用户名: 密码: 验证码:
内编队重力场测量卫星系统控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内编队重力场测量卫星系统是测量地球引力场的一种创新方案,由外卫星和内卫星组成并构成紧密飞行编队,外卫星屏蔽内卫星所受的非保守力,使内卫星按纯引力轨道飞行,精密测量它的轨道就可以反演计算出地球重力场分布。对外卫星的轨道和姿态控制,是确保内卫星的纯引力轨道飞行从而决定重力场测量水平的关键技术。论文针对内编队重力场测量卫星系统面临的控制问题,系统研究了相对轨道保持和姿态稳定一体化控制所涉及的动力学建模与分析、控制精度需求与分析,提出了约束非线性模型预测控制方法、扰动补偿控制和全推力器控制方案等。论文主要研究内容和成果如下:
     建立了内编队系统稳态运行期间的相对轨道和姿态动力学模型,完成了内编队系统扰动分析。通过分析主要扰动源对相对轨道和姿态的短时影响和长期效应,确立以大气阻力补偿为首要控制目标的内编队系统相对轨道保持控制策略。
     确立了内编队重力场测量卫星系统相对轨道保持和姿态稳定控制的精度需求。基于内编队系统重力测量原理和相对位置测量原理,建立相对轨道保持和姿态稳定控制与重力测量任务、相对位置测量和精密定轨三者的联系,通过理论建模、误差传播分析和仿真实验,完成了控制系统精度需求分析,为控制系统设计提供合理规范。
     开展了三种内编队相对轨道保持和姿态稳定控制方法研究,提出了约束非线性模型预测控制方法,实现了内编队轨道与姿态的一体化控制。针对相对轨道和姿态动力学共有的非线性特征和参数不确定问题,基于自适应全状态反馈控制实现了内编队系统相对轨道保持和姿态稳定。为提高控制精度、缩短调节时间并消除输入振颤,提出了适合处理MIMO系统的非线性模型预测控制方法,获得了对模型参数不确定和外部扰动的鲁棒性。考虑内卫星活动范围和执行机构能力约束,提出了约束非线性模型预测控制方法,其干扰不变性适应内编队系统强相对位置约束、高姿态稳定性的任务需求。
     设计了基于UKF扰动估计的内编队系统扰动补偿控制方案。针对内编队系统相对轨道保持的扰动消除问题,基于相对位置和姿态观测数据,设计了基于UKF(Unscented Kalman Filter)的扰动实时估计方法。利用估计结果,通过扰动估计和反馈控制实现了对内编队的扰动补偿控制,改善了相对轨道保持控制性能。
     设计了基于连续微推力器的内编队系统轨道与姿态一体化控制方案。通过采用阻力补偿加平衡控制的推力器配置,完成了全推力器控制方案设计。
     论文以实现内编队系统精密控制为目标,研究取得的约束非线性模型预测控制、扰动估计与补偿控制和全推力器控制方案设计等成果对提高内编队重力场测量卫星系统控制性能具有重要的理论意义和工程价值,对其它卫星的控制也具有理论和技术参考价值。
The Inner-formation gravity field measurement satellite system (IFS) is a novelprogram aiming to measure the Earth’s gravity field. It consists of the outer-satellite andthe inner-satellite and hereby turns out to be a compact formation. Completely enclosedin the outer-satellite, the inner-satellite is shielded from non-conservative forces andfollows a purely gravitational orbit. With measurement of the orbit, the Earth’s gravityfield can be reconstructed. One of the key techniques determining the measurementlevel of gravity field is the outer-satellite control used for keeping the inner-satelliteflying in a pure gravitational orbit stably. To resolve the control problem for IFS, thisdissertation studies the integrated relative orbit maintenance and attitude stabilizationcontrol, which involves dynamics modeling and analysis along with control accuracyrequirements and analysis, and proposes constrained nonlinear model predictive control(CNMPC) method, disturbance compensation control and all-propulsion control scheme.The main issues and results of this dissertation are summarized as follows.
     The relative orbit and attitude dynamic models are constructed and thedisturbance environment is analyzed for IFS in steady-state phase. Based onanalysis of short-term and long-term effects of main disturbances on the relative orbitand attitude, drag compensation is established as the primary control object to maintainthe relative orbit.
     The accuracy requirements of relative orbit maintenance and attitudestabilization control of IFS are specified. Based on the principles of gravity fieldmeasurement and relative position measurement of IFS, the relationships betweenrelative orbit maintenance and attitude stabilization control and gravity fieldmeasurement, relative position measurement and POD are formulated. The accuracyrequirements of control system are analyzed to provide specification for the controlsystem design, using theoretical modeling, error propagation analysis and simulationexperiments.
