用户名: 密码: 验证码:
基于Donnan渗析原理阳离子交换膜去除水中Cu~(2+)、Mn~(2+)、Zn~(2+)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文基于Donnan渗析原理,采用均相阳离子交换膜分离去除废水中常见的Cu~(2+)、Mn~(2+)和Zn~(2+)等重金属离子,研究了实验运行条件、重金属离子和溶液的物理化学性质对膜分离去除Cu~(2+)、Mn~(2+)和Zn~(2+)等重金属离子效果的影响机制,膜的污染和清洗,以及膜离子交换重金属离子的动力学和热力学现象,构建了离子交换膜化学反应器并初步应用于对重金属离子分离去除实验。
     研究发现离子交换膜在无外加电压条件下能有效分离去除水中的Cu~(2+)、Mn~(2+)和Zn~(2+)等重金属离子,当重金属离子浓度为0.0787mmol/L时,实验条件下,Cu~(2+)、Mn~(2+)和Zn~(2+)的去除率可分别高达85%、79%和75%。提高下列任一影响因素数值,如水温、补偿离子浓度、水力停留时间和搅拌速度,均会增加膜对重金属离子的去除率,但增加到一定数值后再增加,对提高去除率无明显改善。
     重金属离子过膜迁移可分为三步:重金属离子由给体池进入膜内(第一步)、重金属离子在膜内迁移(第二步)、重金属离子由膜内进入受体池(第三步)。对膜进行预处理有助于促进第一步迁移,而增加补偿离子浓度则可同时促进第二步和第三步迁移,但对第一步迁移无明显影响。
     对Cu~(2+)、Mn~(2+)和Zn~(2+)等带相同电荷重金属离子而言,在相同浓度下,其水化离子半径越小,离子迁移速度就越快,离子交换膜对其去除能力就越强;当水化离子半径相近时,阳离子交换膜对原子序数小的重金属离子的去除能力更强,故试验膜对重金属离子去除能力大小依次为Cu~(2+)>Mn~(2+)>Zn~(2+)。重金属离子共存时,各离子被同步去除,但各离子之间存在竞争干扰。
     溶液中pH值的变化是否对膜分离去除Cu~(2+)产生影响,取决于溶液中H+浓度与溶液中Cu~(2+)浓度之间的相对大小。当给体液中H+浓度为Cu~(2+)浓度10倍左右时,给体液中H+与受体液中的补偿离子K+的Donnan渗析推动力作用方向相反,起抵消作用,阳离子交换膜分离去除Cu~(2+)的能力显著降低;当受体液中H+浓度较高时,H+与K+同时发挥Donnan渗析推动力作用,但由于膜交换速率和交换容量的限制,这一叠加效应不明显。
     二氧化硅、三氧化二铝、碳酸钙、腐殖酸、氨水、乙二胺四乙酸、阳离子表面活性剂、阴离子表面活性剂、三氯化铁等人为添加污染物,在长时间运行后均会不同程度地降低离子交换膜对Cu~(2+)的去除效果。二氧化硅、三氧化二铝等低溶解度的无机物,以及非离子表面活性剂等不会和Cu~(2+)发生物理化学反应,也不易附着于膜表面,对膜去除Cu~(2+)影响较小。乙二胺四乙酸、氨水、腐殖酸和阴离子表面活性剂会与Cu~(2+)形成离子半径较大的不易离子交换的络合态铜离子,碳酸钙、氨水、阴离子表面活性剂会导致溶液呈碱性使溶液中游离态Cu~(2+)浓度下降,腐殖酸、碳酸钙和三氯化铁胶体会沉积在膜表面阻塞交换孔道而影响离子交换过程,以上情况均会导致Cu~(2+)去除率下降。进一步研究显示受污染膜经酸碱清洗后,其离子交换性能恢复良好。
     研究结果表明:在温度25℃,溶液pH=6.00时,膜对Cu~(2+)饱和交换容量为0.506mmol/g;对离子交换膜的动力学和热力学研究发现,膜对Cu~(2+)离子交换反应符合一级反应动力学方程,该离子交换反应能自发进行,为吸热反应和熵变增加的过程。
     将离子交换分离装置和化学反应沉淀器结合构建成离子交换膜化学反应器并用于对Cu~(2+)的处理。试验结果表明从受体池进入化学沉淀反应器的Cu~(2+)能很好的沉淀下来,而去除Cu~(2+)后的含高浓度补偿离子K+的溶液回流到受体池循环使用,以节约了药剂及水的成本。
     离子交换膜化学反应器是一种可用于水中重金属离子分离处理的有应用前景的新技术,该技术具有低能耗,操作简单,运转费用低且无二次污染等优点。
Based on Donnan dialysis, the removal of heavy metal ions such as copper,manganese, and zinc has been investigated using a homogeneous cation exchangemembrane. The study includes the effects of experimental operation conditions andphysical and chemical properties of the heavy metal ions and solution on the removalof heavy metal ions, the membrane fouling and cleaning, the dynamic andthermodynamic phenomena of the membrane for the heavy metal ions exchanging. Atthe last, an ion exchange membrane reactor is constructed and tested for the heavymetal removal.
