用户名: 密码: 验证码:
作大范围运动格构式桥检车刚柔耦合系统动力学分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题来源于国家“十一五”科技支撑计划项目“无脚手架安装作业装备技术研究与产业化开发”中的《大型桥梁检测、维护作业设备技术与产业开发》(2008BAJ09B01-3)的子课题。桥检车全称桥梁检测作业车,是对桥梁进行流动安全检测的专用车辆。桥梁检测车的架设过程和进入桥梁检测状态时的回转制动过程是复杂的大范围柔性运动过程。格构式桥梁检测车的臂架本身为运动的柔性梁杆系统,该系统可视为由固连于运动构件上的随动坐标的刚体运动与弹性构件本身的弹性动态变形组成的刚柔耦合系统。以往的计算分析中,多侧重于桥梁检测过程小位移状态下的微幅运动,将格构式桥梁检测车看成结构,以起制动产生的加速度或惯性力为激励,对其进行微幅振动分析;对桥梁检测车架设过程则通常采用刚体动力学分析,以获得的机构加速度、惯性力施加于约束后的弹性结构上,用动态静力分析代替真正的运动弹性动力分析。这显然与桥梁检测车实际工作状态不符。本文运用多体系统动力学分析方法分别对格构式桥梁检测车的架设过程进行多体刚体系统动力学分析,对其柔性回转制动过程进行计及二阶效应的多柔体系统动力学分析以及考虑刚柔耦合效应的运动柔性系统动力学分析。本课题的目的在于得到一个针对具有弹性构件的格构式桥梁检测车进行多体系统动力学分析行之有效的方法,使之既与格构式桥梁检测车的实际工作模型相符合又便于实际分析应用。
     论文在多柔体系统动力学分析方法的基础上,以考虑大范围运动梁杆二阶效应的运动弹性动力分析方法,对格构式桥梁检测车进行刚柔耦合动力学分析研究。
     首先采用等效元素集成法对格构式桥梁检测车的架设过程进行多刚体系统动力学分析,考虑可能出现的多自由度情况,得到相应过程下的臂架系统位移、速度、加速度及油缸力随时间变化的规律及机构运动参数,为桥检车机构设计提供理论依据。
     而后利用三次样条插值函数构建柔性单元变形场,推导在静力条件下平面和空间的Euler-Bernoulli梁单元几何非线性刚度矩阵,使其在形式上与传统梁单元保持一致;通过对平面和空间结构进行计算分析,验证采用本文方法所获得的新单元计算分析精度远高于传统非线性梁单元,具有很好的适用性。
     由广义虚位移原理分别建立了柔性多体系统平面动力学方程和空间动力学方程,并对格构式桥梁检测车的竖向伸缩臂端部在制动过程中变形情况进行了计及二阶效应的多柔体系统动力学分析,得到了通常采用多刚体系统动力学分析方法所不能得到的分析结果。
     本文在格构式桥检车多柔体系统动力学建模中,对由众多梁杆单元构成的格构式构件首先采用等效柔性元素法进行子结构等效,此后在实际结构强度计算分析中对每个杆件单元进行分析计算。在整台桥检车架设和工作过程中,各杆件受力因工况的不同而发生变化,每个杆件最大受力的时刻也在发生变化,为保证结构的安全可靠,对各工况的全过程的计算分析尤为重要。因此需对桥检车的特定工况运用多柔体系统动力学理论,考虑刚体大运动和弹性小变形的耦合项,建立一种由运动格构式结构与柔性机构相互耦合的动力学系统分析方法,尤其在严格的理论分析基础上给出适于工程实用的高效建模与计算求解方法。对于桥检车回转制动过程,由于其为空间结构且杆件众多,本文以CompaqVisual Fortran6.1为平台,编制了有限元计算程序进行了动力学分析,得到了每个杆件随时间变化的变形情况和受力情况。
     通过与实验样机的检测结果进行比较,验证了本文计算理论与分析方法的有效性。本课题研究,不仅对格构式桥检车这样的具有大范围运动的柔性机械有意义,对类似的运动格构式系统,亦有重要的参考借鉴价值。
This subject comes from the sub-topics (2008BAJ09B01-3) named large bridgeinspection and maintenance equipment which is contained in National EleventhFive-Year Technology Support Project ‘Research and industry development onscaffold-less installation equipment’. Bridge inspection truck is a type of specialvehicle to test safety of bridge. The processes of the erecting and slewing brakingare complex large-range flexible motion processes. The jib system of lattice bridgeinspection truck is a mobile flexible beam system, which is a type of rigid-flexiblecoupling system composed of rigid motions of concomitant coordinates fixed withmotive mechanisms and elastic dynamic deformations of elastic mechanisms. In theprevious analysis, attention of slight movement under the state of smalldisplacements in the inspecting condition for bridge is paid. Bridge inspection truckis analyzed with slight movement in the exciting force of acceleration and inertiaforce from starting-braking process. Rigid body dynamics analysis is used in theerecting condition, and the real elastic dynamic analysis is substituted by kinematicstatic analysis by applying contained acceleration and inertia force to constrainedelastic structure. This method does not match the actual working model. For latticebridge inspection truck, this paper applies rigid multi-body dynamic analysis to theerecting process, flexible multi-body dynamic analysis to the flexible slewingbraking process and mobile flexible dynamic analysis considered of rigid-flexiblecoupling effects. The purpose of this project is to find an effective multi-bodydynamic analysis method for lattice bridge inspection truck consisting of elasticcomponents, which is both consistent with the actual working model and convenientfor the practical analysis and calculation.
