用户名: 密码: 验证码:
GMAW再制造多重堆积路径对质量影响及优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GMAW(Gas Metal Arc Welding)多重堆积再制造是修复较大金属构件破损的重要手段,其热过程复杂、影响因素多,是目前再制造领域研究的热点之一。本文以实现GMAW再制造多重堆积路径优化为目标,以单热源多重加热模式下的热过程为重点,对成形过程多次加热温度场理论解析进行了探索,采用有限元模拟和实验方法对其多重加热模式下的复杂应力、变形、路径影响规律进行了系统研究,并建立了多重堆积路径模糊综合评价系统,实现了多指标路径优化。为大型构件高效率、高质量再制造的实际应用建立了理论基础,并为再制造堆积路径优化提供一种可行的技术手段。
     首先,对GMAW多道堆积多次加热温度场理论解析进行探索研究,采用集中点热源、三维分布双椭球热源,在静止、运动坐标系下推导出电弧热源多次加热、道间冷却及最终冷却过程动态温度场解析公式。在Matlab环境下编程实现了多道堆积加热目标区域温度场、热循环、道间等待时间范围等特征参数的计算。进而研究了多道堆积过程前道热积累对后道的预热,以及后道对前道的后热作用,对比分析了不同堆积方向、不同规范下的热循环特点。同向比交错式堆积散热好,规范过大会导致热积累严重,工件过热。分析了道间等待时间对热循环的影响规律,可利用道间等待时间有效控制多重堆积的热量积累。上述研究为预估再制造工艺参数范围提供了依据。
     根据基体对熔覆层的外部约束形式将所研究的GMAW再制造修复工件划分为:一维、二维约束两种情况。采用数值模拟研究方法,建立了一维约束的平板堆积和二维约束的块状基体堆积修复有限元模型,并分析其温度场、应力场、变形的规律。研究表明,层内前道、后道之间存在预热、后热交互作用,后道对前道有应力释放作用;层间前层对后层预热,后层对前层后热并具有应力释放作用。多重堆积过程经历单热源多次加热,热积累严重,容易导致整体过热、成形变差,可通过设置合理道间等待时间避免工件过热。在确定的规范参数下,随着道数增加,一维约束平板堆积过程横向道间应力逐渐降低,而二维约束块状基体修复过程横向约束大,横向道间应力逐渐升高。在三个方向变形中高度方向翘曲变形最大,对修复表面平整度影响也最大。
     进一步研究了过程参数对多重堆积过程的影响规律。堆积长度越长,拉压应力过渡越陡。道间等待时间越长,道间应力、层间应力升高,残余应力降低。在成形效率允许范围内,尽量选择较长道间等待时间,避免工件过热,有利于成形均匀,降低残余应力。针对两种约束情况,研究了层内、不同层间堆积顺序和方向对温度场、应力场、翘曲变形的影响。散热状况方面同向堆积优于交错式堆积,残余应力方面交错式堆积优于同向堆积。其它参数不变,可通过调整堆积路径而改善温度场、应力、翘曲变形状况。
     再制造多重堆积路径组合多、评价指标多,导致最优路径选择困难。本文以堆积路径影响规律为数据支撑,模拟人的思维决策模式,开发了再制造多重堆积路径模糊综合评价方法,实现了多指标下的路径优化。多指标包括:散热状况、成形状况、残余应力、翘曲变形、成形效率。通过评价指标因素集、评价结果向量、模糊词集、论域的确立,以及精确量模糊化、模糊推理及模糊量非模糊化,建立了模糊综合评价模型。并在Visual C++编程环境下开发了友好的系统交互界面。专家级用户根据知识和经验直接输入权重;非专家级用户根据产品质量要求采用层次分析法计算权重。
     最后,选取火车钩舌磨损件进行了实例验证。结合前述得出的路径影响规律,分析了钩舌S面从外到里同向、交错式方向,以及从里到外同向、交错式方向四种堆积路径,在各指标下对堆积路径进行了排序,并采用数值模拟和实验方法进行了验证。根据火车钩舌修复质量要求,对指标重要性排序为:残余应力、成形状况、散热状况、效率、翘曲变形。采用所开发的路径模糊综合评价系统,确定了最优路径为由外到内交错式堆积。进而采用钩舌再制造修复专机对磨损件进行修复,测试了成型件力学性能,结果满足使用要求。
GMAW (Gas Metal Arc Welding) remanufacturing is an important approach torepair damages on large metal components and has become one of the researchfocuses in the remanufacturing field, which has complicated thermal process andnumerous influence factors. In this paper, in order to realize the multiple depositingpath optimization of GMAW remanufaturing, the thermal process with the multipleheating pattern was systematically investigated. Theoretical derivation of multipleheating temperature field was explored. The stress, deformation and effect ofdepositing paths under the special heating pattern were researched by adoptingnumerical simulation and experimental methods, and a fuzzy comprehensiveevaluation system of multiple depositing paths was developed to realize the pathoptimization with multiple indicators. The achievements of this research could lay astrong theoretical foundation for the application of efficient and high-qualityremanufacture of large components and provide a feasible technological approachfor remanufacturing path optimization.