     It is found that the tested heavy metal ions can be removed by the ion exchangemembrane without applying external electric potential,and when the heavy metalconcentrations is0.0787mmol/L, the removal efficiency of heavy metal ions such ascopper, manganese and zinc, can be up to85%,79%and75%under the experimentalcondition. Increasing any value of the single factor such as temperature, concentrationof compensation ion, hydraulic retention time and stirring speed within a reasonablerange will result in rise of the metal ions removal efficiency.
     Migration of heavy metal ions through the membrane can be divided into threesteps: the metal ions entering into the membrane from the donor cell (the first step),mobile of the metal ions in the membrane (the second step), the metal ions enteringinto the receptor cell from the membrane (the third step). Preconditioning membranewill improving the ion migration in the first step. Increasing concentration ofcompensation ion can promote the migration in the second and third step, but nosignificant effect on the first step of migration was observed.
     As for the heavy metal ions of Cu~(2+), Mn~(2+)and Zn~(2+)with the same charge, thesmaller the size of its hydrated ion, the faster the migration of the ions, and the higherremoval efficiency the membrane can be achieved at the same ion concentrations.When the size of hydrated heavy metal ions is approximately same, the ion with loweratomic number will pose higher removal efficiency to the membrane. Thus, theremoval capacity of membrane for the tested metal ions is ranged as Cu~(2+)>Mn~(2+)>Zn~(2+). When different heavy metal ions coexist, the ions are simultaneously removedwith less efficiency due to interference between each others.
     Whether pH of the influent solution imposes an effect on the removal of Cu~(2+) depends on the concentration ratio of H+and Cu~(2+). When the H+concentration is10times higher than the Cu~(2+)concentration in the influent, H+imposes an opposite effectof Donnan dialysis of K+ions, resulting in and the removal of Cu~(2+)decreasedsignificantly. When H+concentration in the compensation solution is high, H+and K+play the same role in of Donnan dialysis, however this additive effect is not soobvious for the film exchange rate and exchange capacity constraints.
     Adding of compounds such as silicon dioxide, aluminium oxide, calciumcarbonate, humic acid, ammonia, complexon II, cationic surfactant, anionicsurfactant and iron trichloride etc. as pollutants in influent, will decrease the removalof copper ion after long time operation; if there is no occurrence of physical andchemical reaction between copper ion and the adding inorganic substances, such assilica, alumina and non-ionic surfactant, the effect on the exchange membraneseparation of copper ion would be less, and if the complex compounds are formedbetween the Cu~(2+)and additives such as complexon II, ammonia, humic acid andanionic surfactant, the serious effect on removal of Cu~(2+)is observed; Since appearingcalcium carbonate, ammonia and anionic surfactant will lead to the solution becomingalkaline and then decreasing free Cu~(2+), and humic acid calcium carbonate andcolloidal iron hydroxide are likely attached on the membrane surface and therefore toblock the pore of the membrane, the reduction of exchange capacity of ion membraneis resulted in. Further, it is found that properties of a fouling ion exchange membranecould be well recovery when it is washed by acid and alkali solution.
     The exchange capacity of ion-exchange membrane for Cu~(2+)is determined as0.506mmol/g under the condition of temperature25℃and pH of the solution6.00.Dynamic and thermodynamic study indicates the ion exchange reaction of Cu~(2+)follows the first order kinetics, and exchange process is endothermic and entropyincreasing.
     An ion exchange membrane chemical reactor is constructed by combining ionexchange separation unit with chemical precipitation chamber, and is applied forcopper ion removal. The results shows that the copper ion leasing from receptor poolof the separation unit can be settled down in the chemical precipitation chambersuccessfully. The compensation potassium after copper precipitated is recycled to thereceptor pool for saving the cost of water and chemicals.