     This paper implements the rigid-flexible coupling dynamics analysis to latticebridge inspection truck based on the flexible multi-body system dynamics analysismethods, which considering the movement elastic dynamic analysis method onlarge-scale movement beams with the second-order effect.
     First, equivalent element integration method is used for rigid multi-bodydynamics analysis in the erecting condition. Considering multiple degrees offreedom, displacement, velocity and acceleration of the jib system, motion parameters of mechanism and variation of the cylinder force are obtained, whichprovide a theoretical basis for the design for lattice bridge inspection truck.
     Then, the deformation field of flexible element is built using cubic splineinterpolation function. The geometric nonlinear stiffness matrix of the planar andspactial Euler-Bernoulli beam element is derived in the static conditions which isconsistent with the traditional beam element in the form. Through the analysis ofplanar and spatial structure, the results show that the calculation precision of newelement from this method is much higher than traditional beam element, and themethod has a good applicability.
     Flexible multi-body system dynamics equations of planar and spatial motionwere established by the general principle of virtual displacement. Flexiblemulti-body system dynamics analysis with second-order effect is implemented toobtain the deformation of the end of vertical telescopic boom in the braking processwhich cannot be derived from rigid multi-body dynamics analysis method.
     In the aforementioned flexible system dynamics modeling of the lattice bridgeinspection truck, equivalent flexible element method is used for substructures of thelattice component, then every beam element is analyzed in strength calculationanalysis of actual structure. In the process of erecting and working of the entirebridge inspection truck, force of every beam changes due to different workingconditions, and the moment of max force is also changing. For ensuring the safetyand reliability, calculation analysis is extremely important to the whole process ofthe various conditions. Therefore, dynamics of flexible multi-body system is usedfor specific conditions of bridge inspection truck. Considering coupling terms aboutlarge motion of rigid body and elastic small deformation, an analysis method ofdynamic system is built coupling motion lattice structure and flexible mechanisms.A method of high efficient modeling and calculating solution which is suitable forengineering applications is implemented on the base of accurate theoretical analysis.For the slewing braking condition, because of its spatial structure and large quantity,finite element program for dynamic analysis based on Compaq Visual Fortran6.1iscompiled. The changing on deformation and forces of each bar with time is obtained.The effectiveness of calculating theory and analysis method from this paper isverified by compared with the test result of experimental prototype. This is not onlymeaningful for flexible mechanism with large range motion like lattice bridge inspection truck, but also large reference value for similar movement lattice system.
