用户名: 密码: 验证码:
高频单轴电液振动台振动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液振动台作为一种用来模拟振动环境的标准试验设备,被广泛应用于航空、航天、兵器、船舶、核工业等国防工业领域和汽车、建筑等民用工业部门。它的技术水平在某种程度上反映了一个国家的工业发展水平,因而世界各国都很重视电液振动台的研究开发工作。
     传统电液振动台由于受电液伺服阀频响特性的制约,其工作频率不能达到较高的水平,致使目前对一些重要的军工设备进行振动试验时通常采用的方法是在电液振动台上进行低频振动试验,而高频振动试验则放到电动振动台上进行。为了改变这种现状,本论文以国家自然科学基金项目“电液激振新方法及分解控制技术研究”和浙江省重大自然科学基金项目“重载、高频电液激振技术基础研究”为背景,提出一种由2D激振阀和数字伺服阀联合控制的电液振动台方案,旨在大幅提高电液振动台的工作频率,使电液振动台实现从低频到高频的全频段振动试验。因此,这项研究工作不仅具有重要的工程应用价值,而且为高频电液振动台技术奠定理论基础。本论文的主要研究工作和成果如下:
     (1)针对传统电液振动台的工作频率受电液伺服阀频响特性的制约难以提高的现状,提出一种由2D激振阀和数字伺服阀联合控制差动式液压缸所构成的新型高频电液振动台方案,旨在大幅提高电液振动台的工作频率,并实现高频电液振动台的工作频率达到1000赫兹。
     (2)分析了高频电液振动台的结构组成和工作原理,对2D激振阀和数字伺服阀的结构原理进行了介绍并建立了其数学模型。在此基础上,建立了高频电液振动台的特性支配方程,为高频电液振动台的研究奠定了理论基础。
     (3)由于2D激振阀是一种结构独特的转阀,不能采用传统的方法对其节流阀口的流量方程进行线性化处理,为此提出采用非线性系统分析方法对高频电液振动台系统进行研究,并搭建了其系统控制框图。利用Simulink建立了高频单轴电液振动台的仿真模型,对高频单轴电液振动台在不同的振动频率、2D激振阀不同的轴向开度输出的振动特性进行了仿真研究。并得到了高频单轴电液振动台工作频率为100Hz.150Hz、200Hz、300Hz、400Hz、600Hz、800Hz、1000Hz以及2D激振阀轴向开口为0.5mm、1mm和1.5mm三种情况下输出的载荷波形。从仿真波形可以看出,随着工作频率的提高,高频单轴电液振动台输出的载荷在谐振点之前由小变大,过了谐振点之后,再由大变小。这是因为在谐振点工作时,高频单轴电液振动台会出现谐振现象,振动幅值会突然增大。通过调节2D激振阀轴向开口的大小,可以控制电液振动台输出载荷的幅值。
     (4)针对高频单轴电液振动台出现的谐振现象,利用能量守恒原理对高频单轴电液振动台产生谐振现象的机理进行研究。研究结果表明:液压缸敏感腔中的油液相当于一动态弹簧,在电液振动台工作过程中,电液振动台系统的动能、势能和总能量随时间变化。电液振动台处于谐振工作状态时,激振力的相角与速度的相角相同,激振力时刻对电液振动台系统做正功,这时电液振动台系统所获得的能量达到最大值。为了得到高频单轴电液振动台在谐振时输出的载荷波形,分别对惯性负载为45kg和67.5kg以及2D激振阀轴向开口为0.5mm、1mm和1.5mm时输出的谐振波形进行仿真研究。从仿真结果可以看出谐振时电液振动台输出的载荷幅值会突然放大。最后,对高频单轴电液振动台变谐振理论进行了理论分析和仿真研究。通过数字伺服阀控制单出杆液压缸无杆腔容积的变化实现液压系统固有频率的改变,从而使高频单轴电液振动台能够在不同的谐振频率点进行工作。并分别仿真了液压缸无杆腔长度为10mm、20mm、30mm、40mm和50mm时电液振动台输出的谐振波形。仿真结果表明,随着液压缸无杆腔体积的减小,电液振动台发生谐振的频率有所提高,验证了变谐振理论的正确性。
     (5)为了验证新型高频单轴电液振动台的理论研究以及实际输出的振动特性,搭建了实验台架并对其进行实验研究。首先,通过改变2D激振阀的旋转速度、2D激振阀阀芯的轴向开口大小,分别测得高频单轴电液振动台在100Hz、150Hz、200Hz、300Hz、400Hz、600Hz、800Hz、1000Hz不同频率工作时实际输出的振动波形,验证了仿真结果的正确性;其次,对高频单轴电液振动台的谐振现象进行了实验研究,测得振动台惯性负载为45kg和67.5kg以及2D激振阀阀芯的轴向开口为0.5mm、1mm和1.5mm时的谐振波形,实验结果与仿真结果基本吻合;最后,通过数字伺服阀控制单出杆液压缸无杆腔容腔体积变化,测得液压缸无杆腔长度为10mm、20mm、30mm、40mm和50mm时电液振动台输出的谐振波形,从而验证了高频单轴电液振动台的变谐振理论。
Electrohydraulic shaking table is widely applied to the defense industries of aviation, aerospace, weapons, shipbuilding, nuclear industry, or the civilian industries of automotive, construction as a standard test equipment of simulating the environmental vibration. Its technology level reflects a country's level of industrial development to some extent, thus all countries in the world attaches great importance to the research of electrohydraulic shaking table.
     Due to the restriction of frequency response characteristics of the electrohydraulic servo valve, the working frequency of conventional electrohydraulic shaking table is to a large extent limited to fairly narrow range. As a result, for some important military equipment, the low-frequency vibration test usually is operated by the electrohydraulic shaking table, vibration, whereas the high-frequency vibration test is done by the electric shaking table. In order to change this situation, upon the background of National