用户名: 密码: 验证码:
城市轨道交通环境振动源函数反演的论证研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为国家自然科学基金重点项目“城市轨道交通引起的环境振动及传播规律”(50538030)的最后一部分研究成果的总结,本文在课题组取得突破进展的基础上,进一步论证一个尚待深入研究的阶段性结论,改善从轨道交通环境振动观测数据中去除本底振动的处理方法,探讨频率-波数谱的应用,论证项目的主要成果在表达振动衰减中局部放大的能力、探讨其机理,完善项目组发展的频率-波数域动力格林函数法计算列车-轨道-场地系统的三维动力响应、反演轮轨谱参数的方法。
     城市轨道交通引起环境振动的卓越频带在10Hz-80Hz,近距离处主要在60Hz-80Hz。在文献[4]提出广泛应用的有限元方法计算这一高频振动在土层中传播有局限性的基础上,本文通过具体的算例论证时域-空间域方法模拟高频波传播的适用性。设定单覆盖层半空间模型表面作用2Hz、10Hz、30Hz和60Hz四种频率的单位简谐激励,采用波动有限元加透射边界计算1米、2米、5米和10米四种尺寸网格模型在距离振源5米-20米处的竖向振动位移幅值。通过与频率-波数域动力格林函数法的结果比较,指出了在许多条件下时间-空间域方法的计算误差比较明显;对于给定频率的激励,网格越小,有限元计算结果误差越小;对于给定的网格尺寸,频率越低,有限元计算结果误差越小;目前广泛采用的、基于一维离散网格模型分析稳定性研究提出的最大离散网格尺寸限定准则不能够确保三维计算结果在60Hz-80Hz频段的可靠性。归纳得到初步的定量结论为最大的离散网格不能超过感兴趣的最小波长的1/25。同时指出了计算的稳定性与离散的时间步长有关,对于一般的城市轨道交通环境振动分析,网格尺寸取1米时,时间步长需要取到0.0001秒,致使计算量很大,计算时间非常长,普通的个人计算机往往需要一周才能计算一个简单例子。
     去除环境振动观测记录中的本底振动是提高信噪比,揭示轨道交通环境振动特征的一个重要环节。本文分析现有的从轨道交通环境振动观测记录中去除本底振动方法的不足,进一步考虑本底振动与观测振动互相关性,提出了一个去除本底振动的新方法——自互功率谱法,推导了全套计算公式。选定一组列车达到前足够久的观测记录和列车通过时的观测记录为本底振动和轨道交通“环境振动”,再从两者叠加得到的“观测记录”中去除本底振动,与原来选定的“环境振动”比较,通过实际算例论证了方法的可靠性。结果表明,本文提出的自互功率谱法能够更有效地去除观测数据中的本底干扰,获得更贴近实际的轨道交通环境振动的功率谱、时程、振动级VAL以及加权振级VLz。尤其是在本底振动占优势的低频段,比现有方法有明显的改善。
     台阵观测的优势在于各观测点振动的自相关及互相关特性在一定程度上体现了城市轨道交通振动场的空间结构。为了探讨振动源对这一空间结构的影响,对一台阵6个点的环境振动观测数据进行总体功率谱分析及分时段功率谱分析,采用最大似然法计算了列车通过台阵一侧不同时段振动场的F-K谱,逐一时段分析了F-K谱的特征变化。据不同时段F-K谱的特征,分析指出了相应时刻列车相对台阵的不同方位(与列车在轨道上的位置一一对应),展现了借助台阵振动场的F-K谱判断列车运行过程的能力,并推算出列车运行的速度。结果表明,只要时段划分得足够小,就可以直接从上述F-K谱中提取轨道交通激励源的移动速度。
     接着,本文采用频率-波数域动力格林函数计算地表激励下单一覆盖层-半空间表面的竖向位移,论证了表达轨道交通环境振动现场观测中多次发现的地面振动衰减局部放大现象的能力。通过七个半空间与覆盖层的模量比1、5、6、7、8、9和10,四个覆盖层厚度3、5、7和9米,7个激励频率16Hz、48Hz、56Hz、64Hz、72Hz、80Hz及108Hz,三个覆盖层阻尼比,0.025、0.05和0.1等诸多因素对局部放大影响的分析,指出了局部放大受埋藏的主要速度界面控制,局部放大区的位置和放大的强度与该界面两侧的模量比(波阻抗比)、覆盖层厚度、激励的频率及覆盖土层的阻尼比等因素有关。一般来说,速度界面的波阻抗越大,局部放大越强烈;给定其他条件,使直达的表面波与半空间表面折射波越接近同时到达的覆盖层厚度使局部放大越为明显,使两者波峰越靠近的激励频率会引起更为明显的局部放大;覆盖层阻尼比越小,局部放大越强烈。结合简单的波传播路径分析,给出了城市轨道交通环境振动衰减局部放大机理的一个解释,亦从一个侧面验证了本文采用的频率-波数域的动力格林函数方法计算轨道交通环境振动的可靠性。
