用户名: 密码: 验证码:
水产养殖与加工废水生物絮体资源化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随我国经济快速发展、人口总量持续增长与优质蛋白需求逐步提升等因素,水产养殖与加工行业规模日益扩大,生产废水排放急剧增加。然而,由于工艺技术、过程控制、生产成本乃至经济结构等诸多复杂原因,导致水产类废水处理形势严峻,所造成的环境压力不容小觑。
     目前,传统水产废水处理技术通常将水体中有机物、氮磷等物质均作为污染物而加以去除,系统运行不仅面临污泥处置成本高,其可持续性也值得商榷。鉴于该类废水基质源自饲料与养殖对象自身物质,可生化性良好等特点,研究者开发了以强化处理过程同化作用,促使异养菌增殖并被养殖对象再利用的水产废水生物絮体资源化技术。然而,鉴于废水组分复杂,C/N/P比例失调,工艺操控受限等技术屏障,导致现有操作实践仍面临运行效能不稳,碳源投加成本高、基质利用不合理及技术普适性弱等弊端,研究涉及面主要强调絮体产能与养殖效果,难以全面兼顾水质处理性能。为此,研究开发适宜养殖需求的水产类废水生物絮体资源化技术,满足耦合絮体生产与运行效能的双重目的,尤为迫切。
     论文针对上述问题,围绕有限基质合理分配,以促进基质利用归趋多样化、产絮过程絮体营养效能(PHB益生元)挖掘等为目标,在实验室与中试规模条件下,开展了水产类废水生物絮体资源化技术的相关研究:
     1、针对原位生物絮体技术实施过程影响因素复杂,工况参数有待优化的现实需求,以开发的响应曲面性能模型为基础,获得了系统关键运行指标与目标响应值间的定量数学模型关系,并进一步优化了相应的工况运行范围。
     应用统计学模型试验分析,表明原位生物絮体技术系统的氨氮去除效率与关键参数C/N比及絮体污泥浓度呈显著相关,且可用特定二阶多项式描述其定量数学模型关系。方差分析(ANOVA)结果揭示所获模型确认与拟合程度良好。因素检验表明,絮体污泥浓度与运行C/N比及两者交互作用对系统氨氮去除效率均有显著影响。模型参数范围内,单变量及交互效果与响应值呈正相关关系。
     基于模型优化结果,系统在絮体污泥浓度2.0-2.5g/L、C/N比13-16条件下可获得最佳运行工况,其氨氮去除效率可确保大于90%,出水水质满足养殖需求。
     综上,基于模型理论分析结果表明,絮体污泥浓度与运行C/N比的联合调控工艺可确保原位生物絮体技术系统稳定运行。同时,结合不同养殖对象水质可耐受性的种间差异前提下,实际生产中具体工况参数的选择可以模型优化结果为基础,并基于养殖种类、密度及水质需求等进行适度修正。
     2、针对原位生物絮体技术适用养殖对象少,工况调控受限等弊端,以提高技术普适性与处理过程资源化为目的,开发了非原位序批式生物絮体技术,研究了其在厌-好氧运行模式下处理模拟水产养殖废水的运行性能、絮体特性及絮体PHB富集的工况参数优化。
     反应器运行结果表明,在进水NH4+-N和COD浓度分别为28.22±1.83mg/L与627±35mg/L条件下,相应出水浓度分别为1.23±1.38mg/L与17±13mg/L,去除率达95.69±4.92%与97.274±1.89%,出水水质适宜养殖回用,长期运行工况稳定性良好。
     反应器稳态阶段絮体特性分析表明,絮体形态呈稳定颗粒化,泥水分离性佳,有利于提高饲料制备便利性。营养成分测定显示絮体粗蛋白CP(Crude Protein)含量高达43.89%,氨基酸AA(Amino Acid)配比合理,养殖对象必需氨基酸EAA(Essential Amino Acid)苏氨酸THR(Threonine)、赖氨酸LYS(Lysine)及蛋氨酸MET(Methionine)含量分别为1.2836g/100g、3.3965g/100g与1.4699g/100g。重要益生元物质维生素E和多糖(Polysaccharide)的含量分别为145.23mg/kg及251.32mg/kg.结合水产动物营养需求分析,认为所获絮体营养价值较高。
     反应器典型周期过程特性揭示厌氧-好氧交替运行模式有利于絮体PHB(Poly-β-hydroxybutyrate)积累。基于统计学模型的批实验结果表明,絮体污泥浓度、C/N比和厌氧时间均对絮体PHB含量呈显著影响。最优化絮体PHB含量150-200mg/g的变量范围为絮体污泥浓度4-7g/L、C/N比15-18及厌氧时间50-85min。结合领域内PHB应用效果分析,提出了以饲料成本及饲料转换系数FCR(Feed Conversion Rate)为参考的碳源分配策略,以平衡絮体生产与PHB合成间的基质竞争利用。
     3、针对非原位生物絮体技术实施过程外碳源添加成本高,过度强化同化作用所致基质利用不合理等问题,以絮体产能调控(SRT控制)促进基质利用归趋多样化,明晰不同SRT阶段(2-15d)的基质转化规律为目的,研究了中试规模的非原位生物絮体技术反应器在厌-好氧条件下处理实际水产加工废水的运行性能、基质利用途径及相关絮体特性。
     反应器SRT2-15d运行阶段,在进水COD、NH4+-N、TN、PO43-P分别为801.5±201.3mg/L,40.82±12.62mg/L,42.85±14.03mg/L,24.86±5.96mg/L的条件下,其相应去除率分别为88.77±1.69%-92.74±1.45%;66.07±3.91%-90.40±2.02%;41.09±2.04%-63.20±3.10%:41.81±6.71%-78.27±4.80%。
     结合工况运行性能与基质转化过程特性发现,反应器SRT变化主要影响N、P转化途径与去除效率,对COD去除性能影响不明显。短SRT条件下基质去除以同化作用为主,且TN的去除性能优于P。但是,短SRT限制系统硝化性能,SRT2-5d条件下,出水N02--N浓度积累至4.06±1.15mg/L与9.93±3.11mg/L。延长SRT可提升系统硝化-反硝化性能,并利于PAOs富集从而改善除磷性能,SRT为10d可获最大pO43--P去除效率为78.27±4.80%。
     研究表明SRT变化同样对絮体表观产率系数具有明显影响。反应器SRT2-15d运行阶段,絮体表观产率系数Yobs随SRT延长由0.539±0.092(mgVSS/mg COD)下降至0.144±0.019(mg VSS/mg COD),相应的系统絮体生产性能由1115gVSS/m3/d降至270gVSS/m3/d,且絮体VSS含量由67.31±3.57%降至57.92±0.96%,但絮体SVI30值差异不明显,对其制备饲料的便利性不构成影响。
     综上,针对非原位生物絮体技术处理实际水产加工废水,其系统运行过程中水质N、P去除与絮体生物量问存有明显的SRT选择矛盾。短SRT运行所致的同化作用对P去除性能不佳,且出水NH4+-N, NO2--N等物质积累明显,易对养殖对象造成胁迫。鉴于有机质供给受限、满足养殖回用与提升基质利用合理性等现实需求,其实际运行中适宜选择较长SRT,以促使系统基质利用归趋多样化。同时,针对延长SRT所致的氮磷去除间的碳源基质竞争利用,尚可基于技术非原位应用的便利操控条件,采用如反应过程增设缺氧段并强化反硝化除磷等策略,提升碳源利用效率并降低氮磷去除过程的有机物消耗量,达到无外碳源添加条件下,基质合理利用与提升处理性能的目的。
     4、针对耦合水质处理性能与絮体营养效能挖掘的双重目的,以提升系统内碳源分配合理性与强化反硝化除磷入手,实现产絮过程同步富集PHB。研究了中试规模非原位生物絮体技术反应器在不同絮体收获节点(厌氧-缺氧段末、缺氧段末)与模式(A/O/A-SBR、A2O2-SBR)条件下处理实际水产加工废水的运行性能。