Foundation of Natural Sciences,"Research on a New Electrohydraulic Exciting methods and Separate Control Strategy" and a major project of Zhejiang Provincal Natural Science Foundation of China,"Basic Research of Electrohydraulic Excitation Technique of Heavy load and High frequency", the new electrohydraulic shaking table based on2D valve and digital servo valve was proposed to enhance the working frequency by a large margin, the electrohydraulic shaking table can realize the vibration test from low-frequency band to high-frequency band. Therefore, this reasearch has not only the important engineering application value, but also the great theoretical value for the high-frequency electrohydraulic shaking table technology. The main research works and achievements of this paper are as follows:
     (1) The working frequency of the traditional electrohydraulic shaking table is difficult to improve by the restriction of frequency response characteristics of hydraulic servo valve, therefore the new electrohydraulic shaking table based on single-rod hydraulic cylinder controlled by2D valve and digital servo valve was put forward to enhance the working frequency. The working frequency of the electrohydraulic shaking table can achieve1000Hz.
     (2) The scheme of high-frequency electrohydraulic shaking table was analyzed, at the same time, the working principle of2D valve and digital servo valve were introduced and their mathematical models were set up. On this basis, the characteristics equations of high-frequency electrohydraulic shaking table were established, so the theoretical foundation for the high-frequency electrohydraulic shaking table was built.
     (3) The flow equation of throttle orifice of2D valve can not be treated as linear processing since it is a special rotating valve, so the nonlinear system analysis method was adopted for the high-frequency electrohydraulic shaking table, and its system control block diagram was set up. The simulation model was also constructed by the Simulink Toolbox of Matlab, the vibration waveform of uniaxial high-frequency electrohydraulic shaking table were simulated under the different working frequency and axial opening of2D valve. Under the axial opening of2D valve for0.5mm,1mm,1.5mm and the agitating frequency for100Hz,150Hz,200Hz,300Hz,400Hz,600Hz,800Hz,1000Hz, the vibration waveforms of uniaxial high-frequency electrohydraulic shaking table were got. As can be seen from the simulation waveforms, with the improvement of working frequency, the output load of uniaxial high-frequency electrohydraulic shaking table before the resonance point changes from small to big, after the resonance point, from large to small again. This is because the uniaxial high-frequency electrohydraulic shaking table will appear resonance phenomenon when it works in the resonance point, vibration amplitude increases suddenly. By adjusting the size of the axial opening of2D valve, the load amplitude of electro-hydraulic shaking table can be controlled.