     Three techniques are developed for the relative orbit maintenance andattitude stabilization control, and the CNMPC method is proposed to implementthe integrated orbit and attitude control for IFS. An adaptive full-state feedback lawis taken to account for the nonlinearity and parameter uncertainty behaved by both therelative orbit and attitude dynamics. To improve control accuracy, shorten regulationtime and remove input chattering, a general nonlinear model predictive controlalgorithm is developed to deal with multi-input-multi-output system, achievingrobustness against the model parameter uncertainty and exogenous disturbance. Takingthe territory of inner-satellite and performance restrictions of the actuator into account,the CNMPC algorithm is proposed. The invariance with respect to uncertainties and disturbances applies to the mission requirements of IFS, namely the strong constraintson relative position and high attitude stabilization.
     A disturbance compensation scheme based on UKF (Unscented Kalman Filter)and disturbance estimation is put forward. To achieve disturbance rejection for therelative orbit maintenance, a real-time estimation of disturbance using UKF is projectedbased on observation of relative position and attitude. Making use of the estimationresults, the disturbance compensation is realized by means of disturbance estimation andfeedback, improving the control performance of relative orbit maintenance.
     An all-propulsion design using continuous micro-thruster to perform theintegrated orbit and attitude control of IFS is brought forward. The all-propulsionscheme is realized by a thruster configuration adapting to playing drag compensationand balance control simultaneously.
     This dissertation aims to figure out the precision control problem of IFS and hasimportance theoretical significance and engineering values in improving the controlperformance of IFS, embodied by proposing the CNMPC algorithm and the real-timeestimation method of disturbances using UKF. It can also provide theoretical andtechnical references on the control system design for satellites.
引文
[1]胡坚.卫星重力学与重力卫星研究进展[J].国际地震动态,2003,(12):1-3.
    [2]方季花,李颖.重力卫星及其应用[J].中国航天,2004,(5):14-17.
    [3]许厚泽,周旭华,彭碧波.卫星重力测量[J].地理空间信息,2005,3(1):1-3.
    [4]陈俊勇.重力卫星和测高卫星五年来的进展[J].测绘科学,2005,30(5):9-10.
    [5]宁津生.卫星重力探测技术与地球重力场研究.大地测量与地球动力学.2002,22(1):1-5.
    [6] Schmitt C, Bauer H. CHAMP Attitude and Orbit Control System[J]. Acta Astronautica,2000,46(2-6):327-333.
    [7] Bock R, Lühr H, Grunwaldt L. CHAMP Scientific Payload and its Contribution to a StableAttitude Control System[R]. AGU Fall Meeting2000Poster presentation G61A-04.
    [8] Bettadpur S. Gravity Recovery and Climate Experiment, Level-2Gravity Field Product UserHandbook[R]. Rev1.0, December1,2003.
    [9] The GRACE Satellite Tandem: High-Precision Earth Monitoring for a Better Understandingof Climate[R]. GFZ Potsdam,2006,12.
    [10] GOCE-Mission Requirements Document[R]. ESTEC, Noordwijk, The Netherlands: ESAPublication Division,14April2000:1-17.
    [11] Drinkwater M R, Floberghagen R, Haagmans R, Muzi R, Popescu A,2003. GOCE: ESA’sfirst Earth Explorer Core mission. In Beutler, G.B., M. R. Drinkwater, R. Rummel, and R.von Steiger (Eds.), Earth Gravity Field from Space-from Sensors to Earth Sciences. In theSpace Sciences Series of ISSI, Vol.18,419-432, Kluwer Academic Publishers, Dordrecht,Netherlands, ISBN:1-4020-1408-2.
    [12] Steiger C, Pi eiro J, Emanuelli P P. Operating GOCE, the European Space Agency’sLow-flying Gravity Mission[C]. SpaceOps2010Conference, Delivering on the Dream,Hosted by NASA Mars,25-30April2010, Huntsville, Alabama. AIAA:2010-2125.
    [13] McGirck J M, Foster G T, Fixler J B, Snadden M J, Kasevich M A. Sensitive absolutegravity gradiometry using atom interferometry[J]. Phys. Rev. A,2002,65:33-608.
    [14] Yu N, Kohel J M, Romans L, Maleki L. Quantum Gravity Gradiometer Sensor for EarthScience Application[R]. Pasadena, California: Jet Propulsion Laboratory,2004.
    [15]孙文科.低轨道人造卫星(CHAMP、GRACE、GOCE)与高精度地球重力场.大地测量与地球动力学.2002,22(1):92-100.
    [16] Lange B. The Drag-free Satellite[J]. AIAA Journal,1964,2(9):1590-1606.