     反应器工况运行结果表明,在进水COD、NH/-N、TN、PO43--P分别为479±136mg/L,35.57±9.76mg/L,37.28±9.38mg/L,15.57±5.42mg/L的条件下,各阶段相应去除率为90.08+4.62%-92.954±1.72%;85.33±6.82%-90.444±3.17%;69.05±2.61%-82.96±4.54%;72.05±2.91%-87.16±4.77%。不同絮体收获节点与运行模式对有机物去除差异不明显,但对氮磷去除性能有明显影响。
     基质转化过程分析表明,反应器TN去除主要由反硝化脱氮与反硝化除磷贡献,TP去除则由好氧除磷与反硝化除磷途径实现。根据NH4+-N硝化与N03--N形成化学计量关系推算分析,好氧段同化作用对基质去除贡献较小。
     基于物料衡算分析,不同运行模式及絮体收获节点对单位N、P去除所需有机物的量有明显影响。A/O/A-SBR相同运行模式下,不同絮体收获节点所致的COD/P与COD/N的需求值分别为33.92t1.44mg COD/mg TP,19.23±3.4mg COD/mg NO3--N与23.51±3.33mg COD/mg TP,16.78±0.92mg COD/mg NO3--N,表明相同N、P去除性能下,厌氧-缺氧段末絮体收获虽可实现产絮同步富集PHB,但其较缺氧段末絮体收获的有机物需求量高,无外碳源添加条件下,易致有机质供给拮据。然而,同为厌氧-缺氧段末进行絮体收获,将运行模式由A/O/A-SBR变更为(AO)2-SBR,其值下降为19.32±1.53mg COD/mg TP与14.28±0.50mg COD/mg NO3-N,表明运行工况调控可有效降低单位N、P去除所需有机物量,实现基质高效利用。
     内碳源利用衡算表明,相同A-O-A/SBR运行模式下,不同厌氧-缺氧段末与缺氧段末的絮体收获节点所致的PHB周期内好氧段与缺氧段的消耗质量百分比分别为73.21±2.73%、24.53±1.36%与77.76±1.44%、24.72±4.52%。同为厌氧-缺氧段末絮体收获,而运行模式变更为(AO)2-SBR,其PHB在相应时期的消耗质量百分比分别为63.06±9.94%与35.60±9.16%,表明该运行模式下缺氧段可消耗的PHB量明显提升,推测其可为强化系统反硝化除磷性能提供内碳源物质基础。在均实现产絮过程同步富集PHB的前提下,比较A/O/A-SBR与(AO)2-SBR运行性能发现,其缺氧段氮磷去除物质计量关系由初始的1.75±0.23mg TP/mg NO3--N升至2.13±1.03mg TP/mg NO3--N.进一步基于絮体好氧与缺氧吸磷速率分批实验结果推测,其反硝化除磷菌DNPAOs占好氧除磷菌PAOs的比例由初始的11.90%升至45.14+2.24%,表明系统反硝化除磷性能得到有效强化。
     综上,为满足产絮过程同步富集PHB,克服过程碳源利用瓶颈,可基于缩短初次好氧段的工况调控策略提升系统内碳源分配与利用效率,以增加缺氧段PHB可消耗量强化系统反硝化除磷性能。通过降低单位N、P去除所需有机质,弥补无外碳源添加条件下絮体PHB收获所致的碳源损失,从而达到强化处理性能与絮体营养效能挖掘的双重目的。
     5.基于挖掘循环水养殖系统自身碳源潜力,削减外碳源添加成本,促进废水生物絮体资源化利用,提升运行可持续性为目标。研究了非原位生物絮体技术反应器处理准商业规模的循环水养殖系统废水的运行性能,比较了A/O/A-SBR运行条件下,系统在不添加与好氧段初、缺氧段初添加系统自身廉价内碳源(鱼粪)的基质转化效率与性能差异。
     反应器整体工况运行结果表明,在进水COD, NH4+-N与P043--p分别为444±98mg/L,43.22±8.90mg/L及17.67±3.92mg/L的条件下,各阶段相应去除率分别为86.87±2.89%-90.49±1.02%,74.19±4.39%-89.26±4.74%与76.49±1.60%-89.45±3.00%。好氧段添加内碳源调控策略可获运行过程最佳处理性能,在NH4+-N与P043--p浓度分别为41.59+6.49mg/L与17.08±2.05mg/L的条件下,相应出水浓度为4.69±1.32mg/L及1.78±0.48mg/L,去除率高达88.33+3.91%及89.45±3.00%,水质标准已可满足养殖回用需求。
     内碳源利用特征表明,好氧段添加碳源条件下其PHAs消耗速率为2.70±0.21mgPHAs/gVSS/h,低于不添加及缺氧段初添加的3.26±0.22mgPHAs/gVSS/h与4.04±1.07mgPHAs/gVSS/h,表明好氧段投加碳源可显著减缓PHAs在该时期的消耗速率,降低总PHAs消耗量,从而使缺氧段可供利用PHAs总量提升。基于缺氧段PHAs消耗速率计算表明,好氧段投加碳源条件下,其缺氧段PHAs消耗速率为1.88±0.20mgPHAs/gVSS/h,高于不添加与缺氧段添加条件下的1.52±0.42mgPHAs/gVSS/h及1.02±0.23mgPHAs/gVSS/h,推测其缺氧段可供利用的PHAs量较充裕,可对实现反硝化除磷性能提供内碳源物质基础。由絮体吸磷速率分批实验亦可表明,反应不同阶段好氧除磷菌PAOs中反硝化除磷菌DNPAOs的比例分别为27.62±4.14%,46.45±5.38%与24.90±2.16%,表明好氧段初添加碳源可有效提升系统反硝化除磷性能,从而利于实现产絮同步富集PHB。
     基于构建的絮体生物量估算模型计算,在基质COD及TN流入分别为6.98±0.87g COD/d,0.97±0.11g TN/d;7.28±0.23g COD/d,1.13±0.10g TN/d;8.50±0.37g COD/d,1.13±0.01gTN/d的条件下,不同阶段有机质及N的絮体转化率分别为44.92%,25.36%;54.59%,24.89%;50.89%,27.04%。以基于模型的各阶段微生物生长量占产絮总量计算,推测好氧段添加碳源条件下其反应器内普通异养菌与硝化菌的比例分别为34.084±2.02%及3.474±0.31%,与不添加及缺氧段添加碳源比例27.0±2.13%,4.35+0.91%;9.02±0.88%,4.45±0.59%相比,其普通异养菌占比明显增高,自养硝化菌比例降低,以絮体生物量为考量,表明其基质利用途径合理。
     综上,针对循环水养殖系统生产过程NO3--N含量丰富的水质特点,采用鱼粪为碳源添加的运行策略可有效提升系统运行性能与基质利用率。综合絮体生物量与出水水质指标为考量,以好氧段添加碳源为最佳调控手段,可对循环水养殖系统废水生物絮体资源化技术处理提供工程化应用依据。
Along with Chinese economic development, human population growth and rised quality protein requirement, the scale of aquaculture and fish processing industry were increased quickly. However, due to the complicated reasons of processing technology, production cost and even the economic structure, the treating situation of the aquatic wastewater was grim. Thus it should be reckoned with the according environmental influence earnestly.
