用户名: 密码: 验证码:
液压弹射机构设计及其关键控制元件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹射机构利用系统预先储存能量的快速释放实现对弹射对象的瞬间加速,广泛应用于现代军事及普通工业,如航母飞机的弹射起飞、导弹的弹射发射、弹射救生座椅、汽车碰撞试验等。根据动力元件的不同,弹射机构主要分为机械式、燃气式、压缩空气式、蒸汽式、电磁式以及液压式,其中,液压弹射机构具有功率重量比大、响应速度快、控制精度高、易于实现缓冲、噪声小等优点,在高性能的应用场合逐渐受到重视。液压弹射机构以液压缸活塞的高速运动为主要特征,关键技术难点包括大功率瞬时能源的供应、高速液压执行元件的密封与缓冲、高速大流量的弹射控制阀及其导控级高频伺服阀的研制开发,可见,液压弹射机构属于高速大功率液压系统,随着液压设备正朝着高速、大功率、低噪声方向发展,对上述关键技术的研究成果,具有广泛的应用前景。
     本文首先对液压弹射机构的发展现状和相关应用领域进行了总结和分析,论述了高速液压缸和高频响、大流量伺服阀的研究现状,在此基础上,对液压弹射机构及其关键控制元件-高频、大流量2D伺服阀开展研究,主要研究内容及成果如下:
     1.针对特定的应用场合,主要提出以下几种液压弹射机构原理方案,一是低速液压弹射机构,其液压缸活塞最大速度达到8m/s,活塞加速时间约70ms,并对其进行改进设计;二是高速液压弹射机构,设计指标为活塞初始20mm行程时速度达到2m/s以上,最大速度达到15m/s;三是双液压缸同步弹射机构,两个液压缸同步弹出,最大速度6m/s;还有超高速液压弹射机构,对应活塞速度达到20m/s以上。以高速液压弹射机构为例,讨论了弹射机构的参数计算及结构设计。
     2.为解决高速大流量开关阀的流量和响应速度之间的矛盾,提出了双节流口并联输出的结构方案,对开关阀的零位泄漏特性、阀口流动特性以及压力特性进行理论分析和实验研究,其在2MPa进出口压差下的流量达到3000L/mmin,建立了开关阀阀芯运动过程的数学模型,分析了结构参数对其动态特性的影响,并搭建样机进行了实验验证,在10MPa工作压力下,开关阀的开启时间低于15ms,探讨了筛阀的结构方案。
     3.为提高频响和流量,将圆孔型导控结构的2D伺服阀改成满弓型结构,通过对2D伺服阀的静态特性分析,其导控级零位泄漏在21MPa时约为0.5L/min,建立了2D伺服阀伺服螺旋机构的数学模型,通过线性和非线性仿真分析了工作压力、初始弓高、面积梯度等对频率特性和阶跃响应特性的影响,理论分析表明圆孔型导控结构在-3dB幅值衰减下的频响约250Hz,而满弓型则达到800Hz,实测满弓型阶跃响应时间约1.6ms,圆孔型约3ms,证明了满弓型结构较圆孔型的动态特性有显著提高,为研制高频、大流量2D伺服阀奠定基础。
     4.为解决液压缸活塞的高速缓冲,提出活塞式液压缸缓冲结构,理论分析表明活塞初始间隙对缓冲腔峰值压力影响最为显著,建立了活塞式缓冲结构的动力学模型,通过仿真和实验研究了活塞式缓冲过程的动态特性,其能够在60mm缓冲行程内将活塞速度由7m/s降至0.6m/s以下,分析了结构参数对缓冲性能的影响,在此基础上,进一步提出了两级缓冲和组合缓冲,并探讨了超高速液压缸的结构方案。
     5.建立了由蓄能器—开关阀—液压缸组合的高速液压弹射机构的工作过程的数学模型,利用MATLAB软件仿真分析了结构参数和工作参数对弹射机构动态特性的影响,并搭建了样机进行实验,表明弹射机构在8MPa工作压力下,l00ms时间内,将150kg负载加速至8m/s且活塞初始20mm位移时的速度达到2.0m/s以上。
     6.对双缸闭环液压弹射机构及其关键技术进行了分析,利用闭环液压弹射机构的数学模型研究了双缸同步开环控制特性,并通过建立近似的线性化传递函数,研究了双缸同步闭环控制特性,理论上,闭环阶跃响应时间约为50ms。
Catapult mechanism was used to accelerate the catapult object instantaneously by using the rapid release of pre-stored energy, it was widely used in modern military and general industry, such as aircraft catapult takeoff, missile ejection launch, ejection seat, car crash test device and so on. Depending on the power actuator, the catapult mechanism includes mechanical, gas-fired, compressed air, steam, electromagnetic and hydraulic. Hydraulic catapult mechanism has many advantages,for example the higher ratio of power to weight, the faster response ability, the high control precision, easy to cushion and lower noise. It has been taken seriously in high-performance applications. Hydraulic catapult mechanism takes the high speed movement of the hydraulic cylinder piston as its main characteristic. The key technical difficulties are energy supply of instantaneous high-power source, the seal and cushion design of high-speed hydraulic actuators, the catapult control valve with rapid response and large flow rate and its pilot servo valve with high frequency response. Hydraulic catapult mechanism belongs to the high-speed and high-power hydraulic system. As hydraulic equipment is developing towards high-speed, high power, low noise, the study on the above key technologies will have a wide range of application prospect.