     为了适应地下水埋藏较浅场地环境振动分析的需要,基于饱和多孔介质动力分析的门福录模型,采用Haskell-Thomson传递矩阵法,在直角坐标系下推导了饱和层状场地频率-波数域动力格林函数。通过饱和土层参数取ρ2=0.0001kg/m~3,f=1,Ew=0.0001Pa,b=0.0001Pa·s/m~2,使其十分接近单相介质来退化,计算4种场地模型的地表竖向位移,与相应单相介质模型计算的结果比较,论证了本文推导的计算公式和编程的可靠性。计算了8个频率10Hz、20Hz、30Hz、40Hz、50Hz、60Hz、70Hz和80Hz单位简谐点源激励下单一饱和土覆盖层-半空间模型的地表振动竖向位移,与基于Biot模型计算方法的相应结果对比,论证了本文发展的饱和层状场地动力格林函数方法计算地下水埋藏较浅的场地上城市轨道交通环境振动的可行性,同时也验证了文献[5]基于Biot模型发展的计算方法是可靠的。门福录模型参数的物理意义明确,实际应用更为方便。
     最后,借助项目组发展的频率-波数域计算轨道交通激励下列车-轨道-地基三维耦合系统地表反应的方法,探讨、论证了充分发挥台阵多次观测数据的优势反演激励源函数的可行性。通过虚拟反演,选取5个波长对应的PSD幅值表征激励源函数,与列车的速度及道砟路堤层无阻尼刚度一起共同构成待反演参数向量及其取值范围。用四个点振动的加速度级构造目标函数,采用早上班高峰期和接近中午平峰期的两次列车通过的观测记录数据,增加约束,反演了北京城轨13号线某一段的轮轨不平(圆)顺谱。与另一观测点实测数据对比,分析、验证了反演激励源函数的可靠性。完善了根据紧邻城市轨道交通线地表振动的台阵观测数据反演轮-轨不平(圆)顺谱的新方法。
     总之,本文在城市轨道交通引起的环境振动及传播规律研究的六个方面得出了创新成果,包括时域计算方法的局限性、才观测记录中去除本底振动、从F-K谱中提取振动源的移动速度、轨道交通环境振动衰减局部放大的机理、基于门福录模型的饱和成层场地频率-波数域动力格林函数、根据多次观测数据联合反演轨道不平(圆)顺谱参数等,验证、完善并了项目组发展计算轨道交通激励下列车-轨道-地基三维耦合系统地表反应的频率-波数域动力格林函数方法,和根据紧邻城市轨道交通线地表振动的台阵观测数据反演作为系统激励源的轮-轨不平(圆)顺谱参数的创新思路。
As a summary of the last part research work of the Key Project by NationalNatural Science Foundation "Environment vibration caused by urban rail traffic andits propagation feature"(50538030), the dissertation demonstrates a mentionedconclusion which is needed to make deep research, improves the data processing toremove the background vibration from the observed environment vibration causedby urban rail traffic and discusses the application of frequency-wavenumberspectrum, demonstrates and perfects the development the dynamic Green Functionmethod in frequency-wavenumber domain to calculate3dimensional response oftrain-track-ground system and its capability to inverse the wheel-track spectrum, onthe basis of the breakthrough achieved by the whole team of the project.