     Based on the conventional wastewater treatment technology, the organics, nitrogen and phosphorus were considered as contaminants, and then removed out of the system. This operated strategy were not only faced the sludge disposal costs, but also the sustainability were worth consideration. Due to the wastewater substrate were from the feed and breeding species themselves, and have well biodegradability, the bio-flocs technology were used for the treatment and recycling, which through for the increased process assimilation, and the proliferous heterotrophic bacterias catched by the cultured objects again. Nevertheless, due to several technological barriers, such as wastewater characteristics complexity, unsuited C/N/P ratio, and confining process control et al, the current operated practice were still faced with unstable system performance, high organics supplied cost and the low universality of the technology application. The focus was main in flocs production and aquaculture requirement, comprehensive wastewater treatment performance was neglected. Thus, research and development of the improved processing technology through bio-flocs technology for aquaculture and fish processing wastewater were very urgent for the dual purposes of the flocs production and treating performance.
     According of the above problems, the thesis was focus in the reasonable distribution of the limited substrate, which for the purpose of improved utilization efficiency of the internal carbon source, to diversify the substances utilization pathway and flocs PHB enrichment.Under laboratory and pilot scale, several research were carried out for the aquatic wastewater treatment and recycling by bio-flocs technology. The main conclusions were summarized as follows:
     1. Aim to solve the practical needs of the complex factors and operated conditions of the in-situ BFT system. Based on the response surface method, the quantitative mathematical relationship between key operated parameters and object were obtained, which can be used to simplify the control parameters, as well as the optimization of the operated performance.
     The statistical approach showed significant results regarding the inorganic nitrogen (TAN) removal performance with operated C/N ratio and flocs sludge concentration. The quantitative mathematical relationship of the response surface model can be described in the form of second-order polynomial equation. The ANOVA results indicated that the model have well validation and fitting. In parameter range, the single factor and their interaction effects shown positive correlation relationship with the response value.
     The optimum results attained from the model indicated that more than90%TAN removal efficiency was achieved when the C/N ratio was between13-16, as well as the flocs sludge concentration (MLVSS)2.0-2.5g/L. During this circumstance, the effluent quality can be satisfied to the aquaculture water recycling.
     Based on the interspecific difference of the cultured species, the flocs sludge concentration and C/N ratio can be considered as primary control parameters to ensure the stable and reasonable operation of the in-situ Bio-flocs technology aquaculture system. Under the condition of practice, the parameters value can be appropriate correction based on the consideration of cultured species, stocking density and water quility requriment.
     2. Base on the problem of in-situ BFT system, such as less applicable objects and limited operated condition, the ex-situ BFT reactor was established for the evaluation of the operated performance using simulated aquaculture wastewater, and the research objectives were focus the operated performance, flocs characteristic and optimization of flocs PHB content.
     The results indicated that the reactor have well operated performance for the treatment of the simulated aquaculture wastewater. During steady stage, when the influent NH4+-N and COD concentration were28.22±1.83mg/L and627±35mg/L, the corresponding effluent were1.23±1.38mg/L and17±13mg/L, with removal efficiency of95.69±4.92%and97.27±1.89%. The reactor shown stable operated performance during long-time running, and the effluent can be used as aquaculture recycling.
     The results of the flocs characteristics shown that the stable granulation can be obtained during the steady stage, which means well solid-liquid separation and potential convenience for feed preparation. The flocs ingredient shown well nutritive value, which can be satisfied for the demand of the aquatic animal. The flocs contained43.89%crude protein with reasonable amino-acids ratio, especially in essential amino-acid of threonine, lysine and methionine were1.2836g/100g,3.3965g/100g and1.4699g/100g. The important prebiotics of Vitamin-E and polysaccharide were145.23mg/kg and251.32mg/kg. Accord with the aquatic animal nutritional requirement, the flocs were considered have high feeding value.
     The typical cycle performance indicated that the alternant anaerobic-aerobic operated mode were beneficial to flocs PHB accumulation. Based on the response surface model batch results, the flocs concentration, C/N ratio and anaerobic time were both have significant effect to flocs PHB yield. The optimized flocs PHB yield of150-200mg/g can be obtained when the parameters in range of:flocs concentration4-7g/L, C/N ratio15-18, and anaerobic time50-85min. Otherwise, with the field PHB application effect analysis, an potential carbon source allocation strategy that based on the FCR (Feed Conversion Rate) was proposed, which in order the balance the carbon substance contention between flocs production and PHB synthesis.
     3. The pilot-scale ex-situ BFT reactor was established for the evaluation of the anaerobic-aerobic operated performance using actual fish processing wastewater. The research target were for the clarification of the effect with SRT change, which have influence on flocs production and wastewater processing performance, as well as the substance conversion and transportation rule during varied SRT stage (2-15d).
     During the reactor operated stage (SRT=2-15d), when the influent COD, TN, PO43--P concentration were801.5±201.3mg/L,40.82±12.62mg/L,42.85±14.03mg/L and24.86±5.96mg/L, the according removal efficiency were in range of88.77±1.69%-92.74±1.45%;66.07±3.91%-90.40±2.02%;41.09±2.04%63.20±3.10%and41.81±6.71%-78.27±4.80%.
     The SRT change was have main effect on transformation path and removal performance of substance N and P rather than COD. Under short SRT condition, the substance removal were main through assimilation, and the N removal performance was better than P. Meanwhile, the nitrification was limited by short SRT, as the effluent NO2--N concentration were4.06±1.15mg/L and9.93±3.11mg/L during SRT2-5d. The nitrification-denitrification performance can be improved by extend SRT, as well as the phosphorus removal performance. The optimal PO43--P removal efficiency was78.27±4.80%during the SRT10d condition.
     The flocs observed biomass coefficient was influenced by varied SRT stage. During the operated phase (SRT=2-15d), the flocs Yobs value was reduced from0.539±0.092(mg VSS/mg COD) to0.144±0.019(mg VSS/mg COD) with SRT lengthen. Meanwhile, the flocs production performance also decreased from1115gVSS/m3/d to270gVSS/m3/d, as well as the flocs VSS content was reduced from67.31±3.57%to57.92±0.96%. However, the flocs SVI30values have no obvious difference, which indicated that was beneficial to feed material preparation.
     Overall, due to the relative high substance loading of the fish processing wastewater, the system operation have obvious SRT conflict with N, P removal and flocs production. Consideration of the ex-situ operation characteristic, the wastewater processing performance should be balanced through decreased flocs productive capacity under practical condition, which can be satisfied with aquaculture recycling or emission standard.