    [17] Lange B. The Control and Use of Drag-Free Satellites[D]. Ph.D Dissertation, StanfordUniversity, Department of Aeronautical Engineering, Report194, Jun.1964.
    [18] Lange B. Drag-Free Satellite Flights[EB/OL]. http:www.dragfreesatellite.com.
    [19] Dassoulas J. The TRIAD spacecraft[J]. APL Technical Digest, Apr.-June1973,12:2-13.
    [20] Moe K, et al. Exospheric density measurements from the drag-free satellite Triad[J]. Journalof Geophysical Research, Aug.1,1976,81:3753-3761.
    [21] Wang Z K, Zhang Y L. A Novel Concept of Satellite Gravity Field Measurement SystemUsing Precision Formation Flying Technology[C]. The3rd CSA-IAA Conference onAdvanced Space Systems and Applications-Satellite Applications and Applied Satellites,Shanghai, China, Nov.2008.
    [22] DeBra D B. Drag-free Control for Fundamental Physics Missions[J]. Adv. Space Res.,2003,32(7):1221-1226. doi: l0.1016/S0273-1177(03)00807-X.
    [23] Dasenbrock R. An Accurate Orbit Theory for a Drag-Free Geodetic Satellite in an AlmostCircular Orbit[C] American Astronautical Society and American Institute of Aeronautics,Astrodynamics Conference, Santa Barbara, Calif., Aug.19-21,1970: AIAA Paper70-1054.
    [24] Wiegad M,Scheithauer S,Theil S. Step proof mass dynamics[J]. Acta Astronautica,2004(54):631-638.
    [25] Oberndorfer H, Müller J, Rummel R, Sneeuw N. A Simulation Tool for the New GravityField Satellite Missions[J]. Adv. Space Res,2002,30(2):227-232.
    [26] Jafry Y R. The MiniSTEP Drag-free Control System[J]. Advanced Space Res,2003,32(6):1383-1386.
    [27] Prieto D, Basilo B. A Modern Approach to Drag Attenuation in a H∞Robust OrbitControl[C]. Damascus, Syria: Proceedings of IEEE International Conference inInformation and Communication Technologies, April2004:315-316.
    [28] Prieto D, Basilo B. Orbit and attitude control for the European satellite GOCE[C].Proceedings of the Networking, Sensing and Control,19-22March2005:728-733.
    [29] Prieto D, Ahmad Z. A Drag free control based on Model Predictive Technics. Porland, ORUSA:2005American Control Conference,2005:1527-1532.
    [30] Marchetti P J, Blandino J J, Demetriou M A. Electric Propulsion and Controller Design forDrag-Free Spacecraft Operation in Low Earth Orbit[C]. Sacramento, California:42ndAIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit,9-12July2006: AIAA2006-5166.
    [31] Guilherme M S, Leite Filho C W, Theil S. Strategies for in-orbit calibration of drag-freecontrol systems[J]. Aerospace Science and Technology,2008,12:365-375.
    [32] Gath P F, Schulte H R, Weise D, Johann U. Drag Free and Attitude Control System Designfor the LISA Science Mode[C]. AIAA Guidance, Navigation and Control Conference andExhibit, Hilton Head, South Carolina,20-23August2007: AIAA2007-6731.
    [33] Wu S F, Fertin D. Spacecraft Drag-free Attitude Control System Design with QuantitativeFeedback Theory[J]. Acta Astronautica,2008,62():668-682.
    [34] Canuto E, Massotti L. All-propulsion design of the drag-free and attitude control of theEuropean satellite GOCE[J]. Acta Astronautica,2009,(64):325-344.
    [35] Ploen S R, Quadrelli M B, Scharf D P, Hadaegh F Y. Dynamics of Drag-free formations forearth imaging applications[C]. Keystone,Colorado: AIAA/AAS Astrodynamics SpecialistConference and Exhibit,2006.
    [36]张锦绣,曹喜滨,董晓光,王继河. Drag-free卫星编队的发展现状和趋势研究[J].哈尔滨工业大学学报,2010,42(5):673-677.
    [37] Ziegler B, Blanke M. Drag-Free Motion Control of Satellite for High Precision GravityField Mapping[C]. Glasgow, Scotland, U.K: Proceedings of the2002IEEE InternationalConference on Control Applications, Sept.2002.292-297.
    [38] Canuto E. Drag-free and Attitude Control for the GOCE Satellite[J]. Automatica,2008,(44):1766-1780.
    [39] Canuto E, Massotti L, Jimenez A M, Perez C N. Drag-free and Attitude Control forLong-distance, Low-Earth-orbit, Gravimetric Satellite Formation[C]. Beijing, China:Proceedings of the29th Chinese Control Conference, July29-31,2010:5408-5413.