     Firstly, the feasibility of time-space domain method to simulate theenvironment vibration caused by urban rail traffic in frequency band10Hz to80Hz,in general, and60Hz to80Hz in near field, is demonstrated. With unit harmonicexcitation with frequencies2Hz,10Hz,30Hz and60Hz on surface of a threedimension model with single layer overlaid on half space, the vertical displacementamplitudes at the points with distance5meters-20meters from the exciting point arecalculated by wave finite element with transmission boundary conditions. For thedemonstration, the calculations are carried out repeatedly with four discrete gridsizes from1m,2m,5m to10m. From the comparison of the results with those by thedynamic Green Function method in frequency-wave number domain, the error incalculation in time-space domain is showed obviously. For a given excitingfrequency, the smaller the grid, the smaller error by the finite element calculation;for a given grid size, the lower the frequency, the smaller error the finite elementcalculation; the reliability of the three dimension finite element simulation of wavewith frequency in band60Hz-80Hz with grid size from stability study mainly byone-dimension analysis, is not ensured even the maximum size rule is now widelyadopted in two or three dimensional analysis. A preliminary quantitative rule forthree dimension analysis is that the maximum grind size should be less than1/25ofthe minimum interesting wavelength. Mean while, it is also pointed out that the calculation stability is also depends on the discrete step in time domain, themaximum step should be0.0001second if the discrete grid is taken as1m, forsimulation of common urban rail traffic caused environment vibration. That meansthe calculated amount must be very large, the time consumed must be quite long inthe case, so that it may take one week on a personal computer for simple casecalculation.
     Removing background vibration noise in observed records of trafficenvironment vibration is an important step to increase the Signal to Noise Ratio anddemonstrate the characteristic of traffic environment vibration. The shortcomings ofexisting methods to remove the background vibration noise in observed records oftraffic environment vibration is analyzed, an idea to take into account thecross-relativity between background vibration and the observed vibration is putforward, the auto-cross spectrum method is developed as a new method to removebackground vibration and increase the ratio of signal to noise. A case fordemonstration is built as that the vibration recorded in time period long before thetrain passing is taken as background vibration, that recorded while the train ispassing as environment vibration, and that superposed by the two as observedvibration. An environment vibration is obtained by the background vibrationremoved from the observed vibration from the auto-cross spectrum method. Themethod is then verified by comparing the result vibration with the environmentvibration in this case, as the result shows that the background noise can removedmore effectively, the power spectrum, time history, vibration level VAL andweighted level VLz of the obtained environment vibration are all closer to those ofthe environment vibration.
     The superiority of array observation is that the auto-correlation andcross-correlation characteristic of each point can reflect the spatial structure ofvibration field of urban rail traffic. In order to discuss the effect of source of urbanrail traffic on spatial structure of the vibration field, total power spectrum andpower spectra of some short time periods are calculated by maximum likelihoodmethod from environment vibrations recorded at6points on a rectangular arraywhile a train is passing it, and frequency-wave number (F-K in brief) spectra ofvibration fields in the short time periods are then calculated, the variation of the features of those power spectra in one by one time period is analyzed. Theorientation of the train to the array center (corresponding to the position of the trainon the rail) in each time period is determined from the corresponding F-K spectrum.The result shows the capability to infer the passing process of the train from the F-Kspectra of vibration field on array, and to compute the train speed. It demonstratesthat the moving speed of exciting source of traffic environment vibration couldacquired directly from the above F-K spectra, if the short time periods are taken asshort enough. Ground vertical displacements on model of single soil layer overlaidon half space with excitation on surface are calculated by means of the dynamicGreen Function method in frequency-wave number domain.
     The capability of the method to deal with the local amplification in attenuationof ground vibration that phenomenon has been observed in some measurements ofenvironment vibration caused by rail traffic, is demonstrated. The results show thatlocal amplification is controlled by an important burried velocity interface, thelocation and intensity of the amplification depends on the ratio of elastic modului ofthe media in the both sides of the interface (i. e. impedance ratio), the thickness ofthe overburden layer, exciting frequency and damping ratio of the overburden layer,from analysis of influence on the amplification of factors as modulus ratio of halfspace to overburden layer media with seven values1,5,6,7,8,9and10,overburden layer thickness with four values3,5,7and9meters, exciting frequencywith seven values16Hz,48Hz,56Hz,64Hz,72Hz,80Hz and108Hz, overburdenlayer damping ratio with three values0.025,0.05and0.1. In general, the largerimpedance at the interface, the more obvious amplifying; keeping the otherconditions the same, the closer of directly arriving time of surface wave to thearriving time of refraction wave from the interface governed by the overburdenlayer thickness, the more obvious amplifying; the closer of the peaks of the wavesgoverned also by the exciting frequency, the more obvious amplifying; the smallerdamping ratio of the overburden layer, the more obvious amplifying. A mechanismof the local amplification in environment vibration attenuation is explained from theresults with a brief analysis of wave propagation paths. The reliability of calculationof rail traffic environment vibration by the dynamic Green Function method infrequency-wave number domain is verified by the way.