     Ion exchange chemical reactor which explored in the study is a promise newtreatment technology for separation of heavy metal ions in water, with advantages oflow energy consumption, easy and low cost operation, no secondary pollution.
引文
[1]廖自基.环境中微量重金属元素的污染危害与迁移转化.北京:科学出版社,1989,163-189
    [2]方金鹏.复合吸附剂吸附水中六价铬的研究:[湖南大学硕士学位论文].长沙:湖南大学环境工程学院,2006,1-3
    [3]李圭白.地下水除铁除锰.北京:中国建筑工业出版社,1989,163-189
    [4]侯玲,宋妍,侯伟.沉淀法处理铜箔漂洗废水.辽宁化工,2009,38(10):721-722
    [5]王绍文,邹元龙,杨晓莉.冶金工业废水处理技术及工程实例.北京:化学工业出版社,2008,25
    [6]鲁栋梁,夏璐.重金属废水处理方法与进展.化工技术与开发,2008,37(12):32-35
    [7]张希蘅.废水治理工程.北京:冶金工业出版社,1984,5
    [8]鲁栋梁,夏璐,温堡林.铁氧体法处理含铜、锌、镉重金属废水的实验研究.金属矿山,2009,392(3):154-156
    [9]田中良幸,严言正.高分子重金属捕集剂处理重金属废水.环境科学与管理,1988,3(9):12-18
    [10]赵增亮,阮复昌,周振军.化学捕集回收剥锡废液中溶解性铅和铜的研究.广东化工,2007,34(10):76-78
    [11]陈红,叶兆杰,方士.不同状态MnO2对废水中As3+的吸附性能研究.中国环境科学,1998,18(2):126-130
    [12]彭义华.络合铜废水预处理技术探讨.重庆环境科学,2003,25(5):31-35
    [13]胡惠康,赵国华.高浓度络合态铜离子废水的预处理研究.工业水处理,2002,22(4):37-40
    [14] Devi N B,Nathsarma K C, Chakravortty V. Extractionand separation of Mn2+and Zn2+From sulphate solution by sodium salt of Cyanex272. Hydrometullurgy,1997,45(1-2):169-179
    [15] Richel W A, Boyle R J. Solvent extraction with organophosphinea commercial&potential applications. Separation Science and Technology,1988,20(12-13):2585-2592
    [16] Nagaosa Y, Yao B H. Extraction equilibria of some transition metalions bydi(2-ethylhexyl) phosphinic acid. Talanta,1997,44(3):327-337
    [17]姚美莲,王金良. TBP萃取处理含铬废水的研究.环境科学,1980,2(2):55-57
    [18] Gkyuchou Kov. Extraction of mentals withfatty acids. Chem EngCommun,1982,17:219-221
    [19]张淑琴,童仕唐.活性炭对重金属离子铅镉铜的吸附研究.环境科学与管理,2008,33(4):91-94
    [20] Bhattacharyya D. Activated carbon absorption of heavy mental c helates fromsingle ang multicomponent systems. Environ Progr,1987,6(2):110-114
    [21]王宝庆,陈亚雄,宁平.活性炭水处理技术应用.云南环境科学,2000,19(3):46-50
    [22]杨志华,王焰新.利用粉煤灰处理含铜废水的试验研究.地质科技情报,2004,23(3):89-96
    [23]周伟,杜卫刚,许干.改性凹凸棒土处理含铜废水的研究.四川化工,2007,10(3):43-46
    [24]王学松,王静,胡海琼等.高岭石吸附水溶液中铜离子的研究.淮海工学院学报(自然科学版),2007,16(1):39-43
    [25]张从军,甘义群,蔡鹤生.利用钢渣处理含铜废水的试验研究.环境科学与技术,2005,28(1):84-87
    [26]杨秀培,晋玉秀,蔡铎昌.大孔阳离子交换树脂治理实验室废水中铜和铅的研究.四川大学学报(自然科学版),2008,45(5):1199-1202
    [27] Kocaoba S, Akcin G.Removal of Chromium(Ⅲ) and Cadmium(Ⅱ) fromAqueous Solutions. Desalination,2005,180(1-3):151-156
    [28]沙保峰,赵亮,田振邦等.改性聚丙烯腈纤维处理电镀废水的试验研究.中国给水排水,2008,24(7):82-84
    [29]王湖坤,龚文琪,李凯.膨润土吸附去除铜冶炼废水中的铜离子.有色金属,2007,59(1):108-110
    [30]李增新,梁强,段春生.天然沸石负载壳聚糖去除废水中铜离子的研究.非金属矿,2007,30(1):57-59
    [31]李清雪,梁晓,李曼等. MCM/RO工艺对二级出水的深度处理效果.中国给水排水,2008,24(3):92-95
    [32]陈桂娥,张海滨,许振良.络合-超滤耦合过程处理含锡工业废水.膜科学与技术.2009,29(1):69-78
    [33]钟常明,方夕辉,许振良.纳滤膜脱除矿山酸性废水中重金属离子试验研究.环境科学与技术,2007,30(7):10-14
    [34] Mehiguene K, Taha S, Gondrexon N, et al. Copper Transfer Modeling through aNanofiltration Membrane in the Case of Ternary Aqueous Solution.Desalination,2000,127(2):135-143
