝土双筋矩形梁抗弯承载力分析[J].实验力学,2011,26(4):471-476.
    [231]张邵峰,陆春华,陈妤,等.裂缝对混凝土内氯离子扩散和钢筋锈蚀的影响[J].工程力学,2012,29(S1):97-100.
    [232]林泳城,杨杰,王珐玮,等.混凝土保护层初始开裂影响因素分析[J].低温建筑技术,2012,4:36-38.
    [233]卫军,徐港,王青.锈蚀钢筋与混凝土粘结应力模型研究[J].建筑结构学报,2008,29(1):112-116.
    [234]任海洋.不同环境下钢筋锈蚀产物的力学性能研究[D].杭州:浙江大学硕士学位论文,2010,3.
    [235]哈娜,王连广.方钢管钢骨混凝土中钢骨锈蚀量计算[J].东北大学学报(自然科学版),2008,29(4):589-592.
    [236]袁迎曙,章鑫森,姬永生.人工气候与恒电流通电法加速锈蚀钢筋混凝土梁的结构性能比较研究[J].土木工程学报,2006,39(3):42-46.
    [237]曾严红,顾祥林,张伟平.混凝土中钢筋加速锈蚀方法探讨[J].结构工程师,2009,25(1):101-105.
    [238]陈小平,王向东,米丰毅,等.氯离子环境下混凝土钢筋的锈蚀过程[J].腐蚀与防护,2011,32(3):190-196.
    [239]米丰毅,王向东,陈小平,等.海洋大气环境下低碳稀土钢耐腐蚀性能的研究[J].稀土,2011,32(4):19-24.
    [240] Bazant Z P, Najjar L J. Nonlinear Water Diffusion in Nonsaturated Concrete[J]. Material and Structure,1972,5(1):3-20.
    [241]潘洪科,王穗平,祝彦知,等.钢筋混凝土结构锈胀开裂的耐久性寿命评判与预测研究[J].工程力学,2009,26(7):111-116.
    [242]金伟良,赵羽习,鄢飞.钢筋混凝土构件的均匀钢筋锈胀力的机理研究[J].水利学报,2001,32(7):57-62.
    [243]林刚,向志海,刘应华.置于氯盐环境中混凝土结构钢筋起锈时间预测[J].工程力学,2010,27(9):147-153.
    [244] Liu Y P, Weyers R E. Modeling the Time-to-Corrosioncracking in ChlorideContaminated Reinforced Concrete Structures[J]. ACI Materials Journal,1998,95(6):675-681.
    [245]邹雨,庄茁,黄克智.超弹性材料过盈配合的轴对称平面应力解答[J].工程力学,2004,21(6):72-75.
    [246] Hjelmstad K D, Shin S. Damage Detection and Assessment of StructuresFrom Static Response[J]. ASCE Journal of Engineering Mechanics,1997,123(6):568-576.
    [247]刘全坤,王匀.基于Lagrange插值的变过盈量对扁挤压筒变形和强度分析[J].中国机械工程,2004,15(2):168-174.
    [248] Wells G N, Sluys L J. A new Method for Modeling Cohesive Cracks UsingFinite Elements[J]. International Journal for Numerical Methods inEngineering,2001,50:2667-2682.
    [249] Bazant Z P. Crack Band Model for Fracture of Geomaterials[C]. Edmonton:4th International conference on Numerical Methods in Geomechanics,1982,3:1137-1152.
    [250] Lundgren K. Bond between Ribbed Bars and Concrete. Part2: The Effect ofCorrosion[J]. Magazine of Concrete Research,2005,57(7):383-395
    [251]赵羽习,任海洋.基于固结试验和接触理论分析的铁锈力学性能[J].中国腐蚀与防护学报,2010,30(5):383-389.
    [252]于晓光,李楠,郭强.常温型丙烯酸树脂道路标线涂料的制备与性能测定[J].大连轻工学院学报,2005,24(3):171-173.
    [253]胡志鹏.我国道路标线涂料发展应用现状[J].现代涂料与涂装,2007,10(10):37-39.
    [254]中华人民共和国公共行业标准.道路标线涂料(GA/T298-2001)[S].中华人民共和国公安部,2001.
    [255]欧进萍,王勃,何政. CFRP加筋混凝土梁的力学性能试验与分析[J].土木工程学报,2005,38(12):8-12.
    [256]王彩波,宋建夏,金宝.涤纶纤维在混凝土碱环境下的性能研究[J].四川建材,2009,35(4):11-12.
    [257]高阳,王天稳,王曦明.钢材在碱性条件下腐蚀性能的试验研究[J].钢结构,2011,3:68-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700