    [40] Prieto D, Bona B. Orbit and Attitude Control for the European Satellite GOCE[C].Proceedings of the Networking, Sensing and Control,19-22March2005:728-733.
    [41] Houpis H C, Rasmussen J S. Quantitative Feedback Theory: Fundamentals andApplications[M].London: CRC Press,2005,2edition.
    [42] Azvine B, Wynne R J. Comparison of QFT with H using the IFAC93benchmark[C]. SanFrancisco, USA: IFAC Proceedings of the13th World Congress of IFAC, Volume H:Robust Control II&Stochastic Systems,30June–5July1996:291–296.
    [43] Mehta P, Zheng Y, Hollot C V, Chait Y. Active noise control in ducts: feedforward/feedbackdesign by blending H and QFT methods[C]. San Francisco, USA: IFAC Proceedings ofthe13th World Congress of IFAC, Volume H: Robust Control II&Stochastic Systems,30June–5July1996:327–331.
    [44] Haines R. Development of a Drag-Free Control System[C]. Logan, UT: in Proc.14thAnnual AIAA/USU Conf. on Small Satellite(Session VII, No.2), August2000.
    [45] Carson III J M, A kme e. B A. Model Predictive Control Technique with GuaranteedResolvability and Required Thruster Silent Times for Small-Body Proximity Operations[C].Keystone, Colorado: AIAA Guidance, Navigation, and Control Conference and Exhibit,21-24August2006: AIAA2006-6780.
    [46] Boyd S, Vandenberghe L. Convex Optimization[M]. Cambridge University Press,2004.
    [47] A kme e B A, Carson III J M. Small Body GN&C Research Report: A Robust ModelPredictive Control Algorithm[R]. Internal Document JPL D-32947, Jet PropulsionLaboratory, California Institute of Technology, Pasadena, CA91109, USA, Sept.2005.
    [48]顾左,达道安,胡长青,栗明.重力场测量卫星应用电推进技术[J].火箭推进,2005,31(2):23-26.
    [49] Debra D B. Propulsion Requirements for Drag-Free Satellites[J]. J. Spacecraft, Apr.1971,8(4):412-414.
    [50] Nicolini D, Simonelli G, Ceruti L, Magnifico M, Serafini L, Saviozzi M. FEEP DynamicCharacterization with Flight-Standard Power Control Unit[C]. Fort Lauderdale, Florida:40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,11-14July2004:AIAA2004-3803.
    [51] Fichter W, Gath P, Vitale S, Bortoluzzi D. LISA Pathfinder drag-free control and systemimplications[J]. Classical Quantum Gravity,2005,22(10):139-148.
    [52] Ziemer J K, Merkowitz S M. Microthrust Propulsion for the LISA Mission[C]. FortLauderdale, Florida:40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference andExhibit,11-14July2004: AIAA2004-3439.
    [53] Bassner H, Killinger R, Marx M, et al. Ion Propulsion for Drag Compensation of GOCE[C].Huntsville, Alabama: Proceedings of the36th AIAA/ASME/SAE/ASEE Joint PropulsionConference and Exhibit, Jul.2000,1-8: AIAA2000-3417.
    [54]周旭华.卫星重力及其应用研究[D].中国科学院测量与地球物理研究所博士论文,2005.
    [55]王正涛.卫星跟踪卫星测量确定地球重力场的理论与方法[D].武汉:武汉大学研究生院博士论文,2005.
    [56]唐富荣,薛大同,达道安.低低卫-卫跟踪重力测量物理模型及部分姿轨控技术需求.宇航学报,2004,25(5):531-534.
    [57] Shiomi1S, Ni W T. Acceleration Disturbances and Requirements for ASTROD I[J]. arXiv:gr-qc/0506012v12, Jun2005.
    [58] Chiou D W, Ni W T. ASTROD Orbit Simulation and Accuracy of Relativistic ParameterDetermination[J]. Adv. Space Res.,2000,25(6):1259-1262.
    [59]钱积新,赵均,徐祖华.预测控制[M].北京:化学工业出版社,2007年9月第一版.
    [60]武俊峰,王振英.模型预测控制的新发展[J].自动化技术与应用,2004,23(12):1-4.
    [61] Crassidis J L, Markley F L, Anthony T C, Andrews S F. Nonlinear Predictive Control ofSpacecraft[C]. Reno, NV: AIAA, Aerospace Sciences Meeting&Exhibit,35th, Jan.6-9,1997: AIAA-97-0114.