     (4) The energy conservation principle was utilized to research the resonance phenomenon occurred in the uniaxial high-frequency electrohydraulic shaking table. Research results show that the oil in the sensitive cavity of the hydraulic cylinder is equivalent to a dynamic spring, in the working process of electrohydraulic shaking table, the kinetic energy, potential energy and total energy of electrohydraulic shaking table system changes over time. When the electrohydraulic shaking table has worked in the state of resonance, the phase angle of the exciting force is the same with speed, the exciting force of electro-hydraulic shaking table system do positive work, the energy gained from the electro-hydraulic shaking table system reaches maximum value. In order to get the load waveforms of the uniaxial high-frequency electrohydraulic shaking table in resonant state, Under the axial opening of2D valve for0.5mm,1mm,1.5mm and the inertial load of45kg and67.5kg, the resonant waveforms of the uniaxial high-frequency electrohydraulic shaking table were simulated. As can be seen from the simulation results, the load amplitude of electrohydraulic shaking table in resonant state suddenly increases. Finally, the variable resonance theory of the uniaxial high-frequency electrohydraulic shaking table was carried on for the theoretical analysis and simulation study. Single-rod hydraulic cylinder controlled by digital servo valve can realize the change of hydraulic intrinsic frequency by controlling the volume of non-rod chamber. Therefore, the uniaxial high-frequency electrohydraulic shaking table can work under different resonance frequency, the resonance waveforms of electrohydraulic shaking table for different length of non-rod cavity of hydraulic cylinder were simulated. Simulation results show that with the decrease of non-rod cavity volume of the hydraulic cylinder, the resonance frequency of electrohydraulic shaking table increases, the variable resonance theory was proved to be correct.
     (5) To verify the theoretical analysis and the real vibration waveform of uniaxial high-frequency electrohydraulic shaking table, the experimental system was constructed. Firstly, by changing the rotating speed and the axial opening of2D valve, the vibration waveforms of shaking table were measured under100Hz,150Hz,200Hz,300Hz,400Hz,600Hz,800Hz,1000Hz. The validity of the simulation results was verified. Secondly, The resonance waveforms of shaking table were measured under the different axial opening of2D valve and inertia load to validate the simulation results, the experimental results and simulation results were basically identical with each other; Finally, the volume of non-rod chamber of hydraulic cylinder was changed by the digital servo valve, the resonance waveforms under different non-rod cavity length were measured, the variable resonance theory of uniaxial high-frequency electrohydraulic shaking table was verified.
引文
[1]童申.液压振动台发展综述[J].液压与气动,1981,(2):1-7.
    [2]郭迅,郭强岭.空空导弹振动试验条件分析[J].装备环境工程,2012,9(3):99-103.
    [3]Rana K.P.S. Fuzzy control of an electrodynamic shaker for automotive and aerospace vibration testing[J]. Expert Systems with Applications,2011,38(9):11335-11346.
    [4]Salmoni Alan W., Cann Adam P., Gillin E. Kent, et al. Case studies in whole-body vibration assessment in the transportation industry-Challenges in the field[J]. International Journal of Industrial Ergonomics,2008,38(9):783-791.
    [5]Aykan, Murat, Celik Mehmet.'Vibration fatigue analysis and multi-axial effect in testing of aerospace structures[J]. Mechanical Systems and Signal Processing,2009,23(3):897-907.
    [6]Laborde S., Calvi A.. Spacecraft base-sine vibration test data uncertainties investigation based on stochastic scatter approach[J]. Mechanical Systems and Signal Processing,2012,32(2):69-78.
    [7]Plummer A. R. Control techniques for structural testing:a review[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering,2007,221(2):139-169.
    [8]张巧寿.振动试验系统现状与发展[J].航天技术与民品,2000,(8):67-69.
    [9]骆涵秀.液压振动台的发展趋势[J].试验机与材料试验,1985,(6):1-7.
    [10]胡志强.液压振动台应用前景的探讨[J].测控技术,1993,(5):2-5.
    [11]Nakagawa S., Kuno M., Naito Y., et al. Forced vibration tests and simulation analyses of a nuclear reactor building [J]. Nuclear Engineering and Design,1998,179(2):145-156.