     In order to fit the requirement to analyze the environment vibration at site withshallow groundwater, the dynamic Green Function in frequency-wave numberdomain on saturated layered ground is derived in rectangular Cartesian coordinatesystem based on the model suggested by Men FuLu for wave propagation insaturated porous medium, and by Haskell-Thomson transfer matrix method. Groundvertical displacements of four site models are calculated from a degeneration byreplacing the values of saturated soil parameters as ρ2=0.0001kg/m~3, f=1,Ew=0.0001Pa, b=0.0001Pa·s/m~2, so that the site models are very close to those insingle phase medium. The formulas and the program of the dissertation are verifiedby comparing the results with the published results of the corresponding singlephase medium models. Ground vertical displacements of model with singlesaturated layer overlaid on half space by unit harmonic excitation with eightfrequencies10Hz,20Hz,30Hz,40Hz,50Hz,60Hz,70Hz and80Hz are calculated.The feasibility of the developed dynamic Green Function method infrequency-wave number domain to simulate the vibration field by urban rail trafficat site with shallow ground water is demonstrated by comparing the results withthose published by Wang (2011) based on Biot model for the same models. Meantime, the reliability of the method developed by Wang is also demonstrated. Thephysical meaning of parameters in Men Fulu's model is unambiguous, thus themethod of this paper is more convenient in practice application.
     Finally, the feasibility of inversing excitation source function with theadvantage in array data observed from several trains is tested and demonstrated bymeans of the method developed by project team to calculate vibration on threedimensional train-rail-ground coupled system in the frequency-wave numberdomain. PSD amplitudes corresponding five wavelengths are selected tocharacterize exciting source function, speed of the train and the un-damped stiffnessof ballast and embankment are selected to build inversion parameter vector with theabove five together, and the value ranges of the seven are estimated from a virtualinversion. The objective function is constructed by the vibration acceleration levelsof four points, and the observation data of the two trains during rush hour inmorning and close to the flat peak period at noon are used, and constraint hasincreased. The wheel/rail uneven (round) spectrum of Beijing No.13rail line is inversed. The reliability of the inversion excitation source function is analyzed andverified though comparison of calculation result used another point measured data.The new method to inverse wheel and rail uneven (round) spectrum of the urban railtraffic according to the surface of the vibration on array observation data close tothe rail is improved.
     In conclusion, six innovation achievements on environment vibration causedby urban rail traffic and its propagation are worked out, such as limitations of timedomain calculation, the improvement to remove the background vibration noise, andacquiring of moving speed of the vibration source from F-K spectra, mechanism oflocal amplification in environment vibration attenuation, dynamic Green Functionin frequency-wave number domain in saturated layered ground based on Men FuLumodel and joint inversion of wheel-rail uneven (round) spectrum parameters fromarray data observed from several trains. The dynamic Green Function method tocalculate the response of three dimensional system of train-track-ground infrequency-wave number domain and the innovational idea to inverse wheel-railuneven (round) spectrum as the exciting source from data observed on array close tourban rail traffic according to the surface of the vibration on array observation datathe rail are demonstrated and completed.
引文
[1]雷晓燕,圣小珍.现代轨道理论研究(第二版)[M].北京:中国铁道出版社.2006.
    [2] Japanese Institute of Noise Control: Regional Vibration of Environments [M].Tokyo: Jibaotang Press,2001.
    [3] Tao Xiaxin, Chen Xianmai, Shi Lijing, Cui Gaohang, Zheng Xin. An idea todetect the environmental vibration source caused by urban rail traffic[C]. ISMA(2008), Leuven, Belgium, September15-17,2008:2927-2935.
    [4]崔高航.城轨交通引起的环境振动研究及轨道谱参数虚拟反演[D].哈尔滨:哈尔滨工业大学,2009.
    [5]王福彤.城市轨道交通地面振动源的频域反演[D].哈尔滨:哈尔滨工业大学,2011.
    [6]曹艳梅.列车引起的自由场地及建筑物振动的理论分析和试验研究[D].北京:北京交通大学,2006.