     Firstly, the theoretical derivation of temperature field in GMAW multiple planedepositing was conducted. The dynamic temperature field equations of single-passdepositing, multi-pass depositing, inter-pass cooling and last cooling wereanalytically derived by using both the point heat source and double ellipsoid heatsource under the static and moving coordinate systems respectively. In Matlabenvironment, the temperature field, thermal cycles, the inter-pass idle time rangeand the cooling time were calculated. Furthermore, the pre-heating effects of forepasses on rear passes and the post-heating effects of rear passes on fore passes in themultiple depositions were researched. The thermal cycles in the depositions ofdifferent directions and different powers were compared and analyzed. It was shownthat the heat diffusion condition of the same direction deposition was better than thatof the alternating direction deposition. When the power was too large, heataccumulation made the component over-heating. The effect of inter-pass idle timeon thermal cycles was analyzed. The heat accumulation could be controlledeffectively by setting inter-pass waiting times. The research could provide guidancefor the preliminary estimation of process parameter range.
     According to the character of external constraint, the remanufacturingcomponents researched in the paper were approximately classified into twosituations of one-dimensional and two-dimensional constraints. The finite elementmodels of deposition on plate substrate with one-dimensional constraint and repairprocess on block substrate with two-dimensional constraint were developed respectively. The temperature field, stress field and deformation of depositions wereanalyzed. Research results show that in one layer there are pre-heating andpost-heating effects between fore and rear passes, and the stress release effects ofrear passes on fore passes. There also are pre-heating and post-heating effectsbetween fore and rear layers, and the stress release effect of rear layers on forelayers. The component experienced multiple heating processes with single heatingsource in the deposition, and the heat accumulation was serious, resulting in thegeneration of excess heat and the bad forming. And the generation of excess heatcould be avoided by altering inter-pass idle times. Under the process parametersadopted, the transversal inter-pass stress decreased in the deposition on platesubstrate with one-dimensional constraint, and increased in the repair process onblock substrate with two-dimensional constraint. The deformation on altitudinaldirection was the largest, and had the largest effect on the planeness of repairsurface.
     Furthermore, the effects of process parameters on multiple depositions wereresearched. Results show that the transition of residual stresses varies steeper withthe increase of depositing length. The inter-pass and inter-layer stresses increase andthe residual stress decreases with the increase of inter-pass idle time. It is seen that alonger inter-pass idle time would avoid the overheating of component, decrease theresidual stress, and acquire a better forming result. Moreover, in the two differentconstraint situations, the effects of depositing sequences and directions ontemperature field, stress and deformation were researched. The heat diffusioncondition in the deposition of the same direction is better than that in the depositionof alternating direction, and the residual stress of component deposited in thealternating direction are smaller than that of component deposited in the samedirection. The temperature field, stress and deformation could be improved byoptimizing depositing paths, as keeping other parameters constant.