    [12]Goge Dennis. Automatic updating of large aircraft models using experimental data from ground vibration testing [J]. Aerospace Science and Technology,2003,7(1):33-45.
    [13]Woo Seong-woo, O'Neal Dennis L., Pecht Michael. Reliability design of residential sized refrigerators subjected to repetitive random vibration loads during rail transport[J]. Engineering Failure Analysis,2011,18(5):1322-1332.
    [14]Wu Jingshu, Zhang Ray Ruichong, Wu Qingming, et al. Environmental vibration assessment and its applications in accelerated tests for medical devices[J]. Journal of Sound and Vibration,2003, 267(2):13.
    [15]Chase J. Geoffrey, Hudson Nicolas H., lin Jessica, et al. Nonlinear shake table identification and control for near-field earthquake testing[J]. Journal of Earthquake Engineering,2005,9(4):461-482.
    [16]Benzoni G.. Challenges of new generation seismic testing faeilities[J]. Experimental techniques, 2001,25(2):20-23.
    [17]吴三灵.实用振动试验技术[M].北京:兵器工业出版社,1993.
    [18]胡志强,法庆衍,洪宝林,等.随机振动试验应用技术[M].北京:中国计量出版社,1996.
    [19]奚德昌.振动台及振动试验[M].北京:机械工业出版社,1985.
    [20]Fressinet M., Panis M., Bordes C. Accelerated fatigue testing on hydraulic shaker[A].1CAF 2009, Bridging the Gap between Theory and Operational Practice[C], Rotterdam:Springer,2009,931-938.
    [21]George Tommy J., Seidt Jeremy, Shen M. H. Herman, et al. Development of a novel vibration-based fatigue testing methodology[J]. International Journal of Fatigue,2004,26(5):477-486.
    [22]Sun L H, Laird C, Yan Z Y. Machine-induced strain oscillations during fatigue tests with closed-loop servohydraulic systems[J]. Materials science and engineering,1987,89(2):67-71.
    [23]胡燕慧,张峥,钟群鹏,等.金属材料超高周疲劳研究进展[J].机械强度,2009,31(6):979-985.
    [24]Morrissey R, Nicholas T. Staircase testing of a titanium alloy in the gigacycle regime[J]. International Journal of Fatigue,2006,28(11):1577-1582.
    [25]Naito Takeshi, Ueda Hideo, Kikuchi Masao. Fatigue behavior of carburized steel with internal oxides and nonmartensitic microstructure near the surface[J]. Metallurgical Transactions A,1984,15(7): 1431-1436.
    [26]尚增温,孙虹.高频电液伺服系统的发展趋势与新的应用领域[J].液压与气动,2001,1(6):5-10.
    [27]Wood Robert Muir. Earthquakes incorporated in Victorian Britain[J]. Earthquake Engineering and Structural Dynamics,1988,17(1):107-142.
    [28]Severn R. T. The development of shaking tables-A historical note[J]. Earthquake Engineering and Structural Dynamics,2011,40(2):195-213.
    [29]Ogawa Nobuyuki, Ohtani Keiichi, Katayama Tsuneo, et al. Construction of a three-dimensional, large-scale shaking table and development of core technology[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2001,359(10):1725-1751.
    [30]Team Corporation. CUBETM[EB/OL]. http://www.teamcorporation.com/cube.pdf,2005-12.
    [31]韩俊伟,李玉亭,胡宝生.大型三向六自由度地震模拟振动台[J],地震学报,1998,20(3):327-331.
    [32]华瑞霞,朱晓民.双向同动液压振动台的研制[J].液压与气动,1986,(4):5-8.
    [33]郭世杰,陈绍华,袁毓平.BD—YZT两自由度液压振动台[J].机床与液压,1992,(2):78-82.
    [34]崔晓.高频电液伺服振动台的研究[D].沈阳:沈阳工业大学,2004.
    [35]于建均,任红格,孙亮,等.“铁马工程”中液压振动台数学模型的辨识研究[J].计算机测量与控制,2007,15(2):198-199.
    [36]严侠,朱长春,胡勇.三轴六自由度液压振动台系统建模研究[J].机床与液压,2006,(11):93-95.