引文
[1]刘胜民.桥梁检测车商用汽车.2003,9.
    [2]蒋立忠,赵跃宇.作大范围运动柔性结构耦合动力学[M].北京:科技出版社.2007:1~14.
    [3]刘志远.筑路养路专用车辆发展前景.商用汽车.2004,11:68~69.
    [4]陆念力,顾迪民,周贤彪.具有有限弹性部件的运动多体系统动力分析的基本方法.建筑机械.1991,(7):15~18.
    [5]陆念力,顾迪民,周贤彪.运动柔性梁杆动力分析有限元法.建筑机械.1991,(8):14~18.
    [6]顾迪民,王川,陆念力.工程机械梁杆系统动力非线性分析的有限元方法.工程机械.1991,(9):2~6.
    [7]王川,陆念力,纪爱敏.大位移弹性多体系统的动力非线性分析.起重运输机械.1991,(12):14~18.
    [8]陆念力,顾迪民,周贤彪.运动弹性多体系统动力控制方程的解及其能量检验方法.建筑机械.1992,(8):8~11.
    [9]覃正.多体系统动力学压缩建模[M].北京:科学出版社.2000:1~13.
    [10]杨辉,洪嘉振,余征跃.动力刚化问题的实验研究[J].力学学报.2004,36(1):118~124.
    [11]刘铸永,洪嘉振.柔性多体系统动力学研究现状与展望[J].计算力学学报,2008,25(4):411~416.
    [12]邹凡.大变形刚-柔耦合系统的动力学仿真和实验研究[D].上海:上海交通大学硕士学位论文.2010:14~45.
    [13] Jinyang Liu, Jiazhen Hong, Lin Cui. An Exact Nonlinear Hybrid-coordinateFormulation for Flexible Multibody System. Acta Mechanica Sinica.2007,23:699~706.
    [14]蔡国平,洪嘉振.考虑附加质量的中心刚体—柔性悬臂梁系统的动力特性研究[J].机械工程学报.2005,41(2):33~40.
    [15]陆佑方.柔性多体系统动力学.高等教育出版社.1996:1~15,109~406.
    [16]刘又午.多体动力学的休斯敦方法及其发展.中国机械工程.2000,11(6):601~607.
    [17] E. J. Haug. Computer Aided Analysis and Optimization of Mechanical SystemDynamics. Springer-Verlag,1984:1~36.
    [18] G. Bianchi, W. Schiehlen. Dynamics of Multibody Systems. Springer-Verlag.1985:129~140.
    [19] J. Wittenburg. Dynamics of Systems of Rigid Bodies. Stuttgart. Teubner.1977:43~65.
    [20] R. E. Roberson, R. Schwertassek. Dynamics of Multibody Systems.Springer-Verlag.1988:259~286.
    [21] T. R. Kane, D. A. Levinson. Dynamics: Theory and Applications. New York:McGraw-Hill.1985:135~180.
    [22] W. Schielen. Multibody System Handbook. Springer-Verlag.1990:1~45.
    [23]胡海岩,陆启韶. IUTAM“面向先进技术与工程设计的非线性动力学会议”概况.力学进展.2010,40(2):601~602.
    [24]国家自然科学基金委员会.自然科学学科发展战略调研报告——力学.科学出版社.1997:35~56.
    [25]黄文虎,陈滨,王照林.一般力学(动力学、振动与控制)最新进展.科学出版社.1994:91~97.
    [26]何勇,李冬.含间隙的机构动力学研究进展.陕西理工学院学报.2006,9:50~54.
    [27]齐朝晖,张伟.多体系统中的动力刚化.计算力学学报.2000,17(增刊):129~134.
    [28]黄文虎,邵成勋.多柔体系统动力学.科学出版社.1997:1~9.
    [29]陆佑方.柔性多体系统动力学.高等教育出版社.1996:58~274.