     There are numerous depositing path possibility and evaluating indicators inmultiple depositions of remanufacture, and it is difficult to choose the optimaldepositing path. In this paper, the path optimization under multiple indicators wascarried out by simulating the thinking and reasoning pattern of human and adoptingthe fuzzy comprehensive evaluation, which was developed based on the effects ofdepositing path. The multiple indicators included heat conduction, formingcondition, residual stress, buckling deformation and efficiency. The fuzzycomprehensive evaluation model was developed, which included the evaluationindicator set, evaluation result vectors, fuzzy language set, universe of fuzzy sets,fuzzification process, fuzzy deduction and non-fuzzification process. Meanwhile, aninteractive interface of fuzzy comprehensive evaluation of multiple depositing pathswas developed in Visual C++environment. For the professional users, weights could be input directly according to the knowledge and experience, and for the commonusers, the analytic hierarchy process was adopted.
     Finally, the verification was conducted via coupler knuckle instance. Accordingthe obtained effects of depositing paths, four depositing paths were researched,including the paths from the outside to the inside in the same and alternatingdirections and the paths from the inside to the outside in the same and alternatingdirections. The depositing paths were sequenced under each indicator, and verifiedby numerical simulation and experiments of coupler knuckle repair. According tothe repair quality requirements of coupler knuckle, the orders of indicators wereresidual stress, forming condition, heat conduction, efficiency and bucklingdeformation. The optimal path was obtained through the fuzzy comprehensiveevaluation system developed, which was from outside to inside in alternatingdirection. Moreover, the worn coupler knuckle was repaired by adopting theremanufacturing repair equipment of coupler knuckle. And the mechanicalperformances of component were tested, satisfying the operating requirements.
引文
[1]国家发展和改革委员会,科学技术部,工业和信息化部等.发改环资
    [2010]991号.关于推进再制造产业发展的意见[S].北京:2010,5:1-3.
    [2] Hauser W, Lund R T.再制造业:巨人的剖析[R],波士顿,麻萨诸塞州:波士顿大学制造工程系,2003,6:4-6.
    [3]国务院.国发[2005]22号.国务院关于加快发展循环经济的若干意见[S].北京:2005,7:1-5.
    [4] Mughal M P, Fawad H, Mufti R A. Three-dimensional Finite-elementModelling of Deformation in Weld-based Rapid Prototyping [J]. In:Proceedings of the Institution of Mechanical Engineers, Part C: Journal ofMechanical Engineering Science,2006,220(6):875-885.
    [5] Xu B, Zhu S. Advanced Remanufacturing Technologies Based on Nano-surfaceEngineering[C]//Proceedings of3rd International Conference on Advances inProduction Engineering.2004:35-43.
    [6]姚巨坤,时小军,崔培枝.绿色再制造工业发展综述[J].再生资源研究,2007(5):26-30.
    [7]储伟俊,刘斌.国外再制造的研究与实践[J].机械工艺师,2001(8):7-9.
    [8] Lund R T. Remanufacturing: The Experience of the United States andImplications for Developing Countries [R]. World Bank Technical Papers,1984:31.
    [9]陈翔宇,梁恭谦.美国再制造业与我国的研究评述[J].世界科技研究与发展.2006,28(3):80-87.
    [10]张伟.再制造业的发展和展望[J].机电一体化,2000(4):54-55.
    [11] Williams M. Portable CNC Machine Shop-Mobile Parts Hospital [J/OL].Army AL&T Magazine,2004,3-4. http://www.cleggind.com/specialstructures/mobilepartsmachineshop.htm.