    [7]江岛淳.地盘振动と对策-基础法令から交通建设振动まで[M].东京:吉井书店,1982.
    [8] T. Fujikake. A Prediction Method for the Propagation of Ground Vibration fromRailway Trains[J]. Journal of Sound and Vibration,1986,111(2):289-297.
    [9] K. Hayakawa. Reduction Effects of Ballast Mats and EPS Blocks on GroundVibration Caused by Train and its Evaluation[C]. Proceeding of InternationalNoise′92,1992:233-240.
    [10]青木一郎.铁道交通による振动とその周边居民に对する影响[M].东京:东京都环境科学研究所年报,1994,(18):24-30.
    [11]吉冈修.新干线列车走行による沿线の地盘振动[J].铁道技术,1986,43(7):265-269.
    [12] H. Takemiya. Substructure simulation of inhomogeneous track and layeredground dynamic interaction under train passage[J]. Journal of EngineeringMechanics,2005,131(7):699-711.
    [13] H. Tokoyama. An evaluation method for train-speed dependency of Shinkanseninduced vibration[C]. Environmental Vibrations, Ken-yusha Inc. Tokyo,2005:345-350.
    [14] G. Degrande. High-speed train induced field vibrations: in situ measurementsand numerical modeling [C]. Proc. Wave2000,2000:29-42.
    [15]雷晓燕,王全金,圣小珍.城市轨道交通环境振动与振动噪声研究[J].铁道学报,2003,25(5):109-113.
    [16]茅玉泉.交通运输车辆引起的地面振动特性和衰减[J].建筑结构学报,1987,(1):12-19.
    [17]夏禾,曹艳梅.轨道交通引起的环境振动问题[J].铁道科学与工程学报,2004,1(1):44-51.
    [18]陈斌,陈国兴,朱定华,刘雪珠,苏晓梅.城市轨道交通对场地振动影响的试验研究[J].防灾减灾工程学报,2007,27(3):22-27.
    [19]陈国兴,陈斌,苏晓梅,刘雪珠.快速轨道交通运行引起的场地振动分析与评价[J].地下空间与工程学报,2008,4(1):26-32.
    [20]陈建国,夏禾,肖军华,曹艳梅.列车运行对周围地面振动影响的试验研究[J].岩土力学,2008,29(11):3113-3118.
    [21]韦红亮,雷晓燕,吕绍棣.列车引发地面振动的现场测试及数值分析[J].环境污染与防治,2008,30(9):17-22.
    [22]崔高航,陶夏新,陈宪麦.城轨交通沿线地面环境振动衰减实测分析[J].沈阳建筑大学学报,2008,24(1):39-43.
    [23]王福彤,陶夏新,崔高航,郑鑫.地面城轨交通近轨道区域自由地表振动实测研究[J].振动与冲击,2011,30(5):129-132.
    [24] Xin Zheng, Xiaxin Tao, Futong Wang, Gaohang Cui. A Mechanism of LocalAmplifying Zone in Attenuation of Ground Vibration Caused by Rail Traffic inUrban Area[C]. Proceedings of5th International Symposium on EnvironmentalVibration (ISEV2011), Chengdu, China, October20-22,2011:48-52.
    [25]葛勇,张希黔,肖正直,严春风,詹永祥.无碴轨轨动车组运行引起的场地振动试验研究[J].振动与冲击,2010,29(11):209-212,241,263.
    [26]孙雨明.铁路交通产生的地面振动与排桩隔振[D].上海:同济大学,2003.
    [27]高广运,李志毅,冯世进,孙雨明.秦-沈铁路列车运行引起的地面振动实测与分析[J].岩土力学,2007,28(9):1817-1822.
    [28]李志毅,高广运,冯世进,时刚.高速列车运行引起的地表振动分析[J].同济大学学报(自然科学版),2007,35(7):909-914.
    [29] C. J. C. Jones and J. R. Block. Prediction of Ground Vibration from FreightTrains [J]. Journal of Sound and Vibration.1996,193(1):205-213.
    [30] L. G. Kurzweil, W. N. Cobb. Urban rail noise abatement program: adescription[M]. Dept. of Transportation, Urban Mass TransportationAdministration, Office of Technology Development and Deployment, Office ofRail and Construction Technology,1979.
    [31] J. T. Nelson. Recent developments in ground-borne noise and vibrationcontrol[J]. Journal of Sound and Vibration,1996,193(1):367-376.