    [62] Shearer C M,. Heise S A. Constrained Model Predictive Control of a Nonlinear AerospaceSystem[C]. Boston, MA: AIAA Guidance, Navigation, and Exhibit, Aug.10-12:772-785.AIAA-98-4235.
    [63] Chung H, Sastry S S. Autonomous Helicopter Formation using Model Predictive Control[C].Keystone, Colorado: AIAA Guidance, Navigation, and Control Conference and Exhibit,21-24August2006: AIAA2006-6066.
    [64]武俊峰,王振英.基于状态观测器的约束鲁棒模型预测控制[J].计算技术与自动化,2005,24(2).
    [65]吴宝林,曹喜滨.基于模型预测的卫星编队队形机动控制[J].吉林大学学报(工学版),2007,37(1).
    [66]曹喜滨,贺东雷.编队构形保持模型预测控制方法研究[J].宇航学报,2008,29(4).
    [67]王信峰,李言俊,侯黎强.基于Hill方程近地卫星模型预测轨道保持方法[J].系统仿真学报,2008,20(22):6273-6277.
    [68] Wood M, Chen W H, Fertin D. Model Predictive Control of Low Earth Orbiting Spacecraftwith Magneto-torquers[C]. Munich, Germany: Proceedings of the2006IEEE InternationalConference on Control Applications, October4-6,2006:2908-2913.
    [69] T ndel P. Constrained Optimal Control via Multiparametric Quadratic Programming[D].Norwegian University of Science and Technology,2003.
    [70] Bemporad A, Morari M, Dua V, Pistikopoulos E N. The explicit linear quadratic regulatorfor constrained systems[J]. Automatica,2002,38:3-20.
    [71] Soroush M, Valluri S. Calculation of Optimal Feasible Controller Output in MultivariableProcesses with Input Constraints[C]. Albuquerque, NM: American control conference,1997(5):3475-3479.
    [72]范才智.微小型无人直升机系统辨识与视觉伺服[D]..长沙:国防科技大学研究生院博士论文,2010.
    [73] Krogstad T R, Gravdahl J T, T ndel P. Explicit Model Predictive Control of a Satellite withMagnetic Torquers[C]. Limassol, Cyprus: Proceedings of the13th MediterraneanConference on Control and Automation, June27-29,2005:491-496.
    [74]谭述军,钟万勰.基于精细积分的(最优)控制系统设计程序包[J].计算机应用与软件,2007,24(9):165-169.
    [75]彭海军,陆仲绩,谭述军.最优控制系统设计与仿真交互式界面软件——PIMCSD[J].计算机应用与软件,2009,26(2):8-10.
    [76]谭述军,段佳佳,夏永江,陆仲绩,吴志刚.基于精细积分理论与算法体系的时变最优控制方案工程应用[J].计算机应用与软件,2009,26(2):1-4.
    [77]孙浩,席裕庚,张钟俊.一类非线性系统的模型预测控制算法[J].上海交通大学学报,1994,28(4):68-75.
    [78] Chen W H, Ballance D J, Gawthrop P J, Gribble J J, O’Reilly J. Nonlinear PID predictivecontroller[J]. IEE Proc.-Control Theory Appl.,1999,146(6):603-611.
    [79] Chen W H, Ballance D J, Gawthrop P J. Analytic Approach to Generalised PredictiveControl of Nonlinear Systems[C]. Model Predictive Control: Techniques and Applications-Day1, IEE Two-Day Workshop on.28April1999:9/1-9/3.
    [80] Chen W H. Predictive control of general nonlinear systems using approximation[J]. IEEProc.-Control Theory Appl., March2004, Vol.151, No.2:137-144.
    [81] Slegers N, Costello M. Nonlinear Model Predictive Control Of A6DOF Air Vehicle[C].San Francisco, California: AIAA Atmospheric Flight Mechanics Conference and Exhibit,15-18August2005: AIAA2005-6025.
    [82] M’Sahli F, Bouani F, El Kamel AK, Abdennour R B, Ksouri M. Constrained nonlinearmodel-based predictive control using ARX-plus Volterra models[C]. IEEE InternationalConference on Systems, Man, and Cybernetics,11-14Oct.1998, vol.4:3764-3769.
    [83] Adetola V A. Integrated Real-time Optimization and Model Predictive Control UnderParametric Uncertainties[D]. Kingston, Ontario, Canada: Queen’s University,2008.
    [84] Adetola V A, DeHaan D, Guay M. Adaptive model predictive control for constrainednonlinear systems[J]. Systems&Control Letters,58(2009):320-326.
    [85] Mrabet M, Fnaiech F, Al-Haddad K. Nonlinear Predictive Adaptive Controllers forNonlinear Systems[C]. Ajaccio, France:2004IEEE International Symposium on IndustrialElectronics,04-07May2004:453-458.