    [12]徐滨士,张伟.现代制造科学之21世纪的再制造工程技术及理论研究[C].国家自然科学基金委员会机械学科前沿及优先领域研讨论文集.北京:机械工业出版社,1999:12.
    [13]朱胜,徐滨士,姚巨坤.再制造设计基础及方法[J].中国表面工程.2003(3):27-31.
    [14]徐滨士.中国再制造工程及其进展[J].中国表面工程,2010,23(2):1-4.
    [15]朱绍华,刘世参,朱胜.谈绿色再制造工程的内涵和学科构架[J].中国表面工程.2001(2):5-11.
    [16]崔培枝.基于机器人的再制造模型建立及成形路径规划研究[D].北京:装甲兵工程学院博士学位论文,2006,8:90-112.
    [17]孟凡军.基于机器人GMAW堆焊再制造成形技术基础研究[D].北京:装甲兵工程学院博士学位论文,2006,12:99-121.
    [18] Zhu S, Meng F J, Ba D M. The remanufacturing System based on Robot MAGSurfacing [J]. Key Engineering Materials,2008(7):400-403.
    [19]曹勇,朱胜,孟凡军.机器人GMAW&数控铣削复合快速制造系统[J].焊接.2010(2):54-57.
    [20]杨培.基于弧焊机器人的典型零件柔性再制造系统研究[D].哈尔滨:哈尔滨工业大学博士论文,2006,4:90-111.
    [21] Yan X, Gu P. A Review of Rapid Prototyping Technologies and Systems[J].Computer-Aided Design.1996,26(4):307-318.
    [22]王笠,张人佶,颜永年.快速成形工艺过程的描述与分析[J].清华大学学报(自然科学版),2002,42(4):505-508.
    [23]张慧杰,胡国清,刘文艳,等.快速原型技术研究综述[J].机械,2004,31(6):1-7.
    [24]宾鸿赞,杨明.生长型制造技术——制造技术的新突破[J].中国机械工程,1993,4(6):22-24.
    [25] Levy G N, Schindel R, Kruth J P. Rapid Manufacturing and Rapid Tooling withLayer Manufacturing (LM) Technologies, State of the Art and FuturePerspectives [J]. CIRP Annals2003,2003,52(2):1-21.
    [26]李涤尘,曾俊华,周志华,等.光固化快速成形飞机风洞模型制造方法[J].航空制造技术,2008(8):26-29.
    [27] Griffth M L, Keicher D M, Atwood C L, et al. Free Form Fabrication ofMetallic Components Using Laser Engineered Net Shaping (LENS)[C]//In:Proceedings of the Solid Free Form Fabrication Symposium, Austin,1996,8:125-131.
    [28] Abe F, Osakada K, Shiomi M, et al. The Manufacturing of Hard Tools fromMetallic Powders by Selective Laser Melting [J], Journal of MaterialsProcessing Technology,2001,111:210-213.
    [29] Jeng J Y, Lin M C. Mold Fabrication and Modifcation Using Hybrid Processesof Selective Laser Cladding and Milling [J], Journal of Materials ProcessingTechnology.2001,111:98-103.
    [30] Sachs E, Cima M, Cornie J. Three Dimensional Printing: Rapid Tooling andPrototypes Directly from a CAD Model [J]. CIRP Annals ManufacturingTechnology,1990,39(1):201-204.
    [31] Cooper A G, Kang S, Kietzman J W, et al. Automated Fabrication of ComplexMolded Parts Using Mold Shape Deposition Manufacturing [J]. Materials andDesign,1999,20:83-89.
    [32] Klocke F, Wirtz H, Meiners W. Direct Manufacturing of Metal Prototypes andPrototype Tools [C]//In: Proceedings of the Solid Free Form FabricationSymposium, Austin,1996,8:141-148.