     4. The pilot-scale ex-situ ex-situ BFT reactor was established for the evaluation of the different operated performance using actual fish processing wastewater. The conditions difference were contained different flocs harvest timing and operation mode (A-O-A, A2O2-SBR). The research target were for the integrated system performance of both wastewater treating efficiency and flocs nutrient synergia, which can be achieved by enhanced denitrifying phosphorus removal through rational utilization of the internal carbon source.
     The reactor operated performance indicated that, when the influent of COD, NH4+-N, TN, PO43--P were479±136mg/L,35.57±9.76mg/L,37.28±9.38mg/L and15.57±5.42mg/L, the according removal efficiency during each stage were in range of90.08±4.62%-92.95±1.72%;85.33±6.82%-90.44±3.17%;69.05±2.61%82.96±4.54%;72.05±2.91%-87.16±4.77%. The effect of different flocs harvest timing and operated mode have no influence on organics removal efficiency obviously. Nevertheless, the nitrogen and phosphorus removal performance was found varied during the foregoing conditions.
     Based on process characteristic, the TN removal were main through denitrification and denitrifying phosphorus removal, as well as the TP removal depend on aerobic phosphorus removal and denitrifying phosphorus removal. In added consideration of NH4+-N decrease and NO3--N increase, the assimilation have less contribution of TN removal during aerobic-phase at each operated stage.
     The mass balance results showed that different flocs harvest timing and operated modes have influence of required organics amount for units N, P removal. During the A-O-A operated mode, the different flocs harvest timing lead to the according ratios of COD/P and COD/N were33.92±1.44mg COD/mg TP,19.23±3.4mg COD/mg NO3--N;23.51±3.33mg COD/mg TP,16.78±0.92mg COD/mg NO3--N. During (AO)2-SBR operated mode, the ratios were decreased to19.32±1.53mg COD/mg TP and14.28±0.50mg COD/mg NO3--N.
     Based on inner carbon source utilization balance, the PHB consumed mass percentage on aerobic and anoxic phase at each stage were73.21±2.73%,24.53±1.36%;77.76±1.44%,24.72±4.52%;63.06±9.94%,35.60±9.16%. The PHB consumed ratio was improved in anoxic phase during (AO)2-SBR operated mode, which can be provided material basis for the enhanced denitrifying phosphorus removal performance. The N, P removal stoichiometric relationship at anoxic phase was increased from1.75±0.23mg TP/mg NO3--N to2.13v1.03mg TP/mg NO3--N during each stage. According to the results of batch experiments, the denitrifying polyphosphate-accumulating organisms (DNPAOs) in polyphosphate-accumulating organisms (PAOs) ratios were increased from11.90%to45.14±2.24%.
     Overall, for the integrated operated purpose of wastewater treating efficiency, particularly in the practical needs of flocs PHB synthesis and harvest during the productive period concurrently, the improved denitrifying phosphorus removal performance can be used as core control strategy for system stable operation and recycling, which can be achieved by efficient utilization of internal carbon source.
     5. The ex-situ BFT reactor was established for the evaluation of the operated performance using quasi-full scale recirculation aquaculture system. The system performance were compared when the cheap internal carbon source were supplied at aerobic-or anoxic-phase or no added under the A-O-A operated mode. The research targets were main improved the sustainability of the RAS system, which can be achieved by using the potential carbon source of the system itself, as well as for the wastewater treatment and recycling by bio-floes technology.
     The reactor operated performance indicated that, when the influent COD, NH4+-N and PO43--P concentrations were444±98mg/L,43.22±8.90mg/L and17.67±3.92mg/L, the according removal performance were86.87±2.89%-90.49±1.02%,74.19±4.39%-89.26±4.74%and76.49±1.60%-89.45±3.00%.The optimal treating performance can be achieved by the added carbon source supplied to aerobic-phase, when the influent NH4+-N and PO43--P concentrations were41.59±6.49mg/L and17.08±2.05mg/L, the according effluent concentrations were4.69±1.32mg/L and1.78±0.48mg/L, with high removal efficiency of88.33±3.91%and89.45±3.00%, and can be used for the aquaculture reuse.
     Based situation of the inner carbon source utilization, the PHAs consumed rate at aerobic time of the phase Ⅱ were2.70±0.21mg PHAs/g VSS/h, which lower than the3.26±0.22mg PHAs/g VSS/h (Phase Ⅰ) and4.04±1.07mg PHAs/g VSS/h (Phase Ⅲ), as well as the anoxic time PHAs consumed rate of1.88±0.20mg PHAs/g VSS/h, which higher than the1.52±0.42mg PHAs/g VSS/h (Phase Ⅰ) and1.02±0.23mg PHAs/g VSS/h (Phase Ⅲ), these implied that the phase Ⅱ might have more abundant PHAs at anoxic time, which can be improved the denitrifying phosphorus removal performance. Base on the batch experiments, the DNPAOs in the PAOs ratios that concluded by the phosphorus rate were27.62±4.14%,46.45±5.38%and24.90±2.16%.
     Based on the microorganisms yield model, when the substance flow of COD and TN were6.98±0.87g COD/d,0.97±0.11g TN/d;7.28±0.23g COD/d,1.13±0.10g TN/d;8.50±0.37g COD/d,1.13±0.01g TN/d, the conversion rate of C and N were44.92%,25.36%;54.59%,24.89%;50.89%,27.04%during each stage. In addition, according with the high heterotrophic bacteria ratio and low nitrifying bacteria ratio, as well as the enhanced denitrifying phosphorus removal performance, the phase Ⅱ were considered achieved a reasonable substance utilization approach, which meet the dual purpose for wastewater treatment and flocs production.
     Overall, consider of the wastewater characteristic with high NO3--N concentration in RAS effluent, the supply fish feces as organic carbon can obvisously increase the system performance and substance utilization rate, and the aerobic phase fesces supply strategy have the best flocs yield and effluents quility, which can be used as technical base for the realization of engineering applications.
引文
Ackefors, H., Enell, M. The release of nutrients and organic matter from aquaculture systems in Nordic countries. Journal of Applied Ichthyology,1994,10(4):225-241.
    APHA. Standard Methods for the Examination of Water and Wastewater,20th ed., American Public Health Association,1998, Washington, DC, USA.
    Arnold, S.J., Coman, F.E., Jackson, C.J., Groves, S.A. High-intensity, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon:An evaluation of artificial substrates and stocking density. Aquaculture,2009,293(1-2):42-48.
    Asaduzzaman, M, Wahab, M.A., Verdegem, M.C.J., Adhikary, R.K., Rahman, S.M.S., Azim, M.E., Verreth, J.A.J. Effects of carbohydrate source for maintaining a high C:N ratio and fish driven re-suspension on pond ecology and production in periphyton-based freshwater prawn culture systems. Aquaculture,2010,301(1-4):37-46.
    Asaduzzaman, M., Wahab, M.A., Verdegem, M.C.J., Benerjee, S., Akter, T., Hasan, M.M., Azim, M.E. Effects of addition of tilapia Oreochromis niloticus and substrates for periphyton developments on pond ecology and production in C/N-controlled freshwater prawn Macrobrachium rosenbergii farming systems. Aquaculture,2009.287(3-4):371-380.