    [86] Mrabet M. Adaptive Predictive Controllers for Nonlinear Systems with ill-defined RelativeDegree[C].2004IEEE International Conference on Industrial Technology, Dec.8-10,2004:21-26.
    [87] Yang K J, Sukkarieh S. Adaptive Nonlinear Model Predictive Path Tracking Control for aFixed-wing Unmanned Aerial Vehicle[C]. Chicago, Illinois: AIAA Guidance, Navigation,and Control Conference,10-13August2009: AIAA2009-5622.
    [88] Jalali A A, Nadimi V. A Survey on Robust Model Predictive Control from1999-2006[C].Sydney, NSW: International Conference on Computational Intelligence for ModellingControl and Automation, and International Conference on Intelligent Agents, WebTechnologies and Internet Commerce (CIMCA-IAWTIC'06),2006Nov.28-2006Dec.1:207.
    [89] Terui F. Position and attitude control of a spacecraft by sliding mode control[C].Proceedings of the American Control Conf. Philadelphia, Pennsylvania:[s.n.],1998:217-221.
    [90] Stansbery D T, Cloutier J R. Position and attitude control of a spacecraft using the statedependent Riccati equation technique[C]//Proceedings of the American Control Conf.Chicago, IL, USA:[s.n,],2000:1867-1871.
    [91]战毅,张洪华.探月卫星使用姿控推力器实现月球轨道捕获的轨道和姿态控制[C].提高全民科学素质、建设创新型国家——2006中国科协年会论文集(下册),2006:61-65.
    [92]张艳召,袁建平,罗建军,周文勇.小卫星临近作业轨道和姿态联合控制[J].中国空间科学技术,2008,(5):13-20.
    [93]卢伟,耿云海,陈雪芹,王峰.在轨服务航天器对目标的相对位姿耦合控制[J].航空学报,2011,32(5):857-865.
    [94] Pan H, Kapila V. Adaptive nonlinear control for spacecraft formation flying with coupledtranslational and attitude dynamics[C]//Proceedings of the40th IEEE Conf on Decisionand Control. Orlando, FL:[s.n.],2001:2057-2062.
    [95] Hirohisa Kojima. Position and Attitude Adaptive Tracking Controller Based on ExactLinearization[C]. Austin, Texas: AIAA Guidance, Navigation, and Control Conference andExhibit,11-14August2003: AIAA2003-5508.
    [96] Hirohisa Kojima. Fly-Around Motion Control Based on Exact Linearization with AdaptiveLaw[J]. Journal of Guidance, Control, and Dynamics, Vol.28, No.1, January-February2005.
    [97]彭冬亮,荆武兴,徐世杰.停靠阶段轨道姿态耦合动力学与控制研究[J].飞行力学,2002,20(1):33-37.
    [98] Wong H, Pan H, Kapila V. Output feedback control for spacecraft formation flying withcoupled translation and attitude dynamics[C]//Portland, OR, USA: Proceedings of the2005American Control, June8-10,2005:2419-2426.
    [99] Xing G Q, Parvez S A, Folta D. Design and Implementation of Synchronized AutonomousOrbit and Attitude Control for Multiple Spacecraft Formation Using GPS MeasurementFeedback[J].前沿科学Frontier Science,2008,2(6):63-76.
    [100]张治国,李俊峰.卫星编队飞行轨道和姿态控制研究[J].应用数学和力学,2008,29(1):38-46.
    [101]吴云华,曹喜滨,张世杰,邢艳军,郑鹏飞.卫星编队相对轨道与姿态一体化耦合控制方法研究[C].2008年航空宇航科学与技术全国博士生学术论坛,2008:73-83.
    [102]吴云华,曹喜滨,张世杰,邢艳军,郑鹏飞.编队卫星相对轨道与姿态一体化耦合控制[J].南京航空航天大学学报,2010,42(1):13-20.
    [103] Tajmar M, Steiger W, Genovese A. Indium FEEP Thruster Beam Diagnostics, Analysis andSimulation[C]. Salt Lake City, Utah, USA:37th AIAA/ASME/SAE/ASEE JointPropulsion Conference&Exhibit,8-11July2001: AIAA2001-3790.
    [104] Genovese A, Tajmar M, Buldrini N, Steiger W. Extended Endurance Test of the IndiumFEEP Microthruster[C]. Indianapolis, Indiana:38th AIAA/ASME/SAE/ASEE JointPropulsion Conference&Exhibit,7-10July2002: AIAA2002-3688.
    [105] Canuto E, Bona B, Calafiore G, Indri M. Drag free control for the European satelliteGOCE. Part I: modelling[C]. Las Vegas, Nevada USA: Proceedings of the41st IEEEConference on Decision and Control, December2002:1269-1274.