    [30]洪嘉振.计算多体系统动力学.高等教育出版社.1999:329~365.
    [31]休斯敦,刘又午.多体系统动力学(下).天津大学出版社.1991:65~80.
    [32]张策.弹性连杆机构的分析与设计.机械工业出版社.1997:59~121.
    [33] LU Nianli. A Finite Element Dynamic Analysis of Flexible Multi-body Systemin Planar Motion. Proceedings of Asia Vibration Conference’89.Nov,27,1989,Shenzhen, China,1989:256~262.
    [34] A. G. Erdman, G. N. Sandor. Kineto-Elastodynamic-A Review of theState-of-the Art and Trends. Mechanism and Machine Theory.1972,7(1):19~33.
    [35] G. G. Lowen, W. G. Jandrasits. Survey of Investigations into the DynamicBehavior of Mechanisms Containing Links with Distributed Mass andElasticity. Mechanism and Machine Theory.1972,7(1):3~17.
    [36] A. G. Erdman, G. N. Sandor. A General Method for Kineto-ElastodynamicAnalysis and Synthesis of Mechanisms. ASME Journal of Engineering forIndustry.1972,94(4):1193~1205.
    [37] R. C. Winfrey. Elastic Link Mechanism Dynamics. ASME Journal ofEngineering for Industry.1971,93(1):268~272.
    [38] A. Midha, A. G. Erdman. A Closed-Form Numerical Algorithm for thePeriodic Response of High-Speed Elastic Linkages. ASME Journal ofEngineering for Industry.1979,101(1):154~162.
    [39] B. M. Bahgat, K. D. Willmert. Finite Element Vibrational Analysis of PlanarMechanism. Mechanism and Machine Theory.1976,11(1):47~71.
    [40] J. P. Sadler, G. N. Sandor. A Lumped Parameter Approach to Vibration andStress Analysis of Elastic Linkages. ASME Journal of Engineering for Industry.1973,95(2):549~557.
    [41] C. Bagci, S. Kalaycioglu. Elastodynamics of Planar Mechanisms Using PlanarActual Finite Line Elements. Lumped Mass Systems. Matrix-ExponentialMethod and the Method of 'Critical-Geometry-Kineto-Elasto-Statics'(CGKS).ASME Journal of Engineering for Industry.1979,101(4):417~427.
    [42] W. Sunada, S. Dubowsky. The Application of Finite Element Methods to theDynamic Analysis of Flexible Spacial and Co-Planar Linkage Systems. ASMEJournal of Mechanical Design.1981,103(7):643~651.
    [43] P. K. Nath, A. Ghosh. Kineto-Elastodynamic Analysis of Mechanisms by FiniteElement Method. Mechanism and Machine Theory.1980,15(3):179~197.
    [44] W. G. Jandrasits, G. G. Lowen. The Elastic-Dynamic Behavior of aCounterweighted Rocker Link with an Overhanging Endmass in a Four-BarLinkage, Part I: Theory. ASME Journal of Mechanical Design.1979,101(1):77~88.
    [45] M. A. Zobairi, S. S. Rao and B. Sahay. Kineto-Elastodynamic Balancing of4R-four Bar Mechanisms Combining Kinematic and Dynamic StressConsigeration. Mechanism and Machine Theory.1986,21(4):307~315.
    [46] I. Imam, G. N. Sandor. A General Method of Kineto-Elastodynamic of Designof High Speed Mechanisms. Mechanism and Machine Theory.1973,8(4):487~516.
    [47]张策.机械动力学.高等教育出版社.2000:1~5.
    [48]张策,陈树勋,王子良等.弹性连杆机构的分析与设计.机械工业出版社.1997:89~104.
    [49]余跃庆,李哲.现代机械动力学.北京工业大学出版社.1998:150~229.
    [50]金亦山.一种高效KED方法的研究.哈尔滨建筑大学硕士论文.1999:42~49.