    [32]翟婉明.车辆-轨道垂向系统的统一模型及其耦合动力学原理[J].铁道学报,1992,14(9):10-21.
    [33] W. M. Zhai, X. Sun. A detailed model for investigating vertical interactionbetween railway vehicle and track[J]. Vehicle System Dynamics,1994,23(Supplement):603-615.
    [34]翟婉明.机车-轨道藕合动力学理论及其应用[J].中国铁道科学,1996,17(2):58-73.
    [35]翟婉明,韩卫军,蔡成标.高速铁路板式轨道动力特性研究[J].铁道学报,1999,21(6):65-69.
    [36]岳渠德.铁路车辆—轨道系统垂向不对称激扰耦合动力学模型及求解[A].土木工程计算机应用文集-中国土木工程学会计算机应用学会第五届年会论文集[C].牡丹江,1993.
    [37]岳渠德,周宏业,孙宁.高速准高速铁路列车-轨道系统动力学计算机仿真研究[A].中国土木工程学会计算机应用学会第六届年会土木工程计算机应用文集[C].北京,1995.
    [38] M. Heckl, G. Hauck and R. Wettschureck. Structure-Borne Sound and Vibrationfrom Rail Traffic [J]. Journal of Sound and Vibration.1996,193(1):175-184.
    [39]雷晓燕.轨道力学与工程新方法[M].北京:中国铁道出版社,2002.
    [40]王逢朝,夏禾,吴萱.列车振动对环境及建筑物的影响分析[J].北方交通大学学报,1999,23(4):13-17.
    [41]王逢朝,夏禾,张鸿儒.地铁列车振动对邻近建筑物的影响[J].北方交通大学学报,1999,23(5):45-48.
    [42] Tao Xiaxin, Zheng Xin, Xing Qiang. Virtual Inversion of EnvironmentVibration Source of Rail Traffic in Urban Area[C].14th InternationalConference on Urban Transport and the Environment in the21st Century,Urban Transport2008, Malta, September1-3,2008:385-393.
    [43] H. A. Dieterman, A. Metrikine. The Equivalent Stiffness of a Half-spaceinteracting with a Beam Critical Velocities of a Moving Load along theBeam[J]. European Journal of Mechanies,1996,15(1):67-90.
    [44] X. Sheng, C. J. C. Jones and M. Petyt. Ground Vibration Generated by a LoadMoving along a Railway Track[J]. Journal of Sound and Vibration.1999,228(1):129-156.
    [45] H. Chebli, R. Othman and D. Clouteau et al.3D periodic BE–FE model forvarious transportation structures interacting with soil[J]. Computers andGeotechnics.2008,35(1):22-32.
    [46] X. Sheng, C. J. C. Jones and D. J. Thompson. A Comparison of a TheoreticalModel for Quasi-Statically and Dynamically Induced Environmental Vibrationfrom Trains with Measurements[J]. Journal of Sound and Vibration.2003,267(3):621-635.
    [47] X. Sheng, C. J. C. Jones and D. J. Thompson. Prediction of Ground Vibrationfrom Trains Using the Wavenumber Finite and Boundary Element Methods[J].Journal of Sound and Vibration.2006,293(3-5):575-586.
    [48] X. Sheng, C. J. C. Jones and D. J. Thompson. A Theoretical Model for GroundVibration from Trains Generated by Vertical Track Irregularities[J]. Journal ofSound and Vibration.2004,272(3-5):937-965.
    [49] P. C. Dings and M.G.. Dittrich. Roughness on Dutch Railway Wheels and Rails[J]. Journal of Sound and Vibration.1996,193(1)103-112.
    [50] G. Lombaert, G. Degrande, J. Kogut and S. Francois. The ExperimentalValidation of a Numerical Model for the Prediction of Railway InducedVibrations[J]. Journal of Sound and Vibration.2006,297(3-5):512-535.
    [51] G. Lombaert and G. Degrande. Ground-Borne Vibration due to Static andDynamic Axle Loads of Intercity and High-Speed Trains[J]. Journal of Soundand Vibration.2009,319(3-5):1036-1066.
    [52] X. X. Tao, F. T. Wang, X. Zheng, Y. F. Liu and H..Lin. Validation of aninversion scheme for source of ground vibration near to urban railway[C].Proceedings.4th ISEV.2009,79-84.