    [106] Canuto E, Martella P, Sech G. Attitude and Drag Control: an Application to the GOCESatellite[J]. Space Science Reviews108,2003:357-366.
    [107] GOCE System Critical Design Review–Executive Summery[R]. May2005.
    [108] Wie B, Roithmayr C. Integrated Orbit, Attitude, and Structural Control System Design forSpace Solar Power Satellites[C]. Montreal, Canada: AIAA Guidance, Navigation, andControl Conference and Exhibit,2001: AIAA2001-4273.
    [109] Di Giamberardino P, Monaco S, Ronchini R. Nonlinear Regulation for Tracking and DragCompensation of Two-Body Spinning Satellite[J]. Journal of Guidance, Control andDynamics,2001,24(5):939-952.
    [110] Dale A L, Scott W P. Integrated Trajectory and Attitude Control for a Four-Vane SolarSail[C]. San Francisco, California: AIAA Guidance, Navigation, and Control Conferenceand Exhibit,2005: AIAA2005-6082.
    [111] Drai R, Udrea B, Thomas S J. Integrated Attitude and Orbit Control of an InterstellarHeliopause Probe[C]. Big Sky, Montana, EL:2007IEEE Aerospace Conference,3-10March2007:1-13.
    [112]张育林,曾国强,王兆魁,郝继刚.分布式卫星系统理论及应用[M].北京:科学出版社,2008.
    [113] Howard D. Curtis著,周建华,徐波,冯全胜译.轨道力学[M].北京:科学出版社,2009.
    [114]郗晓宁,王威等.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003.
    [115]罗亚中.空间最优交会路径规划策略研究[D].长沙:国防科技大学研究生院博士论文,2007.
    [116]王兆魁.分布式卫星动力学建模与控制研究[D].长沙:国防科技大学研究生院博士论文,2006.
    [117]黄圳圭.航天器姿态动力学[M].长沙:国防科技大学出版社,1997.
    [118]程国采编著.四元数法及其应用.长沙:国防科技大学出版社,1991.
    [119]杨大明.空间飞行器姿态控制系统[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [120]杨嘉墀等.航天器轨道动力学与控制[M].北京:中国宇航出版社,1995.
    [121]刘林.航天器轨道理论[M].北京:国防工业出版社,2000.
    [122]章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航天大学出版社,1998.
    [123]《导弹与航天丛书卫星工程系列》.卫星姿态动力学与控制(1).北京:宇航出版社.
    [124]谷振丰,张育林,王兆魁等.基于四面体质元划分的纯引力轨道万有引力干扰计算方法[P].201110210321.0.中国专利已受理,进入实质审查.
    [125]王之元,易东云,姚静.编队卫星空间状态参数估计量对ATI测速精度影响[J].2006,(5):21-28.
    [126]姚静.基于GNSS的分布式SAR卫星系统空间状态确定方法研究[D].长沙:国防科技大学研究生院博士论文,2008.
    [127] Costic T B, Dawson M D, de Queiroz S M, Kapila V. A Quaternion-Based AdaptiveAttitude Tracking Controller Without Velocity Measurements[C]. Sydney, Australia:Proceedings of the39th IEEE Conference on Decision and Control, December,2000:2424-2429.
    [128] Costic B T, Dawson D M, de Queiroz M S, Kapila V. Quaternion-Based Adaptive AttitudeTracking Controller Without Velocity Measurements[J]. Journal of Guidance, Control andDynamics,2001,24(6):1214-1222.
    [129]张洪钺,王青.最优控制理论与应用[M].北京:高等教育出版社,2006.
    [130] Hartikainen J, S rkk S. Optimal Filtering with Kalman Filters and Smoothers–a Manualfor Matlab toolbox EKF/UKF.2008, v1.2.
    [131] Rim H J, Kim Y C, Schutz B E. Atmospheric drag modeling for CHAMP precision orbitdetermination[C]. California: AIAA/AAS Aerodynamics Specialist Conference and Exhibit,2002: AIAA2002-4737.
    [132] Kabelá J, Sehnal L. Atmospheric Effects on the Dynamics of the MIMOSA Satellite[J].Journal of Geodesy,2003,76:536-542.
    [133] Doornbos E, Klinkrad H. Modelling of Space Weather Effects on Satellite Drag[J].Advances in Space Research,2006,37:1229-1239.
    [134] Hwang C, Lin T J, Tseng T P, Chao F B. Modeling Orbit Dynamics of FORMOSAT-3/COSMIC Satellites for Recovery of Temporal Gravity Variations[J]. IEEE Transactions onGeoscience and Remote Sensing,2008,46(11):3412-3423.