    [51]王恒华.平面运动弹性梁杆系统动力分析的实用方法及其应用.同济大学博士论文.1996:21~42.
    [52]宋轶民,张策,余跃庆等.弹性连杆机构振动控制研究综述.机械工程学报.2001,37(10):10~13.
    [53] Y. M. Song, C. Zhang and Y. Q. Yu. Neural Networks Based Active VibrationControl of Flexible Linkage Mechanisms. ASME Journal of MechanicalDesign.2001,123(2):266~271.
    [54] X. P. Zhang, Y. Q. Yu. Motion Control of Flexible Robot Manipulators viaOptimizing Redundant Configurations. ASME Journal of Mechanical Design.2001,36(7):883~892.
    [55]宋轶民,马文贵,张策.神经网络在弹性连杆机构振动主动控制中的应用.振动工程学报.2000,13(1):100~106.
    [56] F. Minghini, N. Tullini, F. Laudiero. Vibration Analysis with Second-orderEffects of Pultruded FRP Frames Using Locking-free Elements[J].Thin-Walled Structures.2009,47:136~150.
    [57]孙宏丽,吴洪涛,田富洋,邵兵.空间算子代数刚柔耦合系统动力学软件流程[J].华中科技大学学报.2009,37(12):107~111.
    [58] B. G ttlicher, K. Schweizerhof. Analysis of Flexible Structures withOccasionally Rigid Parts under Transient Loading[J]. Computers andStructures.2005:2035~2051.
    [59] L. Meirovitch, D. A. Nelson. On the High-Speed Motion of SatelliteContaining Elastic Parts, AIAA Journal of Spacecraft and Rockets,1966,3(11):1597~1602.
    [60] P. W. Likins. Finite Element Appendage Equations for Hybrid CoordinateDynamic Analysis, Journal of Solid and Structures. l972,8:790~83l.
    [61] R. P. Singh, R. J. Vander Voor, P. W. Likins. Dynamics of Flexible Bodies inTree-Topology. A Computer-Oriented Approach, Journal of Guidance, Controland Dynamics.1985,8:584~590.
    [62] L. Meirovitch. Hybrid State Equations of Motion for Flexible Bodies in Termsof Quasi-coordinates Journal of Guidance. Control and Dynamics.1990,14(5):1374~1383.
    [63] J. Y. L. Ho. Direct Path Method for Flexible Multibody Spacecraft DynamicsAIAA. Journal of Spacecraft and Rocket.1977,14(2):102~110.
    [64] W. W. Hooker.Equations of Motion for Interconnected Rigid and ElasticBodies. A Derivation Independent of Angular Momentum, Celestial Mechanics.1975,11:337~359.
    [65] S. S. Kim, E. J. Hang. A Recursive Formulation for Flexible MultibodyDynamics, Partl: Open-Loop Systems. Computer Methods in AppliedMechanics and Engineering.1988,71:293~314.
    [66] S. S. Kim, E. J. Hang. A Recursive Formulation for Flexible MultibodyDynamics, Part7: Open-Loop Systems. Computer Methods in AppliedMechanics and Engineering.1989,74:25l~269.
    [67]王琪,黄克累,陆启韶.带约束多体系统动力学方程的隐式算法[J].计算力学学报.1999(04):410~415.
    [68]王建明,洪嘉振,刘又午.刚柔耦合系统动力学建模新方法[J].振动工程学报.2003(02):194~197.
    [69]王树新,蒋铁英.柔性机械臂的动力学分析与实验研究[J].中国机械工程.1995(06):18~20.
    [70] T. R. Kane, R. R. Ryan, A. K. Banerjee. Dynamics of a Cantilever BeamAttached to a Moving Base[J]. Journal of Guidance Control and Dynamics.1987,10(2):139~151.
    [71] A. K. Banerjee and T. R. Kane. Dynamics of a Plate in Large Overall Motion.Journal of Applied Mechanics.1989,56:887~892.