    Asaduzzaman, M., Wahab, M.A., Verdegem, M.C.J., Huque, S., Salam, M.A., Azim, M.E. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture,2008, 280(1-4):117-123.
    Aspe. E., Marti, M.C., Roeckel, M. Anaerobic treatment of fishery wastewater using a marine sediment inoculum. Water Research,1997,31(9):2147-2160.
    Avella, M., Martuscelli. E.. Raimo, M. Review properties of blends and composites based onpoly(3-hydroxy) butyrate (PHB) and poly(3-hydroxybutyrate-hydroxyvalerate)(PHBV) copolymers. Journal of materials science,2000,35(3):523-545.
    Avnimelech, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 1999,176(3-4):227-235.
    Avnimelech, Y. Bio-filters:The need for an new comprehensive approach. Aquacultural Engineering,2006,34(3):172-178.
    Avnimelech, Y. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture,2007,264(1-4):140-147.
    Avnimelech, Y., Kochba, M. Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing. Aquaculture,2009,287(1-2):163-168.
    Azim, M.E., Little, D.C. The biofloc technology (BFT) in indoor tanks:Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 2008a,283(1-4):29-35.
    Azim, M.E., Little, D.C., Bron, J.E. Microbial protein production in activated suspension tanks manipulating C:N ratio in feed and the implications for fish culture. Bioresource Technology,2008b,99(9):3590-3599.
    Ballester, E.L.C., Abreu, P.C., Cavalli, R.O., Emerenciano, M., De Abreu, L., Wasielesky Jr, W. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition,2010,16(2):163-172.
    Bernat, K., Wojnowska-Baryla, I., Dobrzynska, A. Denitrification with endogenous carbon source at low C/N and its effect on P(3HB) accumulation. Bioresource Technology,2008,99(7): 2410-2418.
    Bhaskar, N., Sudeepa, E.S., Rashmi, H.N., Tamil Selvi, A. Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresource Technology,2007,98(14):2758-2764.
    Biggs, C.A., Lant, P.A. Activated sludge flocculation:on-line determination of floc size and the effect of shear. Water Research,2000,34(9):2542-2550.
    Biradar, P.M., Roy, S.B., D Souza, S.F., Pandit, A.B. Excess cell mass as an internal carbon source for biological denitrification. Bioresource Technology,2010,101(6):1787-1791.
    Blancheton, J.P. Developments in recirculation systems for Mediterranean fish species. Aquacultural Engineering,2000,22(1-2):17-31.
    Blatti, J.L., Beld, J., Behnke, C.A., Mendez, M., Mayfield, S.P., Burkart, M.D. Manipulating Fatty Acid Biosynthesis in Microalgae for Biofuel through Protein-Protein Interactions. PLoS ONE,2012,7(9):429-431.
    Boardman, G., McVeigh, P. Use of UASB Technology to Treat Crab Processing Wastewaters. Journal of Environmental Engineering,1997,123(8):776-785.
    Boley, A., Muller, W.R., Haider, G. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems. Aquacultural Engineering,2000, 22(1-2):75-85.
    Boyd, C.E., Tucker, C.S.Pond aquaculture water quality management.1998, Kluwer Academic Publishers.
    Brazil, B.L. Performance and operation of a rotating biological contactor in a tilapia recirculating aquaculture system. Aquacultural Engineering,2006.34(3):261-274.
    Bruton, M.N. The effects of suspensoids on fish. Hydrobiologia,1985,125(1):221-241.
    Burford, M.A., Thompson, P.J., McIntosh, R.P., Bauman, R.H., Pearson, D.C. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture,2004,232(1-4):525-537.
    Camargo, J.A., Alonso, A., Salamanca, A. Nitrate toxicity to aquatic animals:a review with new data for freshwater invertebrates. Chemosphere,2005,58(9):1255-1267.
    Chakravarty, P., Mhaisalkar, V., Chakrabarti, T. Study on poly-hydroxyalkanoate (PHA) production in pilot scale continuous mode wastewater treatment system. Bioresource Technology,2010,101(8):2896-2899.
    Chamberlain, G., Avnimelech, Y., McIntosh, R., Velasco, M. Advantages of aerated microbial reuse systems with balanced C:N. Ⅱ:Composition and nutritional value of organic detritus. Global Aquaculture Advocate,2001,25(4):22-24.
    Chen, Y., Randall, A.A., McCue, T. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid. Water Research,2004,38(1):27-36.
    Chowdhury, P., Viraraghavan, T., Srinivasan, A. Biological treatment processes for fish processing wastewater-a review. Bioresource Technology,2010,101(2):439-449.
    Chua, A.S.M., Takabatake, H., Satoh, H., Mino, T. Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater:effect of pH, sludge retention time (SRT), and acetate concentration in influent. Water Research,2003,37(15):3602-3611.
    Chua Thia, E., Paw, J.N., Guarin, F.Y. The environmental impact of aquaculture and the effects of pollution on coastal aquaculture development in Southeast Asia. Marine Pollution Bulletin,1989,20(7):335-343.
    Chuang, S.-H., Ouyang, C.-F. The biomass fractions of heterotrophs and phosphate-accumulating organisms in a nitrogen and phosphorus removal system. Water Research,2000,34(8): 2283-2290.
    Chuang, S.H., Ouyang, C.F., Yuang, H.C., You, S.J. Effects of SRT and do on nutrient removal in a combined as-biofilm process. Water Science and Technology,1997,36(12):19-27.
    Clerton, P., Troutaud, D., Verlhac, V., Gabaudan, J., Deschaux, P. Dietary vitamin E and rainbow trout (Oncorhynchus mykiss) phagocyte functions:effect on gut and on head kidney leucocytes. Fish and Shellfish Immunology,2001,11(1):1-13.
    Colinvaux, P., Barnett, B. Lindeman and the ecological efficiency of wolves. American Naturalist, 1979,12(2):707-718.
    Colt, J. Water quality requirements for reuse systems. Aquacultural Engineering,2006,34(3): 143-156.
    Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., Verstraete, W. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture,2007,270(1-4):1-14.
    Crab, R., Chielens, B., Wille, M., Bossier, P., Verstraete, W. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research,2010,41(4):559-567.
    Crab, R., Kochva, M., Verstraete, W., Avnimelech, Y. Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering,2009,40(3):105-112.
    Cuenco, M.L., Stickney, R.R., Grant, W.E. Fish bioenergetics and growth in aquaculture ponds:Ⅱ. Effects of interactions among, size, temperature, dissolved oxygen, unionized ammonia and food on growth of individual fish. Ecological Modelling,1985,27(3-4):191-206.
    de Barros, H.P., Valenti, W.C. Food intake of Macrobrachium rosenbergii during larval development. Aquaculture,2003,216(1-4):165-176.
    de Kreuk, M.K., Heijnen, J.J., van Loosdrecht, M.C.M. Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnology and Bioengineering,2005, 90(6):761-769.
    De Schryver, P. Poly-β-hydroxybutyrate as a microbial agent in aquaculture.2010, Ghent University.
    De Schryver, P., Crab, R., Defoirdt, T., Boon, N., Verstraete, W. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture,2008,277(3-4):125-137.