     The summary and analysis of the development status and applications of hydraulic catapult mechanism was first done, and the research status about high-frequency response and high flow rate servo valve was discussed. On this basis, the hydraulic catapult mechanism and its key control elements-2D servo valve with high-frequency was studied, the main contents and results are as follows:
     1. For specific applications, the following several hydraulic catapult mechanism schemes were mainly proposed. The low speed hydraulic catapult mechanism, with its hydraulic cylinder piston maximum speed of8m/s, piston acceleration time is approximately70ms, and its improvement design. The high-speed hydraulic catapult mechanism, design index includes piston initial20mm piston stroke reached a velocity of2m/s, the maximum speed up to15m/s. The simultaneous ejection mechanism with double hydraulic cylinder, the two hydraulic cylinders eject synchronously with a maximum speed of6m/s. The ultra high-speed hydraulic catapult mechanism, with corresponding piston speed is above20m/s. The high-speed hydraulic ejection mechanism was taken as an example, the parameters calculation and structure design of the ejection mechanism was discussed.
     2. In order to solve the contradiction between high response and large flow rate of high-speed switch valve, a double throttle parallel output structure scheme was proposed. The theoretical analysis and experimental research of the zero leakage characteristic, the flow characteristic and the pressure characteristic of switch valve were done. The flow reaches3000L/min with a2MPa import and export pressure difference, the mathematical model of switch valve spool motion process was established, the influence of structure parameters on the dynamic characteristics of the switch valve was analyzed. Finally, a prototype was built and the experiment was completed, the valve open time is less than15ms with lOMPa working pressure. A structural scheme of sieve valve was also discussed.
     3. In order to improve frequency and flow of2D servo valve, circular hole type pilot control structure is changed into a full bow type structure, through the analysis of static characteristics of2D servo valve, the pilot stage of zero leakage at21MPa is about0.5L/min. The mathematical model of2D servo valve servo spiral mechanism was established. The influence of work pressure, initial bow height, area gradient on step response and frequency characteristic was analyzed by the linear and nonlinear simulation. Theoretical analysis showed that the frequency response of circular type structure at the-3dB amplitude attenuation is about250Hz, and the full bow type is800Hz, the measured full bow type step response time is about1.6ms, the circular type about3ms, proved that the full bow structure can significantly improve the dynamic characteristic of servo spiral mechanism. Lay the foundation for the development of high frequency, large flow2D servo valve.
     4. To solve the cushion of high speed hydraulic cylinder piston, a piston cushion structure was proposed. Theoretical analysis showed that the piston initial clearance is the most significant influencing factor to peak pressure. The mathematical model of piston cushion structure was established, and the dynamic characteristics of piston cushion process is studied by simulation and experiment, showed that it can reduce the piston speed from7m/s to0.6m/s in60mm cushion stroke. The influence of structure parameters on the cushion performance was studied, on this basis, put forward two stage and combined cushion structure, and the structure scheme of ultra high speed hydraulic cylinder was also discussed.
     5. The mathematical model of high speed hydraulic catapult mechanism which combined by the accumulator, switch valve and hydraulic cylinder was established. The structure parameters and operating parameters affect on dynamic characteristics of catapult mechanism was analyzed. The catapult mechanism prototype was built to test. Showed that the ejection mechanism can accelerate the load with150kg from0m/s to8m/s in100ms at8MPa working pressure, and the load can reaches speed of more than2.0m/s in just20mm piston initial stroke.