    [53] Wang FuTong, Tao XiaXin and Zheng Xin. Inversion of excitation source inground vibration from urban railway traffic[J]. Science China: TechnologicalSciences.2012,55(4):950-959.
    [54]廖振鹏,刘晶波.离散网格中的弹性波动(I)[J].地震工程与工程振动,1986,6(2):1-16.
    [55]刘晶波,廖振鹏.离散网格中的弹性波动(II)[J].地震工程与工程振动,1989,9(2):1-11.
    [56]刘晶波,廖振鹏.离散网格中的弹性波动(III)[J].地震工程与工程振动,1990,10(2):1-10.
    [57]廖振鹏,刘晶波.波动有限元模拟的基本问题[J].中国科学(B),1992,8:874-882.
    [58]赵成刚,杜修力,崔杰.固体、流体多相孔隙介质中的波动理论及其数值模拟的进展[J].力学进展,1998,28(1):83-92.
    [59] M. A. Biot. Mechanics of Deformation and Acoustic Propagation in PorousMedia[J]. Journal of Applied Physics,1962,33:1482-1498.
    [60] M. A. Biot. Theory of Propagation of Elastic Waves in a Fluid-SaturatedPorous Solid, I: Low Frequency Range[J]. Journal of the Acoustical Society ofAmerica,1956,28:168-178.
    [61] M. A. Biot. Theory of Propagation of Elastic Waves in a Fluid-SaturatedPorous Solid, II: Higher Frequency Range[J]. Journal of the Acoustical Societyof America,1956,28:179-191.
    [62]陈龙珠,黄秋菊,夏唐代.饱和地基中瑞利波的弥散特性[J].岩土工程学报,1998,20(3):6-9.
    [63]金波.高速荷载下多孔饱和地基的动力响应[J].力学季刊,2004,25(2):168-174.
    [64] Y. Q. Cai, H. L. Sun, C. J. Xu. Steady state responses of poroelastic half-spacesoil medium to a moving rectangular load[J]. International Journal of Solidsand Structures,2007,44(22-23):7183-7196.
    [65] Y. Q. Cai, H. L. Sun, C. J. Xu. Three-dimensional analyses of dynamicresponses of track-ground system subjected to a moving train load[J].Computers and Structures,2008,86(7-8):816-824.
    [66] H. L. Sun, Y. Q. Cai, C. J. Xu. Three-dimensional steady-state response of arailway system on layered half-space soil medium subjected to a movingtrain[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2009,33(4):529-550.
    [67]蔡袁强,王玉,曹志刚,徐长节.列车运行时由轨道不平顺引起的地基振动研究[J].岩土力学,2012,33(2):327-335.
    [68]门福录.波在饱水孔隙弹性介质中的传播[J].地球物理学报,1965,14(2):107~114.
    [69]门福录.波在饱含流体的孔隙水介质中的传播问题[J].地球物理学报,1981,24(1):65~75.
    [70]廖振鹏.工程波动理论导论[M].科学出版社.北京,2002.
    [71]周正华,廖振鹏.消除多次透射公式漂移失稳的措施[J].力学学报.2001,33(4):550-554.
    [72]廖振鹏,黄孔亮,杨柏坡.暂态波透射边界[J].中国科学(A),1984,6:556-564.
    [73]王福彤,陶夏新,郑鑫,崔高航,陈宪麦.交通环境振动观测中本底振动去除的功率谱修正法[J].振动与冲击,2011,30(4):124-126,172.
    [74]谢伟平,赵伟,陈无平.关于《环境影响评价技术导则:城市轨道交通》中若干问题的探讨[J].华中科技大学学报(城市科学版),2007,24(2):1-8.
    [75]闫维明,聂晗,任珉,冯军和,张袆,陈建秋.地铁交通引起地面振动的实测与分析[J].铁道科学与工程学报,2004,3(2):1-5.
    [76]张昕.高架轨道交通引起环境振动的实测和理论分析研究[D].上海:同济大学.2002,30-40.
    [77]邱俊杰.高架轨道交通引起环境振动的实测与评价方法研究[D].武汉:武汉理工大学,2005.
    [78]崔高航,陶夏新,陈宪麦.城轨交通地面线路产生环境振动频域分析[J].沈阳建筑大学学报(自然科学版),2008,24(2):239-243.