    [72] Z. E. Boutaghou, A. G. Erdman and H. K. Stolarski. Dynamics of FlexibleBeams and Plates in Large Overall Motion. ASME J.Applied Mechanics.1992,59:991~999
    [73] W. J. Haering, R. R. Ryan. New Formulation for Flexible Beams UndergoingLarge Overall Motions. Journal of Guidance, Control and Dynamics.1994,17(1):76~83.
    [74] S. Hangud, S. Sarkar. Problem of the Dynamics of a Cantilever Beam Attachedto a Moving Base. Journal of Guidance, Control and Dynamics.1989,12(3):438~431.
    [75] C. E. Padilla, A. H. Floton. Nonlinear Strain-displacement Relations andFlexible Multibody Dynamics. Journal of Guidance, Control and Dynamics.1992,15:128~136.
    [76] J. C. Simo, L. V. Quoc. The Role of Non-linear Theories in TransientDynamics Analysis of Flexible Structures. J. Sound and Vibration.1987,119(3):487~508.
    [77] J. C. Simo, L. V. Quoc. On the Dynamics in Space of Rods Undergoing LargeMotions: a Geometrical Exact Approach. Computer Methods in AppliedMechanics&Engineering.1988,66:125~136.
    [78] A. K. Banerjee, J. M. Dickens. Dynamics of an Arbitrary Flexible Body inLarge Rotation and Translation. Journal of Guidance. Control and Dynamics.1990,19:221~227.
    [79] A. K. Banerjee, M. K. Lemak. Multi-flexible Body Dynamics CapturingMotion-in-duced Stiffness. Journal of Applied Mechanics.1991,58:766~775.
    [80] A. K. Banerjee. Block-diagonal Equations for Multibody Elastodynamics withGeometric Stiffness and Constrains. Journal of Guidance, Control andDynamics.1994,16(6):1092~1100.
    [81] O. Wallrapp, R. Schwertassek. Representation of Geometric Stiffening inMultibody System Simulation. International Journal for Numerical Methods inEngineering.1991,32:1833~1850.
    [82] O. Wallrapp. Linearized Flexible Multibody Dynamic Including GeometricStiffening Effects. Mech. Strut&Mach.1991,19:385~409.
    [83] J. Ryu, S. S. Kim. A General Approach to Stress Stiffening Effects on FlexibleMultibody Dynamic Systems. Mech. Strut&Mach.1994,22(2):157~180.
    [84] S. K. Ider, F. H. L. Amirouche. Influenceof Geometric Nonlinear in theDynamics of Flexible Treelike Structures. Journal of Applied Mechanics.1989,55:830~837.
    [85] S. K. Ider, F. H. L. Amirouche. Nonlinear Modeling of Flexible MultibodySystem Dynamics Subjected to Variable Constraints. Journal of AppliedMechanics.1989,56:444~450.
    [86] S. K. Ider. Finite Element Based Recursive Formulation for Real TimeDynamic Simulation of Flexible Mulibody Systems. Computers&Structures.1991,40:939~945.
    [87] E. M. Bakr, A. A. Shabana. Geometrically Nonlinear Analysis of MultibodySystems. Computers&Structures.1986,23:739~751.
    [88] J. Mayo, J. Dominguez. Geometrically Nonlinear Formulation of FlexibleMultibody Systems in Terms of Beam Elements: Geometric Stiffness.Computers&Structures.1996,59:1039~1050.
    [89] S. C. Wu, E. Haug. Geometric Non-linear Substructuring for Dynamics ofFlexible Mechanical Systems. International Journal for Numerical Methods inEngineering.1988,26:2211~2226.
    [90] A. S. Hopkins, O. W. Likins. Analysis of Structures with Rotating FlexibleSubstructures. Proceeding of AIAA/ASME/ASCE/AHS28thStructuralDynamics and Materials Conference, AIAA New York.1987:944~954.
    [91] A. Q. Liu, K. M. Liew. Non-linear Substructures Approach for DynamicAnalysis of Rigid-flexible Multibody System. Computer Methods in AppliedMechanics&Engineering.1994,114:379~396.