     6. The double hydraulic cylinder closed loop catapult mechanism and its key technology were analyzed. The double cylinder synchronous open-loop control characteristic was studied by establishing the mathematical model, Double cylinder synchronous closed loop control characteristic was also studied by establishing linear approximate transfer function. Theoretical studies showed that the closed-loop step response time is about50ms.
引文
[1]欧汛.航母的弹射装置[J].现代舰船,2005(7):41-44.
    [2]金钊,陈思达.舰空导弹垂直发射系统发展概况[J].飞航导弹,2006(1):23-27.
    [3]李悦,张海黎.无人机气液压发射原理试验研究[J].南京航空航天大学学报,2010,42(6):699-703.
    [4]贺朝霞,吴立言,李艳敏,黄孝武.弹射座椅的冲击动力学分析研究[J].中国机械工程,2005,16(3):201-204.
    [5]芮守祯,邢玉明.导弹发射动力系统发展研究[J].战术导弹技术,2009(5):04-09.
    [6]Swett D W, Blanche IV J G. Flywheel Charging Module For Energy Storage Used In Electro-magnetic Aircraft Launch System[C]. IEEE 2004 12th Symposium on Electromagnetic Launch Technology, pp.551-554, May 2004.
    [7]Patterson D, Monti A, Brice C, Dougal R, Pettus R, Srinivas D, Dilipchandra K, Bertoncelli T. Design and Simulation of an Electromagnetic Aircraft Launch System[C]. Record of the 37th Annual IEEE Industry Applications Society Conference, pp.1950-1957, October 2002.
    [8]杜泉峰,王正平,王稳江.弹射式导弹发射对超音速飞行载机的动力学影响[J].弹箭与制导学报,2010,30(3):138-140.
    [9]郭关柱,王云.试论水下鱼雷发射装置研究方向[J].舰船科学技术,2003,25(3):21-23.
    [10]www.edocorp.com
    [11]www.cobham.com
    [12]郭关柱,王云.低噪声鱼雷发射技术之探讨[J].鱼雷与发射技术,2002(2):23-30.
    [13]国外无人机大全编写组,国外无人机大全[M],北京:航空工业出版社,2001,447-457.
    [14]Werner Soedel, Vernard Foley. Ancient Catapults [J]. Scientific American, pp.1-15, March 1979.
    [15]Nobuki Kawashima,Akira Yamori. Stable and Reproducible Production of High Velocity Projectile in ISAS Railgun [HYPAC][J]. IEEE Transactions on Magnetics, VOL.29, NO.1, pp.431-434,January 1993.
    [16]程刚,倪何,孙丰瑞.舰载蒸汽弹射系统建模与仿真研究[J].武汉理工大学学报(交通科学与工程版),2010,34(2):301-305.
    [17]雪巴.五花八门的弹射器——美国海军航母弹射飞行发展史[J].舰载武器,2007(4):60-68.
    [18]李梅武,崔英,薛飞.航母飞机起飞的最佳选择——电磁弹射系统[J].舰船科学技术,2008,30(2):34-37.
    [19]C.R.柏劳斯.液压气动伺服机构[M].北京:国防工业出版社,1978.
    [20]王积伟,章宏甲,黄谊.液压与气压传动[M].机械工业出版社,北京:机械工业出版社,2005.
    [21]吴嵩.电液控制冲击试验机液压系统的研究[D].杭州:浙江大学,2004.
    [22]王春行.液压控制系统[M].北京:机械工业出版社,2006.
    [23]Merritt H E. Hydraulic control systems [M]. New York:John Wiley& Sons,1967.
    [24]http://www.defenseindustrydaily.com/edos-avel-missile-ejection-system-extending-the-raptors-claws-01848.
    [25]廖振强,王涛,何大平,王晖.抛放弹弹射机构优化设计[J].南京理工大学学报,2003,27(5):573-576
    [26]何大平,廖振强,王涛,王晖.抛放弹机构弹射-回收过程仿真[J].兵工学报,2004,25(4):454-457.
    [27]周建文.飞机导弹弹射系统动特性分析和仿真研究[D].西安:西北工业大学,2004.
    [28]卢立秀,汤军社,门党党,王红艳.导弹弹射机构的建模与仿真研究[J].弹箭与制导学报,2008,28(5):29-31
    [29]吴佳林.导弹弹射系统发射姿态调整研究[D].南京:南京理工大学,2006.
    [30]戴龙成,宣益民,尹健.氮气弹射系统动特性实时动态仿真[J].弹道学报,2000,12(4):16-23.