    [33] Morrow W R, Qi H, Kim I, et al. Environmental Aspects of Laser-Based andConventional Tool and Die Manufacturing [J]. Journal of Cleaner Production,2007,15:932-943
    [34] Spencer J D, Dickens P M, Wykes C M. Rapid Prototyping of Metal Parts byThree-dimensional Welding [J], Proceedings of the Institution of MechanicalEngineers, Part B: Journal of Engineering Manufacture.1998,212(3):175-182.
    [35]张凯,刘伟军,尚晓峰,等.快速原型技术在国防科技中的应用[J].工具技术,2005,39(1):3-13.
    [36] Arcella F G, Abbott D H, House M A. Rapid Laser Forming of TitaniumStructures [C]//Proceedings of Powder Metallurgy World Conference,Granada, Spain,1998,10:18-22
    [37] Abbott, D H, Arcella F G. AeroMet Implementing Novel Ti Process [J]. MetalPowder Report,1998,53(2):24-26.
    [38] Keicher D M, Smugeresky J E, Romero J A, et al. Using the Laser EngineeredNet Shaping (LENS) Process to Produce Complex Components from a CADSolid Model [C]//Proceedings of SPIE, the International Society for OpticalEngineering,1997,2993:91-97.
    [39] Schlienger E, Dimos D, Griffith M, et al. Near Net Shape Production of MetalComponents Using LENS [C]//Proceedings of the Third Pacific RimInternational Conference on Advanced Materials and Processing, Honolulu, HI,1998,7:1581.
    [40] Mazumder J, Dutta D, Kikuchi N, et al. Closed Loop Direct Metal Deposition:Art to Part [J]. Optics and Lasers in Engineering,2000,34:397-414.
    [41]颜永年,崔福斋,胡蕴玉.组织工程材料的大段骨快速成形制造[J].材料导报.2001,15(2):39.
    [42] Feng C, Yan S, Zhang R, et al. Heat Transfer Analysis of Rapid Ice PrototypingProcess by fnite Element Method [J]. Materials and Design,200728(3):921-927.
    [43]胡瑢华.基于TIG堆焊技术的熔焊成型轨迹规划研究[D].南昌:南昌大学博士学位论文,2007,12:80-101.
    [44]张珩.等离子熔积成形过程温度场与应力场的数值模拟[D].武汉:华中科技大学硕士学位论文,2005,5:15-30.
    [45]付立定,史玉升,章文献,等.316L不锈钢粉末选择性激光熔化快速成形的工艺研究[J].应用激光,2008,28(2):108-111.
    [46]乌日开西·艾依提,赵万华,卢秉恒,等.基于微束脉冲等离子弧焊的快速成形系统中的搭接参数[J].机械工程学报,2006,42(5):192-197.
    [47] Wurikaixi A, Zhao W H, Lu B H, et al. Investigation of the OverlappingParameters of MPAW-based Rapid Prototyping [J]. Rapid Prototyping Journal,2006,12(3):165-172.
    [48]赵万华,李涤尘,洪军,等.光固化快速成形中复杂零件型面精度形成机理研究[J].中国机械工程,1997,8(5):37-39.
    [49] Zhang Y Z, Xi M Z, Gao S Y, et al. Characterization of Laser Direct DepositedMetallic Parts [J]. Journal of Materials Processing Technology,2003,142:582-585.
    [50]尚晓峰,刘伟军,王天然.激光工程化净成形技术的研究[J].工具技术,2004,38(1):22-25.
    [51]黄卫东,李延民,冯莉萍,等.金属材料激光立体成形技术[J].材料工程,2002(3):40-43.
    [52] Kussmaul K, Schoch F W, Luckow H. High Quality Large Components ‘ShapeWelded’ by a SAW Process [J]. Welding Journal,1983(9):17-24.
    [53] Ribeiro A F, Norrish J. Rapid Prototyping Using Robot Welding-slicing SystemDevelopment [C]//3rd France-Japan Congress and1st Europe-Asia Congress,Besan on, France,1996,10:1-6.