    De Schryver, P., Dierckens, K., Bahn Thi, Q.Q., Amalia, R., Marzorati, M., Bossier, P., Boon, N., Verstraete, W. Convergent dynamics of the juvenile European sea bass gut microbiota induced by poly-β-hydroxybutyrate. Environmental Microbiology,2010,13(4): 1042-1051.
    De Schryver, P., Sinha, A., Kunwar, P., Baruah, K., Verstraete, W., Boon, N., De Boeck, G., Bossier, P. Poly-β-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Applied Microbiology and Biotechnology,2010,86(5):1535-1541.
    De Schryver, P., Verstraete, W. Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors. Bioresource Technology, 2009,100(3):1162-1167.
    de Souza, D.M., Suita, S.M., Romano, L.A., Wasielesky, W., Ballester, E.L.C. Use of molasses as a carbon source during the nursery rearing of Farfantepenaeus brasiliensis (Latreille,1817) in a Biofloc technology system. Aquaculture Research,2012,12(10):225-230.
    Defoirdt, T., Boon, N., Sorgeloos, P., Verstraete, W., Bossier, P. Alternatives to antibiotics to control bacterial infections:luminescent vibriosis in aquaculture as an example. Trends in Biotechnology,2007a,25(10):472-479.
    Defoirdt, T., Halet, D., Vervaeren, H., Boon, N., Van de Wiele, T., Sorgeloos, P., Bossier, P., Verstraete, W. The bacterial storage compound poly-β-hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii. Environmental Microbiology,2007b,9(2): 445-452.
    Dias, J.M.L., Lemos, P.C., Serafim, L.S., Oliveira, C., Eiroa, M., Albuquerque, M.G.E., Ramos, A.M., Oliveira, R., Reis, M.A.M. Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures:from the substrate to the final product. Macromolecular Bioscience,2006,6(11):885-906.
    Ebeling, J.M., Timmons, M.B., Bisogni, J.J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture,2006,257(1-4):346-358.
    Eding, E.H., Kamstra, A., Verreth, J.A.J., Huisman, E.A., Klapwijk, A. Design and operation of nitrifying trickling filters in recirculating aquaculture:A review. Aquacultural Engineering, 2006,34(3):234-260.
    Eikebrokk, B. Design and performance of the BIOFISH water recirculation system. Aquacultural Engineering,1990,9(4):285-294.
    Emerenciano, M., Ballester, E.L.C., Cavalli, R.O., Wasielesky, W. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille,1817). Aquaculture Research,2012,43(3): 447-457.
    FAO. State of World Fisheries and Aquaculture. Rome.2005, Flemish government.
    Fontenot, Q., Bonvillain, C., Kilgen, M., Boopathy, R. Effects of temperature, salinity, and carbon: nitrogen ratio on sequencing batch reactor treating shrimp aquaculture wastewater. Bioresource Technology,2007,98(9):1700-1703.
    Fu, D., Yu, X., Wang, F. The effects of compound microorganisms on the growth and water quality in carps. Feed Research,2005,8(22):43-45.
    Furuya, W.M., Pezzato, L.E., Barros, M.M., Pezzato, A.C., Furuya, V.R.B., Miranda, E.C. Use of ideal protein concept for precision formulation of amino acid levels in fish-meal-free diets for juvenile Nile tilapia (Oreochromis niloticus L.). Aquaculture Research,2004,35(12): 1110-1116.
    Gasol, J.M., Zweifel, U.L., Peters, F., Fuhrman, J.A., Hagstrom, A. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Applied and environmental microbiology,2005,65(10):4475-4483.
    Godoy, L., Odebrecht, C., Ballester, E., Martins, T., Wasielesky, W., Jr. Effect of diatom supplementation during the nursery rearing of Litopenaeus vannamei (Boone,1931) in a heterotrophic culture system. Aquaculture International,2012,20(3):559-569.
    Gopal, B. Natural and constructed wetlands for wastewater treatement:Potentials and problems. Water Science and Technology,1999,40(3):27-35.
    Graber, A., Junge, R. Aquaponic Systems:Nutrient recycling from fish wastewater by vegetable production. Desalination,2009,246(1-3):147-156.
    Guerrero, L., Omil, F., Mendez, R., Lema, J.M. Treatment of saline wastewaters from fish meal factories in an anaerobic filter under extreme ammonia concentrations. Bioresource Technology,1997,61(1):69-78.
    Gutierrez-Wing, M.T., Malone, R.F. Biological filters in aquaculture:Trends and research directions for freshwater and marine applications. Aquacultural Engineering,2006,34(3): 163-171.
    Hamada K, K.T., Torrico V, et al. Comparison of nutrient removal efficiency between pre-and post-denitrification wastewater treatments. Water Science and Technology,2006,53(9): 169-175.
    Hamlin, H.J. Nitrate toxicity in Siberian sturgeon (Acipenser baeri). Aquaculture,2006,253(1-4): 688-693.
    Hargreaves, J.A. Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering,2006,34(3):344-363.
    Haywood, G.W.. Anderson, A.J., Dawes. E.A. The importance of PHB-synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiology Letters,1989,57(1):1-6.
    Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M.C., Marais, G.v.R., Van Loosdrecht, M.C.M. Activated sludge model No.2D, ASM2D. Water Science and Technology,1999, 39(1):165-182.
    Holden, A.V. Water quality criteria for freshwater fish:for United Nations Food and Agriculture Organisation. Aquaculture,1981,24(2):371-372.
    Hopkins, J.S., Hamilton, R.D., Sandier. P.A., Browdy, C.L., Stokes, A.D. Effect of Water Exchange Rate on Production, Water Quality, Effluent Characteristics and Nitrogen Budgets of Intensive Shrimp Ponds. Journal of the World Aquaculture Society,1993, 24(3):304-320.
    Hu, J.Y., Ong, S.L., Ng, W.J., Lu, F., Fan, X.J. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors. Water Research,2003,37(14):3463-3471.
    Huang, X., Gui, P., Qian, Y. Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor. Process Biochemistry,2001,36(10):1001-1006.
    Johnson, K., Kleerebezem, R., van Loosdrecht, M.C.M. Influence of the C/N ratio on the performance of polyhydroxybutyrate (PHB) producing sequencing batch reactors at short SRTs. Water Research,2010,44(7):2141-2152.
    Kivaisi, A.K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries:a review. Ecological Engineering,2001,16(4):545-560.
    Klas, S., Mozes, N., Lahav, O. Development of a single-sludge denitrification method for nitrate removal from RAS effluents:Lab-scale results vs. model prediction. Aquaculture,2006, 259(1-4):342-353.
    KM, F., M, H., S, N. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquatic Microbial Ecology,1996,10(1):15-27.
    Knoesche, R., Tscheu, E. Das Belebtschlammverfahren zurReinigung des Abwassers aus Fischzuchtanlagen. Z. Binnenfischerei DDR,1974,21(3):16-23.
    Kreuzinger, N., Clara, M., Strenn, B., Kroiss, H. Relevance of the sludge retention time (SRT) as design criteria for wastewater treatment plants for the removal of endocrine disruptors and pharmaceuticals from wastewater. Water science and technology:a journal of the International Association on Water Pollution Research,2004,50(5):149-156.
    Krishna, C., Van Loosdrecht, M.C.M. Effect of temperature on storage polymers and settleability of activated sludge. Water Research,1999,33(10):2374-2382.