    [31]马琳,俞浙青,阮健.气液快速动作机构设计及其动态特性研究[J].机床与液压,2010,38(5):84-86.
    [32]马琳.气液弹射机构设计及动态特性研究[D].杭州:浙江工业大学,2009.
    [33]刘乃新.气液弹射机构的设计及关键控制元件的研究[D].杭州:浙江工业大学,2009.
    [34]贾培起.液压缸[M].北京:科学技术出版社,1987.
    [35]丁凡.超高压断路器液压操动机构的研究[D].杭州:浙江大学,1994.
    [36]Busak+Shamban公司.密封选型指南[M].1997.
    [37]丁凡.高速液压缸缓冲过程的研究[J].钢铁,1998,33(8):54-57.
    [38]丁凡,路甬祥.短笛型缓冲结构的高速液压缸缓冲过程的研究[J].中国机械工程,1998,9(10):52-54.
    [39]魏忠永,赵鸿飞,刘伟,等.高压断路器液压操动机构油缸缓冲过程仿真与实验[J].农业机械学报,2010,41(6):216-221.
    [40]刘波.液压缸缓冲结构和缓冲过程的研究[D].杭州:浙江大学,2004.
    [41]刘波,吴嵩,丁凡,张策.高速液压缸平板节流缓冲过程的研究[J].机床与液压,2004(9):40-41.
    [42]傅林坚.大流量高响应电液比例阀的设计及关键技术研究[D].杭州:浙江大学,2010.
    [43]路甬祥等.电液比例控制技术[M].北京:机械工业出版社,1988.
    [44]Maskrey R H, Thayer W J. A brief history of electrohydraulic servomechanism [J]. ASME Journal of Dynamic Systems Measurement and Control, June,1978.
    [45]Moog R C. Moving coil electrohydraulic valve [P]. US Patent:US3410308,1968-11-12.
    [46]Murrenhoff H. Trends in valve development [J]. Olhydraulik und Pneumatik,2003(46):1-36.
    [47]Burrows C R. Some challenges facing fluid power technology, opportunities for international collaboration and progress to date [A]. Proceedings of the 5th JFPS international symposium on fluid power[C]. Tokyo, Japan:The Japan Fluid Power System Society,2002,107-112.
    [48]方群,黄增.电液伺服阀的发展历史、研究现状及发展趋势[J].机床与液压,2007(11):162-164.
    [49]Nascutiu L. Voice coil actuator for hydraulic servo valves with high transient performances [C]. Proceedings of IEEE international conference on automation, quality and testing, robotics, Cluj-Napoca, Romania:IEEE,2006,185-190.
    [50]Morgan J M, Milligan W W. A 1kHz servohydraulic fatigue testing system [C]. Proceedings of the conference on high cycle fatigue of structural materials, Warrendale PA, USA:The Minerals, Metals & Materials Society,1997,305-312.
    [51]Ichiryu K, Watanabe H and Yamaguchi T, Direct acting servo valve [P]. US Patent:US4544129, 1985-10-01.
    [52]Ruan J,Burton R and Ukrainetz P An Investigation Into the Characteristic of a Two Dimensional"2D" Flow Control Valve[J]. ASME, Journal of Dynamic Systems Measurement and Control,2002, pp.214-220.
    [53]阮健,裴翔,李胜.2D数字换向阀[J].机械工程学报,2000,36(3):65-68.
    [54]阮健.电液(气)直接数字控制技术[M].杭州:浙江大学出版社,2000.
    [55]Ruan J, Ukrainetz P, Burton R. Frequency domain modelling and identification of 2D digital servo valve [J]. International Journal of Fluid Power,2000,1(2):76-85.
    [56]李胜,阮健,孟彬.2D数字伺服阀频率特性研究[J].中国机械工程,2011,2(2):215-219.
    [57]李其朋.直动式电液伺服阀关键技术的研究[D].杭州:浙江大学,2005.
    [58]许小庆.新型电液伺服比例阀用电—机械转换器的理论分析和试验研究[D].太原:太原理工大学,2010.
    [59]Yokota S, Hiramoto K. Ultra high-speed electro-hydraulic servo valve by making use of a multilayered piezoelectric device (PZT) (compensation of a hysteresis by introducing a software algorithm) [J]. Transactions of the Japan Society of Mechanical Engineers Part B,1991,57 (533): 182-187.