    [54] Ribeiro A F, Norrish J, Mcmaster R. Practical Case of Rapid Prototyping UsingGas Metal Arc Welding [C]//5th International Conference on ComputerTechnology in Welding, Paris, France,1994,6:15-16.
    [55] Ouyang J H, Wang H, Kovacevic R. Rapid Prototyping of5356-aluminumAlloy Based on Variable Polarity Gas Tungsten Arc Welding Process Controland Microstructure [J]. Materials and Manufacturing Processes,2002,17(1):103-124.
    [56] Zhang Y M, Chen Y, Li P, et al. Weld Deposition-based Rapid Prototyping aPreliminary Study [J]. Journal of Materials Processing Technology.2003,135:347-357.
    [57] Zhang Y M, Li P, Chen Y, et al. Automated System for Welding-based RapidPrototyping [J]. Mechatronics.2002,12:37-53.
    [58] Song Y A, Park S, Choi D, et al.3D Welding and Milling: Part I-a DirectApproach for Freeform Fabrication of Metallic Prototypes [J]. InternationalJournal of Machine Tools&Manufacture2005,45:1057-1062.
    [59] Song Y A, Park S, Chae S W.3D Welding and Milling: Part II-Optimization ofthe3D Welding Process Using an Experimental Design Approach [J].International Journal of Machine Tools&Manufacture,2005,45:1063-1069.
    [60]胡晓冬.基于弧焊的直接金属成形技术研究[D].西安:西安交通大学博士学位论文,2003,10:16-49.
    [61]丁冬平.基于焊接机器人的熔焊成形系统及成形规律的研究[D].武汉:华中科技大学硕士学位论文,2005,4:55-66.
    [62]乌日开西·艾依提,赵万华,卢秉恒,等.基于脉冲等离子弧焊的快速成形系统中实时自适应送丝方式[J].机械工程学报.2006,42(1):181-186.
    [63]武传松.焊接热过程与熔池形态[M].北京:机械工业出版社.2007,8:16-53.
    [64] Rosenthal D, The Theory of Moving Source of Heat and Its Application toMetal Treatments [J]. Transactions of the ASME.1946,43(11):849-866.
    [65] Rykalin N N.焊接热过程计算[M],徐碧宇,庄鸿寿译.北京:中国工业出版社,1958,11:64-121.
    [66] Goldak J, Chakravarti A P, Bibby M. A New Finite Element Model for WeldingHeat Sources [J]. Metallurgical Transactions B,1984,15B(2):299-305.
    [67] Eager T W, Tsai N S. Temperature Fields Produced by Traveling DistributedHeat Sources [J]. Welding Journal,1983,62(12):346s-355s.
    [68] Nguyen N T, Ohta A, Matsuoka K, et al. Analytical Solutions for TransientTemperature of Semi-Infinite Body Subjected to3-D Moving Heat Sources [J].Welding Journal Research Supplement,1999,8:265s-274s.
    [69] Nguyen N T, Mai Y W, Simpson S, et al. Analytical Approximate Solution forDouble Ellipsoidal Heat Source in fnite Thick Plate [J]. Welding Journal.2004,3:82s-93s.
    [70] Ghosh A, Chattopadhyaya S. Analytical Solution for Transient TemperatureDistribution of Semi-Infnite Body Subjected to3-D Moving Heat Source ofSubmerged Arc Welding Process [C]//2010International Conference onMechanical and Electrical Technolog (ICMET2010),2010:733-737.
    [71] Nickel A H, Barnett D M, Prinz F B. Thermal Stresses and Deposition Patternsin Layered Manufacturing [J]. Materials Science and Engineering A.2001,317:59-64.
    [72] Labudovic, M. A Three Dimensional Model for Direct Laser Metal PowderDeposition and Rapid Prototyping [J]. Journal of Materials Science.2003,38:35-49.