    [135] Bruinsma S, Tamagnan D, Biancale R. Atmospheric densities derived fromCHAMP/STAR accelerometer observations[J]. Planetary and Space Science,2004,52:297-312.
    [136] Doornbos E, Klinkrad H, Visser P. Atmospheric Density Calibration using Satellite DragObservations[J]. Advances in Space Research,2005,36:515-521.
    [137]秋宏兴,吴连大,张伟.大气密度模型用于近地卫星定轨预报比较[J].飞行器测控学报,2006,25(4):12-18.
    [138]耿长福.航天器动力学[M].北京:中国科学技术出版社,2006.
    [139]汪宏波,赵长印.用CHAMP加速仪数据校验太阳活动峰年的大气密度精度[J].天文学报,2008,49(2):168-178.
    [140] She J H, Kobayashi H, Ohyama Y, Xin X. Disturbance Estimation and Rejection-Anequivalent input disturbance estimator approach[C]. Bahamas:43rd IEEE Conference onDecision and Control,2004:1376-1341.
    [141] She J H, Fang M X, Ohyama Y, Hashimoto H and Wu M. Improving Disturbance-rejectionPerformance Based on an Equivalent-input-disturbance Approach[J]. IEEE Transactions onindustrial electronics.2008,55(1):380-389.
    [142] Canuto E, Molano-Jimenez A, Perez-Montenegro C. Disturbance Rejection in SpaceApplications: Problems and Solutions[C]. Yantai: Proceedings of the30th Chinese ControlConference,2011:6261-6266.
    [143] Wood M, Chen W H. Regulation of Magnetically Actuated Satellites using ModelPredictive Control with Disturbance Modelling[C]. Proceedings of2008IEEEInternational Conference on Networking, Sensing and Control, ICNSC,2008:692-697.
    [144]叶修松,吴星,赵东明.应用预测滤波估计卫星姿态[J].测绘科学,2009,34(4):15-17.
    [145]王晨,房建成.基于Unscented四元数粒子滤波的微小卫星姿态估计.北京航空航天大学学报,2007,33(5):552-556.
    [146]王功波.基于连续小推力的航天器轨道设计与控制方法研究[D].长沙:国防科技大学研究生院博士论文,2011.
    [147]王兆魁,张育林.推力方向受限条件下的编队构型变结构控制[J].宇航学报,2009,30(2):572-578,679.
    [148] Caramagno A, Lange M, Gonzalez J, Saccoccia G. Application of Electric Propulsion tothe Gravity and Ocean Circulation Explorer Mission (GOCE)[C].32ndAIAA/ASME/SAE/ASEE Joint Propulsion Conference, Lake Buena Vista, EL, July1-3,1996: AIAA-962721.
    [149] Rock B St., Blandino J J, Demetriou M A. Application of Micronewton Thrusters forControl of Multispacecraft Formations in Earth Orbit[C].40th AIAA/ASME/SAE/ASEEJoint Propulsion Conference and Exhibit, Fort Lauderdale, Florida,11-14July2004: AIAA2004-3811.
    [150]铁钰嘉,岳晓奎,曹静.基于航天器姿轨耦合模型的非线性前馈控制[J].中国空间科学技术,2010,12(6):11-17.
    [151] Fearn D G, Rijm C. Low-cost Remote Sensing from Low Altitude using Ion Propulsion forDrag Compensation[C]. Indiana:38th AIAA/ASME/SAE/ASEE Joint PropulsionConference&Exhibit,2002: AIAA2002-3674.
    [152]唐生勇,张世杰,陈闽,张育林.交会对接航天器推力分配算法研究[J].宇航学报,2008,29(4):1120-1125.
    [153]岳晓奎,段辰路.航天器推力器布设对燃料消耗的影响[J].中国空间科学技术,2011,4(2):43-47.
    [154] Xu Y J, Tatsch A, Fitz-Coy N G. Chattering Free Sliding Mode Control for a6DOFFormation Flying Mission[C]. San Francisco, California: AIAA Guidance, Navigation, andControl Conference and Exhibit,15-18August2005: AIAA2005-6464.
    [155] Beard R W, Hadaegh F Y. Finite Thrust Control for Satellite Formation Flying with StateConstraints[C]. San Diego, California: Proceedings of the American Control Conference,June1999:4383-4387.
    [156] Giulicchi L, Fenal T, Wu S F. Lisa Pathfinder Mission: Attitude and Orbit Control UsingMicropropulsion Systems[C]. Chicago, Illinois: AIAA Guidance, Navigation, and ControlConference,10-13August2009: AIAA2009-5997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700