    [92] J. D. Connelly, R. L. Huston. The Dynamics of Flexible Multibody System: aFinite Segment Approach–Ⅰ Theoretical Aspects. Computers&Structures.1994,50:255~258Ⅱ.
    [93] J. D. Connelly, R. L. Huston. The Dynamics of Flexible Multibody System: aFinite Segment Approach–Ⅱ Example Problems. Computers&Structures.1994,50:421~432.
    [94] Y. Wang, R. L. Huston. A Lumped Parameter Method in the Nonlinear Analysisof Flexible Multibody Systems. Computers&Structures.1994,50:421~432.
    [95]夏拥军,缪谦.计及二阶效应的门座起重机变幅工况动力学分析[J].计算力学学报.2010,27(4):711~715.
    [96]陆念力,张宏生.计及二阶效应的一种变截面梁精确单元刚度阵[J].工程力学.2008,25(12):60~65.
    [97]赵丽娟,马永志.刚柔耦合系统建模与仿真关键技术研究[J].计算机工程与应用.2010,46(2):243~248.
    [98] Huang Yongan, Deng Zichen, Yao Linxiao. An Improved Symplectic PreciseIntegration Method for Analysis of the Rotating Rigid–flexible CoupledSystem[J]. Journal of Sound and Vibration.2007:229~246.
    [99] W. S. Yoo, M. S. Kim, S. H. Mun, etc. Developments of Multibody SystemDynamics: Computer Simulations and Experiments. Multibody SystemDynamics.2007,18:35~58.
    [100]章定国,朱志远.一类刚柔耦合系统的动力刚化分析[J].南京理工大学学报.2006,30(1):21~26.
    [101] Heikki Marjam ki, Jari M kinen. Modeling Telescopic Boom-The Plane Case:Part I[J]. Computers and Structures.2003,81:1597~1609.
    [102] Adnan Ibrahimbegovic, L. Robert, H. Lim. Taylor. Non-linear Dynamics ofFlexible Multibody Systems[J]. Computers and Structures.2003,81:1113~1132.
    [103] K. Hu, N. Vlahopoulos, Z. P. Mourelatos. A Finite Element Formulation forCoupling Rigid and Flexible Body Dynamics of Rotating Beams[J]. Journal ofSound and Vibration.2002,253(3):603~630.
    [104] F. S. M Jarrar, M. N. Hamdan. Nonlinear Vibrations and Buckling of a FlexibleRotating Beam-A Prescribed Torque Approach[J]. Mechanism and MachineTheory.2007(42):919~939.
    [105] Y. A. Huang, Z. C. Deng, L. X. Yao. An Improved Symplectic PreciseIntegration Method for Analysis of the Rotating Rigid–flexible CoupledSystem[J]. Journal of Sound and Vibration.2007(299):229~246.
    [106] S. M. Han, H. Benaroya. Vibration of a Compliant Tower in Three-Dimensions.2002,250(4):675~709.
    [107] Jacek Buskiewicz. A Dynamic Analysis of a Coupled Beam/slider System[J].Applied Mathematical Modeling.2008,32:1941~1955.
    [108]王晓峰,杨庆山.考虑弯扭耦合的空间薄壁截面梁单元刚度矩阵[J].北京交通大学学报.2008,32(4):83~87.
    [109] M. Simsek, T. Kocaturk. Nonlinear Dynamic Analysis of an EccentricallyPrestressed Damped Beam under a Concentrated Moving Harmonic Load[J].Journal of Sound and Vibration.2009,320:235~253.
    [110] M. Gábor. V r s. On Coupled Bending-torsional Vibration of Beams withInitial Loads[J]. Mechanics Research Communications.2009,36:603~611.
    [111]易壮鹏,赵跃宇,朱克兆.梁的纵向与横向耦合振动的动力学分析[J].应用力学学报.2008,25(4):687~693.