    [60]李跃松,朱玉川,吴洪涛,田一松,牛世勇.电液伺服阀的研究现状[J],航空兵器,2010(6):20-24.
    [61]沈传亮,程光明,曾平,等.压电驱动式高频电液伺服阀实验研究[J].哈尔滨工业大学学报,2008,40(9):1443-1446.
    [62]Claeyssen F, Lhermet N, Leery R L et al. Actuators, transducers and motors based on giant magnetostrictive materials [J]. Journal of Alloys and Components.1997(258):61-73.
    [63]王传礼,丁凡,崔剑,等.基于GMA喷嘴挡板伺服阀的动态特性[J].机械工程学报,2006(10):23-26,36.
    [64]夏春林,丁凡,路甬祥.超磁致伸缩电机转换器的热补偿的实验研究[J].中国机械工程,1999,10(5)563-565.
    [65]朱玉川,鲍和云,王传礼.超磁致伸缩伺服阀的参数设计与优化研究[J].中国机械工程,2008(20):2403~2406.
    [66]王传礼.基于GMM转换器喷嘴挡板伺服阀的研究[D].杭州:浙江大学,2005.
    [67]Reichert M, Murrenhoff H. New Concepts and Design of High Response Hydraulic Valves Using Piezo-Technology[J]. Power transmission and motion. Bath:University of Bath,2006.401-414.
    [68]曲兴田,鄂世举,吴博达等.双压电晶片驱动喷嘴挡板式伺服阀[J].吉林工业大学(工学版),2005(2):152-156.
    [69]工传礼,丁凡.基于新型功能材料的高频响电液伺服阀[J].矿冶工程,2002(4):79-81.
    [71]雷天觉.液压工程手册[M].北京:机械工业出版社,1990.
    [72]Lipponen P. Method of Launching a Catapult, Catapult, and Locking Device[P]. US Patent: US20090250550A1,2009-07-21.
    [73]Martin M. Device for the Acceleration of Bodies, Especially a Mobile Catapult for Flying Bodies[P]. US Parent:4909485,1999-03-20.
    [74]Martin M. A hydraulic catapult for the launch of unmanned aircraft[C]. In:Proceedings of the Ninth Inter-national Remotely Piloted Vehicle Conference, Bristol, UK.1991,9:20-20.5.
    [75]Veazey G R S. Launch and recovery of airborne remotely piloted vehicles[C]. In:Proceedings of the Ninth Inter-national Remotely Piloted Vehicle Conference,1984,21:1-8.
    [76]吴泊宁,裴锦华,杜军玲.某型无人机导轨起飞装置气液压能源系统的应用[J].南京航空航天大学学报,2005,37(4):427-.430.
    [77]李悦,张海黎.无人机气液压发射原理试验研究[J].南京航空航天大学学报,2010,42(6):699-703.
    [78]李悦,巫成荣,吴泊宁,裴锦华,戈嗣诚.无人机气液压弹射装置的关键系统设计[J].南昌航空工业学院学报(自然科学版),2002,16(2):63-67.
    [79]秦贞超,周志鸿,梁上愚.无人机起飞弹射液压系统的设计与研究[J].液压与气动,2010(10):6-7.
    [80]李悦,张海黎.无人机气液压发射原理试验研究[J].南京航空航天大学学报,2010,42(6):699-703
    [81]倪火才.潜载导弹水下发射技术的发展趋势分析[J].舰载武器,2001(1):8-16.
    [82]李克孚,乔汝椿.国外潜艇鱼雷发射装置的发展[J].鱼雷技术,1998,6(3):1-9.
    [83]谢英俊.高速液压上抛系统的关键技术研究[D].杭州:浙江大学,2000.
    [84]岳继光,傅周东,谢英俊,陈鹰.微重力环境与微重力落塔的液压上抛发射系统[J].中国机械工程,2000,11(6):660-662.
    [85]Peter von Kampen, Ulrich Kaczmarczik, Hans J. Rath. The new Drop Tower catapult system[J]. Acta Astronautica,2006(59):278-283.
    [86]苑舜.高压断路器液压操动机构[M].北京:机械工业出版社,2000.
    [87]丁凡,路甬祥.新型500kV超高压断路器液压操动机构的研究[J].中国机械工程,1998,9(6):50-52.
    [88]刘伟,杨华勇,徐兵,魏忠永.高压断路器液压操动机构管道特性研究[J].农业机械学报,2010,41(1):182-187.