    Kuba, T., Murnleitner, E., van Loosdrecht, M.C.M., Heijnen, J.J. A metabolic model for biological phosphorus removal by denitrifying organisms. Biotechnology and Bioengineering, 1996a,52(6):685-695.
    Kuba, T., van Loosdrecht, M.C.M., Heijnen, J.J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Research,1996b,30(7):1702-1710.
    Kuhn, D.D., Boardman, G.D., Craig, S.R., Flick, G.J., McLean, E. Use of Microbial Flocs Generated from Tilapia Effluent as a Nutritional Supplement for Shrimp, Litopenaeus vannamei, in Recirculating Aquaculture Systems. Journal of the World Aquaculture Society,2008,39(1):72-82.
    Kuhn, D.D., Boardman, G.D., Lawrence, A.L., Marsh, L., Flick Jr, G.J. Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture, 2009,296(1-2):51-57.
    Kuhn, D.D., Lawrence, A.L., Boardman, G.D., Patnaik, S., Marsh, L., Flick Jr, G.J. Evaluation of two types of bioflocs derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture,2010,303(1-4):28-33.
    Kulikowska, D., Klimiuk, E., Drzewicki, A. BOD5 and COD removal and sludge production in SBR working with or without anoxic phase. Bioresource Technology,2007,98(7): 1426-1432.
    Lee, D.S., Jeon, C.O., Park, J.M. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system. Water Research,2001,35(16): 3968-3976.
    Li, J., Lu, H., Zhu, J., Wang, Y., Li, X. Aquatic products processing industry in China:Challenges and outlook. Trends in Food Science and Technology,2001,20(2):73-77.
    Lim, J., Kim, T., Hwang, S. Treatment of fish-processing wastewater by co-culture of Candida rugopelliculosa and Brachionus plicatilis. Water Research,2003,37(9):2228-2232.
    Lin, Y.-F., Jing, S.-R., Lee, D.-Y. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture. Environmental Pollution,2003,123(1):107-113.
    Lin, Y.-F.. Jing, S.-R., Lee, D.-Y, Wang, T.-W. Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture,2002,209(1-4):169-184.
    Ling, J., Chen, S. Impact of organic carbon on nitrification performance of different biofilters. Aquacultural Engineering,2005,33(2):150-162.
    Liu, Y, De Schryver, P., Van Delsen, B., Maignien, L.. Boon, N., Sorgeloos, P., Verstraete, W., Bossier, P., Defoirdt, T. PHB-degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis. FEMS Microbiology Ecology,2010,74(1):196-204.
    Liu, Y., Fang, H.H.P. Influences of Extracellular Polymeric Substances (EPS) on Flocculation, Settling, and Dewatering of Activated Sludge. Critical Reviews in Environmental Science and Technology,2003,33(3):237-273.
    Liu, Y., Liu, Q.-S. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotechnology Advances,2006,24(1):115-127.
    Lotz, J.M. Viruses, biosecurity and specific pathogen-free stocks in shrimp aquaculture. World Journal of Microbiology and Biotechnology,1997,13(4):405-413.
    Lu, L., Tan, H., Luo, G., Liang, W. The effects of Bacillus subtilis on nitrogen recycling from aquaculture solid waste using heterotrophic nitrogen assimilation in sequencing batch reactors. Bioresource Technology,2012,124(0):180-185.
    Luo, G.-z., Avnimelech, Y., Pan, Y.-f., Tan, H.-x. Inorganic nitrogen dynamics in sequencing batch reactors using biofloc technology to treat aquaculture sludge. Aquacultural Engineering, 2013,52(0):73-79.
    Mahmoud, N., Zeeman, G., Gijzen, H., Lettinga, G. Anaerobic stabilisation and conversion of biopolymers in primary sludge-effect of temperature and sludge retention time. Water Research,2004,38(4):983-991.
    Mallick, N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal:A review. BioMetals,2002,15(4):377-390.
    Malone, R.F., Pfeiffer, T.J. Rating fixed film nitrifying biofilters used in recirculating aquaculture systems. Aquacultural Engineering,2006,34(3):389-402.
    Martin, A.M., Padila, R.B., Ros de Ursinos, J.A.F. Anaerobic treatment of fish flour wastewater. Journal of Environmental Science and Health. Part A:Environmental Science and Engineering and Toxicology,1993,28(8):1827-1846.
    McMurtry, M.R., Sanders, D.C., Cure, J.D., Hodson, R.G. Effects of biofilter/culture tank volume ratios on productivity of a recirculating fish/vegetable co-culture system. Journal of applied aquaculture,1997a,7(4):33-51.
    McMurtry, M.R., Sanders, D.C., Cure, J.D., Hodson, R.G., Haning, B.C., Amand, E.C.S. Efficiency of water use of an integrated fish/vegetable co-culture system. Journal of the World Aquaculture Society,1997b,28(4):420-428.
    Mehner, T., Benndorf, J., Kasprzak, P., Koschel, R. Biomanipulation of lake ecosystems: successful applications and expanding complexity in the underlying science. Freshwater Biology,2002,47(12):2453-2465.
    Mikkelsen, L.H., Gotfredsen, A.K., Agerbxk, M.L., Nielsen, P.H., Keiding, K. Effects of colloidal stability on clarification and dewatering of activated sludge. Water Science and Technology,1996,34(3-4):449-457.
    Mino, T., van Loosdrecht, M.C.M., Heijnen, J.J. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Research,1998,32(11):3193-3207.
    Morgenroth, E., Sherden, T., Van Loosdrecht, M.C.M., Heijnen, J.J., Wilderer, P.A. Aerobic granular sludge in a sequencing batch reactor. Water Research,1997,31 (12):3191-3194.
    Mosquera-Corral, A., Sanchez, M., Campos, J.L., Mendez, R., Lema. J.M. Simultaneous methanogenesis and denitrification of pretreated effluents from a fish canning industry. Water Research,2001,35(2):411-418.
    Mshandete, A., Kivaisi, A., Rubindamayugi, M., Mattiasson, B. Anaerobic batch co-digestion of sisal pulp and fish wastes. Bioresource Technology,2004,95(1):19-24.
    Murnleitner, E., Kuba, T.. van Loosdrecht, M.C.M., Heijnen, J.J. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal. Biotechnology and Bioengineering,1997,54(5):434-450.
    Najdegerami, E.H., Tran, T.N., Defoirdt, T., Marzorati, M., Sorgeloos, P., Boon, N., Bossier, P. Effects of poly-β-hydroxybutyrate (PHB) on Siberian sturgeon (Acipenser baerii) fingerlings performance and its gastrointestinal tract microbial community. FEMS Microbiology Ecology,2012,79(1):25-33.
    Naylor, R.L., Goldburg, R.J., Primavera, J.H., Kautsky, N., Beveridge. M.C., Clay, J., Folke, C., Lubchenco, J., Mooney, H., Troell, M. Effect of aquaculture on world fish supplies. Nature,2000,405(6790):1017-1024.
    Nhan, D.T., Wille, M., De Schryver, P., Defoirdt, T., Bossier, P., Sorgeloos, P. The effect of poly β-hydroxybutyrate on larviculture of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture,2010,302(1-2):76-81.