    [73] Neela V, De A. Three-dimensional Heat Transfer Analysis of LENSTMProcessUsing Finite Element Method [J]. International Journal of AdvancedManufacturing Technology,2009,45:935-943.
    [74] Alimardani M, Toyserkani E, Huissoon J P. A3D Dynamic NumericalApproach for Temperature and Thermal Stress Distributions in MultilayerLaser Solid Freeform Fabrication Process [J]. Optics and Lasers Engineering,2007,45:1115-1130.
    [75] Dai K, Shaw L. Thermal and stress modeling of multi-material laser processing[J]. Acta Materialia,2001,49:4171-4181.
    [76] Long R S, Liu W J, Xing F, et al. Numerical Simulation of Thermal Behaviorduring Laser Metal Deposition Shaping [J]. Transactions of Nonferrous MetalsSociety of China,2008,18:691-699.
    [77] Mughal M P, Fawad H, Mufti R A, et al. Deformation Modelling in LayeredManufacturing of Metallic Parts Using Gas Metal Arc Welding: Effect ofProcess Parameters [J]. Modelling Simulation Materials Science andEngineering,2005,13:1187-1204.
    [78] Mughal M P, Fawad H, Mufti R. Finite Element Prediction of Thermal Stressesand Deformations in Layered Manufacturing of Metallic Parts [J]. ActaMechanica,2006,183:61-79.
    [79] Dong P, Zhang J, Bouchard PJ. Effects of Repair Weld Length on ResidualStress Distribution [J]. Journal of Pressure Vessel Technology.2002,124:74-80.
    [80] Dong P, Hong J K, Bouchard P J. Analysis of Residual Stresses at Weld Repairs[J]. International Journal of Pressure Vessels and Piping,2005,82:258-269.
    [81] Sun W, Hyde T H, Becker A A, et al. Some Key Effects on The FailureAssessment of Weld Repairs in CrMoV Pipelines Using Continuum DamageModelling [J]. Engineering Failure Analysis.2005,12:839-850.
    [82] Kim K S, Lee H J, Lee B S, et al. Residual Stress Analysis of an Overlay Weldand a Repair Weld on the Dissimilar Butt Weld [J]. Nuclear Engineering andDesign,2009,239:2771-2777.
    [83]曹勇,朱胜,石海滨,等.快速成形堆积层表面制备耐磨涂层的组织及性能[J].中国表面工程.2010,23(2):69-73.
    [84] Costa L, Vilar R, Reti T, et al. Rapid Tooling by Laser Powder Deposition:Process Simulation Using Finite Element Analysis [J]. Acta Materialia,2005,53:3987-3999.
    [85] Branza T, Deschaux-Beaume F, Velay V, et al. A Microstructural and Low-cycleFatigue Investigation of Weld-repaired Heat-resistant Cast Steels [J]. Journal ofMaterials Processing Technology,2009,209:944-953.
    [86] Perret W, Schwenk C, Rethmeier M. Comparison of analytical and numericalwelding temperature feld calculation [J]. Computational Materials Science,2010,47:1005-1015.
    [87] D.拉达伊.焊接热效应温度场、残余应力、变形[M].熊第京,郑朝云,史耀武,译.北京:机械工业出版社,1997,7:21-59.
    [88] Gandy D. Carbon Steel Handbook [M]. EPRI, Palo Alto, California,2007,1014670:5/1-5/6.
    [89]中国机械工程学会焊接学会编.焊接手册——材料的焊接第2卷(第2版)[M].北京:机械工业出版社,2001,8:18-23
    [90]朱胜,姚巨坤.再制造设计理论及应用[M].北京:机械工业出版社,2009,5:60-66.
    [91] Abid M, Siddique M. Numerical Simulation to Study the Effect of TackWelds and Root Gap on Welding Deformations and Residual Stresses of aPipe-flange Joint [J]. International Journal of Pressure Vessels and Piping,2005,82:860-871.