    [35] Bilge A, Sevil A.Kinetics and Equilibrium Studies for Removal of Nickel andZinc from Aqueous Solutions by Exchange Resins. Journal of hazardousmaterials,2009,167(1-3):482-488
    [36]李纯茂,俞宁.膜分离技术在重金属废水处理中的应用研究.三峡环境与生态,2009,2(1):46-49
    [37]杨铨大.改性隔膜技术在电解领域中的应用.环境科学与管理,1980,3(5):39-49
    [38]马士军.微生物絮凝剂的开发及应用.工业水处理,1997,12(1):7-10
    [39]陈天,汪士新.利用壳聚糖为絮凝剂回收工业废水中蛋白质、染料以及重金属离子.江苏环境科学,1996,1:45-46
    [40]王惠国.一株生物絮凝剂产生菌的筛选及絮凝活性研究.微生物学通报,2006,35(5):107-111
    [41]康建雄,吴磊.生物絮凝剂Pullulan絮凝Pb2+的性能研究.中国给水排水,2006,22(19):62-64
    [42]马前,张小龙.国内外重金属废水处理新技术的研究进展.环境工程学报,2007,7(1):10-14
    [43]李福得.微生物治理电镀废水方法.电镀与精饰,2002,24(2):35-37
    [44]胡志锋. SC菌剂对废水中Cu2+去除的初步研究.四川环境,2000,19(2):26-29
    [45]袁建军,卢英华.高选择性重组基因工程菌治理含汞废水的研究.泉州师范学院学报,2003,21(6):71-75
    [46] Kapoor A, Viraraghavan T, Cullimore D. Removal of Heavy Meatals Using theFungus Aspergillus Niger. Bioresource Technology,1999,70(1):95-104
    [47]赵玲,尹平河, Qiming Yu.海洋赤潮生物原甲藻对重金属的富集机理.环境科学,2001,22(4):42-45
    [48]李明春,姜恒.酵母菌对重金属离子吸附的研究.菌物系统,1998,17(4):367-373
    [49]张建梅.重金属废水处理技术研究进展.西安联合大学学报,2003,6(19):55-58
    [50]彭清涛.植物在环境污染治理中的应用.环境保护,1998,2:24-27
    [51]温志良,徐海宁,毛友发.香蒲植物在环境保护中的开发利用.环境保护,1999,10(2):39-40
    [52]周风帆.利用凤眼莲(Eichhornia crassipes)净化水中重金属放射性核素60钴、65锌和137铯的研究.中国环境科学,1989,9(1):26-30
    [53]胡焕斌,周民华,王桂珍等.人工湿地处理矿山炸药污水.环境科学与技术,1997,78(3):17-18
    [54] Daniela B, Anna A, Paul D. Assessment of macro and micro-elementaccumulation capability of two aquatic plants. Environmental Pollution,2004,130(2):149-156
    [55]朱长乐,刘茉娥,朱才全.化学工程手册.北京:化学工业出版社,1987,1-7
    [56]徐铜文.膜化学与技术教程.合肥:中国科技大学出版社,2003,1-2
    [57]王振堃.离子交换膜制备、性能及应用.北京:化学工业出版社,1986,1-5
    [58]徐铜文.离子交换膜的重大国家需求和创新研究.膜科学与技术,2008,28(5):1-10
    [59] Ostwald W. Elektrische Eigenschaften halbdurchlassiger Scheidewande. ZPhysik Chemie,1890,6:71-82
    [60] Donnan F G. The theory of membrane equilibrium in oresence of a non-dialyzable electrolyte. Z Electrochem,1911,17:572-581
    [61] Meyer K H, Strauss H. La perméabilitédes membranesVI, Sur le passage ducourant électrique a travers desmembranes sélective. Helv Chim Acta,1940,23(1):795-800
    [62] Juda M, McRac W A. Coherent ion exchange gels and membranes. J Am ChemSoc,1950,72:1044-1044
    [63]陆九芳.分离过程化学.北京:清华大学出版社,1993,222
    [64]张维润.电渗析工程学.北京:科学出版社,1995,67
    [65]孟洪.离子交换膜的选择透过性机理.北京科技大学学报,2002,24(6):20-25
    [66]王三反.离子迁移途径及选择透过性的理论修正.兰州铁道学院学报,2000,19(3):70-74
    [67]张国俊.孔道电位封闭及空穴传递理论初探.环境化学,2002,21(5):417-422
    [68]王方.离子交换应用技术.北京:北京科学技术出版社,1990,69-75
    [69] Emidaoui A, Elhannouni F, Menkouchi Sahli MA, etal. Pollution of nitrate inMoroccan ground water: removal by electrodialysis. Desalination,2001,136(1-3):325-332
    [70] Oldani M, Killer E, Miquel A, et al. On the nitrate and monovalent cation selection of ion exchange membranes used in drinking water purification.Journal of Membrane Science,1992,75(2):265-267