    [112]党玉倩,和兴锁,邓峰岩.作大范围平动柔性梁的耦合动力学建模及分析.机械科学与技术.2009,28(1):45~47.
    [113]孙占庚,金国光,常志,唐国潮.基于Kane法的柔性机械臂系统建模及其模态截取研究[J].天津工业大学学报.2009,28(4):61~63.
    [114]洪嘉振,刘铸永.刚柔耦合动力学的建模方法[J].上海交通大学学报.2008,42(11):1922~1926.
    [115]赵丽娟,马永志.刚柔耦合系统建模与仿真关键技术研究[J].计算机工程与应用.2010,46(2):243~248.
    [116] Che Renwei, Lu Nianli. An Equivalent Finite Element Method To KineticsAnalysis of Complex Mechanism[J]. Journal of Harbin Institute of Technology.2005(3):197~200.
    [117]马星国,杨伟,尤小梅等.行星轮系刚柔耦合多体动力学分析[J].中国工程机械学报.2009,7(2):146~151.
    [118]孙占庚,金国光,常志等.基于Kane法的柔性机械臂系统建模及其模态截取研究[J].天津工业大学学报.2009,28(4):61~63.
    [119] S. K. Laha, S. K. Kakoty. Non-linear Dynamic Analysis of a Flexible RotorSupported on Porous Oil Journal Bearings[J]. Common Nonlinear Sci NumberSimulation.2011,16:1617~1631.
    [120] WU Jiajang. Use of the Elastic-and-Rigid-Combined Beam Element forDynamic Analysis of a Two-Dimensional Frame with Arbitrarily DistributedRigid Beam Segments[J]. Applied Mathematical Modeling.2011,35:1240~1251.
    [121] Fulei Chu, Wenxiu Lu. Stiffening Effect of the Rotor during theRotor-to-Stator Rub in a Rotating Machine[J]. Journal of Sound and Vibration.2007,308:758~766.
    [122] Lu Nianli. Eine Methode zum Aufbau Ebener Elastokinetischer Modelle FuerLenkerkrane[D]. Dissetation TH Darmstadt.1988.
    [123]陆念力,白广沈.高速机构弹性动力分析的一种有限元方法.《中国博士后首届学术大会论文集》.国防工业出版社.1993,(6):286~290.
    [124]陆念力,顾迪民,周贤彪.复杂多体机构动力学分析的等效有限元法.建筑机械.1991,(9):11~15.
    [125]张宏生.杆系结构几何非线性动静态分析方法及其在塔机中的应用[D].哈尔滨工业大学博士学位论文.2009.
    [126]罗冰.起重机柔性臂架系统动力学建模与分析方法研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2009:79~9.
    [127]兰朋.柔性梁杆系统运动弹性动力学分析的高效方法及其应用.哈尔滨工业大学博士学位论文.2003.
    [128]兰朋,陆念力.塔式起重机柔性臂回转制动过程动力分析.哈尔滨工业大学学报.2004,36(5):677~680.
    [129] S. Kilicaslan, T. Balkan, S. K. Ider. Tipping Loads of Mobile Cranes withFlexible Booms.1999,223(4):645~657.
    [130]夏拥军.计及二阶效应的柔性杆系动态分析及在起重机械中的应用[D].哈尔滨:哈尔滨工业大学博士学位论文.2007:1~3,11~12.
    [131]车仁炜,陆念力. RRR-RRPⅡ级杆组的等效系统动力学建模与分析.吉林大学学报(工学版).2007.3:562-567.
    [132] S. P. Timoshenko, J. M. Gere. Theory of Elastic Stability(2nd ed)[M]. NewYork: McGraw-Hill,1961.
    [133]薛渊,陆念力,刘明思.格构式塔身侧向位移的高效算法[J].建筑机械,2002,3:31~34.
    [134]薛渊,陆念力.格构式塔架扭转刚度的高精度便捷算法[J].建筑机械,2004,6:83~86.
    [135]王勖成,邵敏.有限单元法基本原理和数值方法.清华大学出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700