    [79]张向东,闫维明,任珉,刘猛.交通环境振动测试中的本底振动分析[J].振动与冲击,2009,28(4):177-212.
    [80] ISO2631/1-1985. Mechanical vibration and shock-evaluation of humanexposure to whole-body vibration PartⅠ: General requirements.
    [81]束永平,贾丽萍,张建武.频率/波数谱法用于分析鱼雷壳体样品[J].兵工学报.2000,21(2):187-189.
    [82] R. T. Lacoss, E. J. Kelly. Estimate of seismic noise structure using array[J].Geophysics.1969,34(1):21-38.
    [83] J. CAPON. High-Resolution Frequency-Wavenumber Spectrum Analysis[C].Proceedings of the Institute of Electrical and Electronics Engineers.1969,57(8):1408-1418.
    [84] W. J. Huang, T. Y. YEONG. The Characteristics of Microtremors at the Site ofSMART1Array[J]. Terrestrial, Atmospheric and Oceanic Sciences.1990,1(3):225-242.
    [85]杨学林,吴世明,周亚刚.利用短周期地脉动推断深层地基S波速度[J].振动工程学报.2000,16(4):12-18.
    [86] P. Apostolidis, D. Raptakis, A. Roumelioti, K. Pitilakis. Determination ofS-wave velocity structure using microtremors and space method applied inThessaloniki (Greece)[J]. Soil Dynamics and Earthquake Engineering.2004,24(1):49-67.
    [87]陈建国,夏禾,姚锦宝.高架轨道交通列车对周围环境振动影响的试验研究[J].振动与冲击,2011,30(2):159-163.
    [88] X. Sheng, C. J. C. Jones, M. Petyt. Ground Vibration Generated by a HarmonicLoad Acting on a Railway Track[J]. Journal of Sound and Vibration.1999,225(1):3-28.
    [89] D. V. Jones, D. L. Houedec, M. Petyt. Ground Vibrations Due to A RectangularHarmonic Load[J]. Journal of Sound and Vibration.1998,212(1):61-67.
    [90] M. Bahrekazemi. Train induced ground vibration and its prediction[C],Division of Soil and Rock Mechanics, Dept. of Civil and ArchitecturalEngineering, Stockholm Royal Institute of Technology,2004.
    [91]李守巨,刘迎曦,孙伟.智能计算与参数反演[M].北京:科学出版社.2008.
    [92] K. Krishnakumar,1989. Micro-genetic algorithms for stationary andnon-stationary function optimization [C]. Proceedings of Intelligent Controland Adaptive Systems.289-296.
    [93]陈龙珠,吴世明,曾国熙.弹性波在饱和土层中的传播[J].力学学报,1987,19(3):276-283.
    [94]陶夏新,师黎静.利用地脉动台阵观测推断场地速度结构的虚拟反演.《新世纪地震工程与防灾减灾-庆贺胡聿贤院士八十寿辰》论文集[C].北京:地震出版社,2002:443-452.
    [95]郑鑫.弹性半空间单一覆盖层表面振源的虚拟反演[D].哈尔滨:哈尔滨工业大学,2007.
    [96]郑鑫,陶夏新,王福彤.轮轨撞击振源参数的虚拟反演[J].哈尔滨工业大学学报,2010,42(8):1232-1234.
    [97]环境保护部.环境振动监测技术规范(征求意见稿)[S].北京,2010.
    [98]王汉民.城市轨道交通浮置板轨道振动特性研究及对邻近建筑物的影响
    [D].北京:北京交通大学,2009.
    [99]夏禾,吴萱,于大明.城市轨道交通系统引起的环境振动问题[J].北方交通大学学报,1999,23(4):1-7.
    [100]铁道部劳动发生研究所劳动卫生研究室.两种全身振动评价方法对应关系的探讨[J].铁道劳动安全卫生与环保,1987,4:22-24.
    [101]高广运,何俊峰,李志毅,赵元一.饱和地基上列车运行引起的地面振动特性分析[J].振动工程学报,2010,23(2):179-187.
    [102]崔哲.上海地区地脉动特性的研究[D].同济大学硕士学位论文.2000:2-3.
    [103] H. Okada. The microtremor survey method[M]. Geophysical monographseries, American Geophysical Union, Washington,2003,12.
    [104]李小军,廖振鹏,杜修力.有阻尼体系动力问题的一种显式差分解法[J].地震工程与工程振动,1992,12(4):74-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700