    [71] Kabay N, YiJkel M, Samatya S, etal. Efect of process parameters onseparation performance of nitrate by electrodialysis. Separation ScienceandTechnology,2006,41(14):3201-3211
    [72] Amor Z, Malki S, Taky M, eta1. Optimization of fluoride removal frombrackish water by electrodialysis. Desalination,1998,120(3):263-271
    [73] Amor Z, Bariou B, Mameri N, etal. Fluoride removal from brackish water byelectrodialysis. Desalination,2001,133(3):215-223
    [74] Tahaikt M, Achary I, Menkouchi Sahli MA, et O1. Defluoridation of Moroccangroundwater by electrodialysis:continuous operation. Desalination,2006,189(1-3):215-220
    [75] Melnik L, Vysotskaja O, Kornilovich B. Boron behavior during desalination ofsea and underground water by electrodialysis. Desalination,1999,124(1-3):125-130
    [76] Turek M, Bandura B, Dydo P. Electrodialytic boron removal from SWROpermeate. Desalination,2008,223(1-3):17-22
    [77]薜德明.电渗析处理含锌废水试验.水处理技术,1984,10(1):44-49.
    [78]宋德政.电渗析处理化纤厂去酸水的研究.水处理技术,1999,25(5):262-266.
    [79]徐传宁.电渗析处理含铬废水.净化技术,1993,2:25-27
    [80] Xu Tongwen, Yang Weihua, He Binglin. Water dissociation phenomena inbipolar membrane:The configurations and theoretical voltage analysis. Sciencein China(Chem),1999,42(6):589-598
    [81] Nispen V, Maria JG, Ronald J. A process for the fermentative preparation oforganic acids. EP0346983A2,1989-12-20
    [82] Hdbovd V, Melzoch K, Rychtera M, et a1. Electrodialysis as a useful techniquefor lactic acid separation from a model solution and a fermentation broth.Desalination,2004,162(3):361-372
    [83] Li Hong, Mustacchi R, Knowles C J, et a1. An electronkinetic bioreactor: usingdirect electric current for enhan cedlactic acid fermentation and productrecovery. Tetrahedron,2004,60(3):655-661
    [84] Ganzi G C, Egozy Y, Guiffrida A J. High-purity water by dectrodeionizationperformance of the ionpure continuous deionization system. Ultrapure Water1987,4:43-50
    [85]王方.电去离子净水技.膜科学与技术,2001,21(2):50-54
    [86]王方.离子交换树脂电再生的试验研究.精细化工,2004,20(9):612-616
    [87]管山,王世昌. EDI回收酸性镀铜漂洗废水的试验研究.天津工业大学学报,2004,26(6):25-27
    [88]冯霄,刘玉忠,陈雪芬等.电去离子技术处理电镀含铜废水.水处理技术,2011,37(7):96-98
    [89] Lu H, Yan B, Wang J, et a1. Recovery of nickel ions from dilute solutions byeleetmdeionization proeess. Joumal of Chemical Industry and Engineering(China),2007,58(5):1259-1261
    [90] Kessler S B, Klein E. Membrane Handbook. Van Nostrand Reinhold: New York,1992,210
    [91] Fonseca A D, Crespo J G., Almeida J S, et al. Drinking Water denitrificationusing a novel ion-exchange membrane bioreactor. Environ Sci Technol,2000,34(8):1557-1562
    [92] Velizarov S, Reis M A, Crespo J G, et al. Integrated transport and reaction in anion exchange membrane bioreactor. Desalination,2002,149(1-3):205-210
    [93] Matos C T, Velizarov S, Grespo J G, et al. Simultaneous removal of perchlorateand nitrate from drinking water using the ion exchange membrane bioreactorconcept. Water Res,2006,40(2):231-240