    [89]德国富来公司.富来的高速、高能量压射系统ECOPRESS特种铸造及有色合金,1997(2):60
    [90]Plummer A R. Highly dynamic servohydraulic motion control[J]. In:International Conference on Fluid Power Transmission and Control:ICFP 2009, April 2009,Hangzhou, China.
    [91]吕景忠,隋振,杨永海,张兰义.新型液压桩锤气液驱动系统[J].吉林大学学报(工学版),2004,34(4):597-601
    [92]Antonio G, Demonico L. Modelling and Simulation of A Hydraulic Breaker[J].International Journal of Fluid Power,2005,6(2):47-56.
    [93]Wei Liu, Bing Xu, Huayong Yang, Zhongyu Wu. Simulation study on the control valve in hydraulic operating mechanism of the high voltage circuit breaker[C]. Proceedings of 2008 ASME International Mechanical Engineering Congress and Exposition, Oct.31-Nov.6, Massachusetts,2008: 1-8.
    [94]Yuri M, Andrei K, Michael G, Don D, James B. Hydraulic Hammer Drilling Technology: Developments and Capabilities. Journal of Energy Resources Technology.2000,122:1-7.
    [95]Antonio G, Domenico L. Modelling and simulation of a hydraulic breaker. International Journal of Fluid Power,2005,2:47-56.
    [96]施光林,钟廷修.高速电磁开关阀的研究与应用[J].机床与液压,2001(2):7-9
    [97]邓业民,孔晓武,邱敏秀,魏建华.先导式大流量高速开关阀的优化设计[J].机械设计,2010,27(9):84-86.
    [98]张海平.液压螺纹插装阀[M].北京:机械工业出版社,2012.
    [99]竹中利夫.液压流体力学[M].北京:科学出版社,1980.
    [100]Blackburn J F, Reethof G and Shearer J L. Fluid Power Control [M]. New York:Technology Press of MIT and Wiley,1960.
    [101]盛敬超.液压流体力学[M].北京:机械工业出版社,1980.
    [102]袁子荣,吴张永,袁锐波,等.新型液压元件及系统集成技术[M].北京:机械工业出版社,2012.
    [103]卢长耿,李金良.液压控制系统的分析与设计[M].北京:煤炭工业出版社,1991.
    [104]刘小初.三级电液伺服阀特性及其控制技术研究[D].哈尔滨:哈尔滨工业大学,2010.
    [105]Katsuhiko O卢伯英等译.现代控制工程[M].北京:电子工业出版社,2007.
    [106]H. M urrenhoff著.吴根茂译.液压控制技术发展趋势(第1部分元件与传动装置)[J].工程设计,1997(3):20-29.
    [107]陈彬,易孟林.电液伺服阀的研究现状和发展趋势[J].液压与气动,2005(6):5-8.
    [108]李胜.2D伺服阀数字控制的关键技术的研究[D].杭州:浙江工业大学,2011.
    [109]阮健,李胜,孟彬.2D数字伺服阀[J].液压与气动,2010(9):77-80.
    [110]曾义芳.DSP基础知识及系列芯片[M].北京:北京航空航天大学出版社,2006.
    [111]苏奎峰,吕强,耿庆锋,等TMS320F2812原理与开发[M].北京:电子工业出版社,2005.
    [112]吴根茂,邱敏秀,王庆丰.新编实用电液比例技术[M].杭州:浙江大学出版社,2006.
    [113]江海兵,阮健.大流量高速开关阀阀芯挤压油膜缓冲技术研究闭.中国机械工程,2011,22(16):1933-1937.
    [114]Meikandan N, Raman R, Singaperumal.M. Experimental study of friction in hydraulic actuators with sealless pistons[J]. Wear,176(1994):131-135.
    [115]周盛,徐兵,杨华勇.高速开关阀液动力补偿[J].机械工程学报,2006(5):5-8.
    [116]田树军,胡全义,张宏.液压系统动态特性数字仿真[M].大连:大连理工大学出版社,2012.
    [117]陆元章.液压系统的建模与分析[J].上海:上海交通大学出版社,1989.
    [118]李长春,孟亚东,刘晓东,周欣.电液伺服系统的同步控制研究[J].兵工学报,2007,28(6):765-768.
    [119]施光林,钟廷修,史维祥,李天石.电液位置同步控制系统的三类标准化模型[J].机床与液压,2000,增刊:86-88.
    [120]倪敬,项占琴,潘晓弘,吕福在.双缸同步提升电液系统建模和控制[J].机械工程学报,2007,43(2):81-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700