    [37]宋琼,刘志勇,蒋宁.HS-10T液压振动台自激震荡现象分析及解决办法[J].机床与液压,2006,(7):162-164.
    [38]史亮,苏蒿,高敬成,等.2.5×2.5米二维液压振动台系统设计[J],液压与气动,2007,(10):39-40.
    [39]褚洐清,张忠伟,余亚超,等.电液伺服地震体验系统设计[J],浙江工业大学学报,2009,37(5):545-549.
    [40]王燕华.地震模拟振动台的研究[D].长沙:东南大学,2009.
    [41]贾文昂,阮健,李胜,等.电液四轴高频结构强度疲劳试验系统[J].振动与冲击,2010,29(5):86-90.
    [42]路甬祥.流体传动与控制技术的历史发展与应用[J].机械工程学报.2001,37(10):1-9.
    [43]王益群,张伟.流体传动及控制技术的评述[J].机械工程学报,2003,39(10):95-99.
    [44]方群,黄增.电液伺服阀的发展历史、研究现状及发展趋势[J].机床与液压,2007,35(11):162-165.
    [45]Tinsley, Two Stage Valve[P]. English Patent:620688,1946-05-13.
    [46]Moog William C. Electrohydraulic Servo Mechanism[P]. United States Patent:US2625136, 1953-01-13.
    [47]Carson Thomas Howard. Flow Control Servo Valve[P]. United States Patent:US2934765, 1960-04-26.
    [48]Atchley Raymond D.. Servo-Mechanism[P]. United States Patent:US2884907,1959-05-05.
    [49]Morgan Jill M., Milligan Walter M.. A 1 kHz Servohydraulic fatigue testing system[A]. Proceedings of the Conference High cycle Fatigue of Structural Materials[C]. PA:Warrendale,1997.
    [50]MTS.1000Hz High-Cycle Fatigue Test System[EB/OL]. http://www.mts.com/stellent/groups/public/documents/library/dev003810.pdf,2008-02.
    [51]田惠民,孙景昌.设计独特的SV1-10型单级旋转式伺服阀[J].液压与气动,1997,(5):22-23.
    [52]Sallas John J.. Low Intertia Servo Valve[P]. United States Patent:US5467800,1995-11-21.
    [53]Leonard Marcus B.. Rotary Servo Valve[P]. United States Patent:US5954093,1999-09-21.
    [54]卢菊仙,李树立,焦宗夏.一种有限角度旋转式电液伺服阀[J].液压气动与密封,2005,(4):40-42.
    [55]崔剑.回转直动式电液伺服阀关键技术研究[D].杭州:浙江大学,2008.
    [56]郝建功,张耀成.新型电液激振装置的性能研究[J].太原理工大学学报,2003,34(6):706-709.
    [57]Ruan J, Li S, Pei X.2D digital simplified servo valve[J]. Chinese Journal of Mechenical Engineering.2004,17(2):311-314.
    [58]Ruan J, Ukrainetz P, Burton R. Frequency domain modelling and identification of 2D digital servo valve [J]. International Journal of Fluid Power,2000,1(2):76-85.
    [59]Ruan J., Burton R., Ukrainetz P., et al. Two-dimensional pressure control valve[J]. Journal of Mechanical Engineering Science,2001,215(9):1031-1038.
    [60]阮健,裴翔,李胜.2D数字换向阀[J].机械工程学报,2000,36(3):65-68.
    [61]朱文华.液压振动技术[M].福州:福建科学出版社,1984.
    [62]邢彤,左强,杨永帅,等.液压激振技术的研究进展[J].中国机械工程,2012,23(3):362-367.
    [63]赵静一,王巍,姚成玉,等.交流液压技术的研究现状及展望[J].中国工程机械学报,2003,1(1):112-116.
    [64]El-Ibiary Y., Ukrainetz P. R.. Analysis of a three-phase pulsating flow hydraulic system[J]. Transactions of the Canadian Society for Mechanical Engineers,1978,5(1):24-30.
    [65]Yoshito T. Synchronization of rotating machines with alternating flow hydraulics[A]. Proceedings of ICFP[C]. HangZhou:Zhejiang Univerisity Press,2005,238-242.