    [94] Velizarov S, Reis M A, Crespo J G, et al. Removal of trace mono-valentinorganic pollutants in an ion exchange membrane bioreactor: analysis oftransport rate in a denitrification process. J Membr Sci,2003,217(1-2):269-284
    [95] Crespo J G, Velizarov S, Reis M A, et al. Membrane bioreactors for the removalof anionic micropollutants from drinking water. Curr Opin Biotechnol,2004,15(5):463-468
    [96] Velizarov S, Matos C T, Reis M, et al. Removal of inorganic chargedmicropollutants in an ion-exchange membrane bioreactor. Desalination,2005,178(1-3):203-210
    [97] Matos C T, Fortunato R, Velizarov S, et al. Removal of mono-valent oxyanionsfrom water in an ion exchange membrane bioreactor: Influence of membranepermselectivity. Water Res,2008,42(6-7):1785-1795
    [98] Matos C T, Sequeira A M, Velizarov S, et al. Nitrate removal in a closed marinesystem through the ion exchange membrane bioreactor. J Hazard Mater,2009,166(1):428-434
    [99] Oehmen A, Viegas R, Velizarov S, et al. Removal of heavy metals fromdrinking water supplies through the ion exchange membrane bioreactor.Desalination,2006,199(1-3):405-407
    [100] Hichour M, Persin F, Sandeaux J, et al. Fluoride removal from waters bydonnan dialysis. Sep Purif Technol,2000,18(1):1-11
    [101] Tor A. Removal of fluoride from water using anion-exchange membrane underdonnan dialysis condition. J Hazard Mater,2007,141(3):814–818
    [102] Hichour M, Persin F, Molenat J, et al. Removal of fluoride from dilutedsolutions by donnan dialysis with anion-exchange membranes. Desalination,1999,122(1):53-62
    [103] Garmes H, Persinb F, Sandeauxb J, et al. Defluoridation of groundwater by ahybrid process combining adsorption and donnan dialysis. Desalination,2002,145(1-3):287-291
    [104] Durmaz F, Kara H, Cengeloglu Y, et al. Fluoride removal by donnan dialysiswith anion exchange membranes. Desalination,2005,177(1-3):51-57
    [105] Kir E, Alkan E. Fluoride removal by donnan dialysis with plasma-modified andunmodified anion exchange membranes. Desalination,2006,197(1-3): l217-1224
    [106] Ruiz T, Persin F, Hichour M, et al. Modelisation of fluoride removal in donnandialysis. J Membr Sci,2003,212(1-2):113-121
    [107] Alkan E, K r E, Oksuz L. Plasma modification of the anion-exchange membraneand its influence on fluoride removal from water. Sep Purif Technol,2008,61(3):455-460
    [108] Bin Zhao, Huazhang Zhao, Jinren Ni. Arsenate removal by Donnan dialysis:Effects of the accompanying components.Separation and PurificationTechnology,2010,72(3):250-255
    [109] Adrian Oehmen, Rita Valerio, Javier Llanos,et al. Arsenic removal fromdrinking water through a hybrid ion exchange Membrane-Coagulation process.Separation and Purification Technology,2011,83(2):137-143
    [110] Jacek A, Wisniewski, Malgorzata Kabsch-korbutowicz. Bromate removal in theion-exchange process. Desalination,2010,261(1-2):197-201