    [92]郑振太.大型厚壁结构焊接过程的数值模拟研究与应用[D].天津:天津大学硕士学位论文,2007,1:18-28.
    [93] Elcoatea C D, Dennis R J, Bouchard P J, et al. Three Dimensional Multi-passRepair Weld Simulations [J]. International Journal of Pressure Vessels andPiping.2005,82:244-257.
    [94] Lindgren L. Finite Element Modeling and Simulation of Welding Part2:Improved Material Modeling [J]. Journal of Thermal Stresses,2001,24:195-231.
    [95]方洪渊.焊接结构学[M].北京:机械工业出版社.2008,5:62-71,239-242.
    [96]周雪平.小截面方管焊接变形研究[D].哈尔滨:哈尔滨工业大学硕士论文,2007,7:18-19.
    [97] Dong P. Residual Stress Analyses of a Multi-Pass Girth Weld:3D SpecialShell Versus Axisymmetric Models [J]. Journal of Pressure Vessel Technology,2001,123:207-213.
    [98] Ferro P, Porzner H, Tiziani A, et al. The Influence of Phase Transformationson Residual Stresses Induced by the Welding Process-3D and2D NumericalModels [J]. Modelling and Simulation in Materials Science and Engineering,2006,14:117-136.
    [99]机械电子工业部哈尔滨焊接研究所编.国产低合金钢焊接CCT图册[M].北京:机械工业出版社,1990:78-80.
    [100]李亚江.焊接组织性能与质量控制[M].北京:化学工业出版社,2005:101-104.
    [101]彭永健,李小宁.基于蚁群算法的分组焊点焊接路径优化方法研究[J].机械制造与自动化,2012,41(1):6-9.
    [102]魏安立,胡小建,孙太生.基于遗传算法焊接机器人路径规划研究[J].现代焊接,2011(8):27-29.
    [103]钟石泉.物流配送车辆路径优化方法研究[D].天津:天津大学博士学位论文,2007,12:19-29.
    [104]王芳,万磊,徐玉如,等.基于改进人工势场的水下机器人路径规划[J].华中科技大学学报(自然科学版),2011,39(S2):184-187.
    [105]李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨工业大学出版社.1998:29-66.
    [106]谢庆生,罗延科,李屹.机械工程模糊优化方法[M].机械工业出版社,2002:73-87.
    [107]陈亚哲,刘桂珍,刘挺,等.基于熵权的产品广义质量模糊综合评价[J].东北大学学报(自然科学版),2010,31(2):241-244.
    [108]赵焕臣.层次分析法:一种简易的新决策方法[M].科学出版社,1986:13-38.
    [109]孟凡军,朱胜,曹勇,等.脉冲MAG堆焊成形焊道表面质量模糊综合评价[J].焊接学报,2008,29(7):25-28.
    [110]周荣刚. IT产品用户体验质量的模糊综合评价研究[J].计算机工程与应用,2007,43(31):102-105.
    [111]严隽髦.车辆工程(第二版)[M].北京:中国铁道出版社,1992:244-250.
    [112]刘敬刚.重载货车钩舌的疲劳特性研究[D].大连:大连交通大学硕士学位论文,2009,12:3-4.
    [113]曹炎珍,兰强,肖坤文.两种钩舌自动堆焊方式的比较[J].电焊机,2003,33(10):41-43.
    [114]中华人民共和国铁道部.铁运(2002)72号.铁路货车厂修规程[S]2002,10:49-51.
    [115]机械工程材料性能数据手册编委会编.机械工程材料性能数据手册[M].北京:机械工业出版社,1994,12:774-776.
    [116]中国机械工程学会铸造分会编.铸造手册-第2卷铸钢[M].北京:机械工业出版社,2002,8:73-78.
    [117]田燕.焊接区断口金相分析[M].北京:机械工业出版社.1991,10:7-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700