    [66]Pollard. F.. Pulsating Flow Hydraulic Concepts[J]. Society of Automotive Engineers international, 1965, (7):23-27
    [67]Zielke W.. Frequency-dependent friction in transient flow[J]. Trans ASME, Journal of Basic Engineering, Series D,1968:109-115.
    [68]Yoshioka M, Morikawa Y. Analysis of alternating flow hydraulic system on the basis of circuit theory[J]. Technology Reports of the Osaka University,1982(3):121-128.
    [69]刘绍华,郁杰.国外交流液压技术的发展[J].建筑机械,1990,(4):20-27.
    [70]Sasaki Y., Takahashi Y.. Fundamental properties of oil hydraulic vibration cylinder[A]. Proceedings of the Third International Conference on Automation, Robotics and Computer Vision[C]. Singapore: Nanyang Technological University of Singapore Press,1998,1928-1932.
    [71]苏尔皇.管道动态分析及液流数值计算方法[M].哈尔滨:哈尔滨工业大学出版社,1985.
    [72]徐彦明,全存贵.冲击式采煤机液压冲击系统动态特性分析[J].太原理工大学学报,2002,(1):1-4.
    [73]庄凤龄.交流液压的原理及应用[J].机床与液压,1978,(5):1-9.
    [74]郁杰.交流液压系统的理论分析和试验研究[D].哈尔滨:哈尔滨工程学院,1988.
    [75]姚成玉,赵静一.交流液压同步特性及振动输出传动效率分析[J].液压与气动,2005,(8):34-35.
    [76]李蓉,刘混举.交流液压冲击系统测试方案设计[J].机械工程与自动化,2007,(2):103-105.
    [77]廉红珍,寇子明.振动机械液压激振方式的特点分析和发展综述[J].煤矿机械,2007,27,(11):12-14.
    [78]Jia Wenang, Ruan Jian, Ren Yan. Separate control of high frequency electro-hydraulic vibration exciter[J]. Chinese Journal of Mechanical Engineering,2011,24(2):293-302.
    [79]贾文昂,阮健,李胜,等.电液四轴高频疲劳强度试验系统研究研究[J].兵工学报,2010,31(6):770-776.
    [80]丁问司,巫辉燕,陈丽娜,等.单相交流液压系统设计及特性分析[J].中南大学学报(自然科学版),2010,41(4):1348-1353.
    [81]Stroud R C, Hamma G A. Multiexciter and multiaxis vibration exciter control systems[J]. Sound and Vibration,1988,22(4):18-28.
    [82]Conte J P, Prombettl T L. Linear dynamic modeling of a unjaxial servo-hydraulic shaking table system[J]. Earthquake Engineering and Structural Dynamics,2000, (29):1175-1404.
    [83]唐贞云,李振宝,纪金豹,等.地震模拟振动台控制系统的发展[J].地震工程与工程振动,2009,29(6):162-169.
    [84]Abedi-Hayafi S., Auslender D. M.. Control of multi-actuator electro-hydraulic shaking tables[J]. Fluidics Quarterly,1979,11(1):1-16.
    [85]Xu Y, Hu H X, Han J W. Modeling and controller design ofa shaking table in an active structural control system[J]. Mechanical Systems and Signal Processing,2008,22(8):1917-1923.
    [86]Kuehn J, Epp D, Patten W N. High-fidelity control of a seismic shake table[J]. Earthquake Engineering & Structural Dynamics,1999,28(11):1235-1254.
    [87]Chase J G, Hudson N H, Lin J, et al. Nonlinear shake table identification and control for near-field earthquake testing[J]. Journal of Earthquake Engineering,2005,9(4):461-482.
    [88]Stoten DP, Benchoubane H.. Robusmess of a minimal controller synthesis algorithm[J]. International Journal of Control,1990,51(4):851-861.
    [89]Stoten DP, Shimim N.. The feed forward minimal control synthesis algorithm and its application to the control of shaking-tables[J]. Journal of Systems and Control Engineering,2007,22(13):423-444.
    [90]于永汉,饶立藩.电液伺服振动台复合控制研究[J].陕西机械学院学报,1986,(3):52-66.