    [111] Kalis E J J, Weng L, Dousma F, et al. Measuring free metal ion concentrationsin situ in natural waters using the donnan membrane technique. Environ SciTechnol,2006,40(3):955-961
    [112] Kalis E J J, Weng L, Erwin J M. Temminghoff. Measuring free metal ionconcentrations in multicomponent solutions using the donnan membranetechnique. Anal Chem,2007,79(4):1555-1563
    [113]易丽,朱咏煊,洪业汤.土壤中游离重金属离子的测定—唐南膜平衡法.地球与环境,2004,32(2):87-91
    [114] Lee H J, Choi J H, Cho J, et al. Characterization of anion exchange membranesfouled with humate during electrodialysis. J Membr Sci,2002,203(1/2):115-126
    [115] Malgorzata K K, Katarzyna MN,Tjomasz W. Analyse of membrane fouling inthe treatment of water solutions containing humic acids and mineral salts.Desalination,1999,126(1/2/3):179-189
    [116] Komgold E, de Korosy F, Rahav R, et al. Fouling of anion selective membranesin electrodialysis. Desalination,1970,8:195-220
    [117] Lindstrand V, Sundstrom G, Jensson A S. Fouling of electrodialysis membranesby organic substances.Desalination,2000,128(1):91-102
    [118] Bazinet L,Montpetit D, Ippersiel D, et al. Neutralization of hydroxidegenerated during skim milk electroacidification and its effect on bipolar andcationic membrane integrity. J Membr Sci,2003,216(1/2):229-239
    [119]张根生,周长发,缪道英.电渗析水处理技术.北京:科学出版社,1981:127,139,173
    [120] Laurent B,Monica A F. Electrodialysis of calcium and carbonate highconcentration solutions and impact on composition in cations of membranefouling. J Colloid Interface Sci,2005,286(2):639-646
    [121]周柏清.全膜水处理技术.北京:中国电力出版社,2006,299
    [122]田中良修.离子交换膜基本原理及应用.北京:化学工业出版社,2010,34
    [123] H. Miyoshi and M. Yamagami, Donnan dialysis with ion-exchange membranes.Ⅱ. Diffusion coefficients using same valence ions. Sep. Sci. Technol.,1996,31(16):2183-2194
    [124]叶振华.化工吸附分离过程.北京:中国石化出版社,1992,80-82
    [125]尹芳华,钟璟.现代分离技术.第二版.北京:化学工业出版社,2009,126
    [126]朱孟强,潘纲.单核Zn(Ⅱ)水合和水解形态的量子化学计算.环境化学,2005,24(5):497-501
    [127]瞿成利,刘刚,路波.温度和过饱和度对海水中碳酸钙沉淀速率的影响.海洋科学,2009,33(7):23-29
    [128]马明广,周敏,蒋熠峰.不溶性腐殖酸对重金属离子的吸附研究.安全与环境学报,2006,6(3):68-71
    [129]孙长顺,金奇庭,秦莉红. EDTA络合铜在无机柱撑膨润土上的吸附研究.环境工程学报,2007,1(9):131-135
    [130]王笑琳.膜的污染和劣化及其防治.工业水处理,2001,21(9):1-5
    [131]沈钟,王果庭.胶体与表面化学.第二版.北京:化学工业出版社,2001,347-351
    [132]孙亚丽,郭文彬,薄选举.阳树脂铁中毒处理的新方法.工业用水与废水,2007,38(6):84-86
    [133]周锦云,唐满生.混凝剂三氯化铁稀溶液的水解及防治.湖南科技学院学报,2007,28(4):103-104
    [134]钟汨江.盐水中铁含量对膜的影响及控制.中国氯碱,2001,10(10):9-10
    [135]荆国林,王晓玉,赵海.电渗析膜污染进展.盐业与化工,2006,35(6):42-46
    [136]蔡昆,方云,吴云兰.聚合物/表面活性剂溶液相互作用的研究进展.日用化学工业,2001,4(4):26-31
    [137]李振华,皮洪琼,何炳林.钙阻抗剂的离子交换反应动力学和热力学研究.功能高分子学报,2000,13(3):1-5
    [138]程振峰.聚苯醚基中空纤维离子膜的制备及应用研究:[中国科技大学博士学位论文].合肥:中国科学技术大学化学工程学院,2010,45-48
    [139]赵振国,樊艾星.硅烷化活性碳的吸附性质.化学学报,1994,52(5):427-433
    [140]赵振国,沈钟,陈丽特.硅烷化活性碳的表面性质.高等学校化学学报,1989,10(11):1119-1123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700