    [91]韩俊伟,于丽明,赵慧,等.地震模拟振动台三状态控制的研究[J].哈尔滨工业大学学报,1999, 31(3):21-23.
    [92]杜永昌,管迪华.新型汽车道路模拟算法研究[J].机械工程学报2002,38(8):41.-44.
    [93]杜永昌,管迪华.汽车道路模拟试验台计算机测控系统的开发[J].清华大学学报(自然科学版)2002,42(4):523-526.
    [94]杜永昌.车辆道路模拟试验迭代算法研究[J].农业机械学报,2002,33(2):5-7.
    [95]于慧君,陈章位.道路模拟试验自适应时域复现控制方法研究[J].振动工程学报,2007,20(5):498-501.
    [96]孙俊磊,高英杰,管晴晴.高频电液振动台的模型参考自适应控制的研究[J].液压与气动,2008,(10):24-26.
    [97]赵勇,丛大成,韩俊伟.基于FEL的液压振动台加速度幅相控制[J].沈阳建筑大学学报(自然科学版),2008,24(5):915-919.
    [98]姚建均,胡胜海,韩俊伟.电液伺服振动台加速度谐波抑制[J].机械工程学报,2010,46(3):22-28.
    [99]姚建均,吴振顺,韩俊伟.电液伺服系统加速度失真非线性补偿控制策略[J].哈尔滨工业大学学报,2005,37(8):1116-1118.
    [100]杨志东,关广丰,丛大成,等.基于Hv方法的三轴液压振动系统频响函数估计的研究[J].地震工程与工程振动,2007,27(3):83-87.
    [101]张兵,郑书涛,丛大成,等.振动台功率谱复现算法[J].振动、测试与诊断,2011,31(4):468-473.
    [102]Guangfeng G, Dacheng C, Junwei H, et al. Application of FRF estimator based on errors-in-variables model in multi-input multi-output vibration control system[J]. Chinese Journal of Mechanical Engineering,2007,20(4):101-105.
    [103]Guangfeng G, Dacheng C, Junwei H, et al. Research on replicate iterative algorithm for power spectral density of random vibration[J]. Earthquake Engineering and Engineering Vibration,2006, 26(6):71-76.
    [104]关广丰,丛大成,韩俊伟.6自由度随机振动控制算法[J].机械工程学报,2008,44(9):215-219.
    [105]关广丰,熊伟,王海涛.6自由度电液振动台控制策略研究[J].振动与冲击,2010,29(4):200-203
    [106]陈章位,田磐,荆伟.液压振动台控制策略的研究[J].汽车零部件,2010,(10):79-82.
    [107]余士品,刘续兴,王吉成,等.BP神经网络在电液振动台控制中的应用[J].液压与气动,2008,(7):53-55.
    [108]晁智强,刁仁伟,李华莹.液压伺服振动台的基于重复控制补偿PID控制方法[J].流体传动与控制,2009,(1):16-18.
    [109]刘一江,周惠蒙,彭楚武,等.基于迭代控制的电液振动台控制系统[J].控制工程,2009,16(5):543-546.
    [110]陈建秋,张新政,谭平.基于微分进化算法的模拟地震振动台频响函数辩识[J].液压与气动,2010,(7):17-21.
    [111]陈建秋.六自由度模拟地震振动台台面控制原理研究[J].广州大学学报(自然科学版),2006,5(3):75-79.
    [112]李振宝,唐贞云,纪金豹.地震模拟振动台三参量控制算法超调修正[J].振动与冲击,2010, 29(10):211-215.
    [113]袁立鹏,崔淑梅,靳蒙.基于迭代学习的液压角振动台控制策略研究[J].宇航学报,2010,31(3):902-906.
    [114]朱方爽,刘白鹰,曾良才.电液振动伺服系统流量非线性分析及其控制策略[J].机床与液压,2012,40(11):8-11.
    [115]尹立一,郑书涛,沈刚,等.基于改进MCS算法的道路模拟机试验系统[J].农业机械学报,2011,42(12):55-61.
    [116]李洪人.液压控制系统[M].北京:国防工业出版社,1990.
    [117]王春行.液压控制系统[M].北京:机械工业出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700