    Nogami, K., Hamasaki, K., Maeda, M., Hirayama, K. Biocontrol method in aquaculture for rearing the swimming crab larvae Portunus trituberculatus. Hydrobiologia,1997,358(1): 291-295.
    Otoshi, C.A., Arce, S.M., Moss, S.M. Growth and reproductive performance of broodstock shrimp reared in a biosecure recirculating aquaculture system versus a flow-through pond. Aquacultural Engineering,2003,29(3-4):93-107.
    Paez-Osuna, F. The environmental impact of shrimp aquaculture:a global perspective. Environmental Pollution,2001,112(2):229-231.
    Paez-Osuna, F., Guerrero-Galvan, S.R., Ruiz-Fernandez, A.C. The environmental impact of shrimp aquaculture and the coastal pollution in Mexico. Marine Pollution Bulletin,1998, 36(1):65-75.
    Panigrahi, A., Azad, I.S. Microbial intervention for better fish health in aquaculture:the Indian scenario. Fish Physiology and Biochemistry,2007,33(4):429-440.
    Pedersen, L.-F., Pedersen, P.B., Sortkjaer, O. Temperature-dependent and surface specific formaldehyde degradation in submerged biofilters. Aquacultural Engineering,2007,36(2): 127-136.
    Piedrahita, R.H. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture,2003,226(1-4):35-44.
    Portz, D., Woodley, C., Cech, J. Stress-associated impacts of short-term holding on fishes. Reviews in Fish Biology and Fisheries,2006,16(2):125-170.
    Pufial, A., Lema, J.M. Anaerobic treatment of wastewater from a fish-canning factory in a full-scale upflow Anaerobic Sludge Blanket (UASB) reactor. Water Science and Technology,1999,40(8):57-62.
    Queiroz, M.I., Homes, M.O., da Silva-Manetti, A.G., Jacob-Lopes, E. Single-cell oil production by cyanobacterium Aphanothece microscopica Nageli cultivated heterotrophically in fish processing wastewater. Applied Energy,2011,88(10):3438-3443.
    Rakocy, J., Hargreaves, J. Integration of vegetable hydroponics with fish culture:a review. American society of agricultural engineers, USA.2000,23(2):112-136.
    Rakocy, J.E. Aquaponics-Integrating Fish and Plant Culture, in:Aquaculture Production Systems, Wiley-Blackwell,2012, p344-386.
    Randall, D.J., Tsui, T.K.N. Ammonia toxicity in fish. Marine Pollution Bulletin,2002,45(1-12): 17-23.
    Recht, L., Zarka, A., Boussiba, S. Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Applied Microbiology and Biotechnology,2012,94(6):1495-1503.
    Rengpipat, S., Rueangruklikhit, T., Piyatiratitivorakul, S. Evaluations of lactic acid bacteria as probiotics for juvenile seabass Lates calcarifer. Aquaculture Research,2008,39(2): 134-143.
    Resley, M.J., Webb Jr, K.A., Holt, G.J. Growth and survival of juvenile cobia, Rachycentron canadum, at different salinities in a recirculating aquaculture system. Aquaculture,2006, 253(1-4):398-407.
    Rodgers, M., Wu, G. Production of polyhydroxybutyrate by activated sludge performing enhanced biological phosphorus removal. Bioresource Technology,2010,101(3):1049-1053.
    Ruan, Y.-J., Zhu, L., Xu. X.-Y. Optimization of factors with C/N ratio and flocs biomass concentration in simulated aquaculture bio-flocs systems by response surface methodology. Environmental Technology,2012,33(8):907-914.
    Samuelsen, O.B., Solheim, E., Lunestad, B.T. Fate and microbiological effects of furazolidone in a marine aquaculture sediment. Science of The Total Environment,1991,108(3):275-:283.
    Sastry, B.N., DeLosReyes Jr, A.A., Rusch, K.A., Malone, R.F. Nitrification performance of a bubble-washed bead filter for combined solids removal and biological filtration in a recirculating aquaculture system. Aquacultural Engineering,1999,19(2):105-117.
    Schneider, O., Sereti, V., Eding. E., Verreth, J. Analysis of nutrient flows in integrated intensive aquaculture systems. Aquacultural Engineering,2005,32(3):379-401.
    Schneider, O., Sereti, V., Eding, E.H., Verreth, J.A.J. Molasses as C source for heterotrophic bacteria production on solid fish waste. Aquaculture,2006a,261(4):1239-1248.
    Schneider, O., Sereti, V., Machiels, M.A.M., Eding, E.H., Verreth, J.A.J. The potential of producing heterotrophic bacteria biomass on aquaculture waste. Water Research,2006b, 40(14):2684-2694.
    Schneider, O., Sereti, V., Eding, E.H., Verreth, J.A.J. Heterotrophic bacterial production on solid fish waste:TAN and nitrate as nitrogen source under practical RAS conditions. Bioresource Technology,2007a,98(10):1924-1930.
    Schneider, O., Sereti, V., Eding, E.H., Verreth, J.A.J., Klapwijk, B. Kinetics, design and biomass production of a bacteria reactor treating RAS effluent streams. Aquacultural Engineering, 2007b,36(1):24-35.
    Schreier, H.J., Mirzoyan, N., Saito, K Microbial diversity of biological filters in recirculating aquaculture systems. Current Opinion in Biotechnology,2010,21(3):318-325.
    Schryver, P., Sinha, A., Kunwar, P., Baruah, K., Verstraete, W., Boon, N., Boeck, G., Bossier, P. Poly-β-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Applied Microbiology and Biotechnology,2010,86(5):1535-1541.
    Schwitzguebel, J.-P., Wang, H. Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environmental Science and Pollution Research,2007, 14(7):452-462.
    Sealey, W.M., Gatlin, D.M. Dietary Vitamin C and Vitamin E Interact to Influence Growth and Tissue Composition of Juvenile Hybrid Striped Bass (Morone chrysops ♀×M. saxatilis ♂) but Have Limited Effects on Immune Responses. The Journal of Nutrition,2002, 132(4):748-755.
    Sevastianov, V.I., Perova, N.V., Shishatskaya, E.I., Kalacheva, G.S., Volova, T.G. Production of purified polyhydroxyalkanoates (PHAs) for applications in contact with blood. Journal of Biomaterials Science, Polymer Edition,2003,14(10):1029-1042.
    Shanker, K.M., Mohan, C.V. The potential of biofilm in aquaculture. World aquaculture,2001, 32(2):62-63.
    Shengquan, Y., Hui, W., Chaohua, Z., Xiaoming, Q. Study of the hydrolytic acidification-SBR process in aquatic products processing wastewater treatment. Desalination,2008, 222(1-3):318-322.
    Sierp, M., Qin, J., Recknagel, F. Biomanipulation:a review of biological control measures in eutrophic waters and the potential for Murray cod to promote water quality in temperate Australia. Reviews in Fish Biology and Fisheries,2009,19(2):143-165.
    Sigler, J.W., Bjornn, T.C., Everest, F.H. Effects of chronic turbidity on density and growth of steelheads and coho salmon. Transactions of the American Fisheries Society,1984,113(2): 142-150.
    Singer, A., Parnes, S., Gross, A., Sagi, A., Brenner, A. A novel approach to denitrification processes in a zero-discharge recirculating system for small-scale urban aquaculture. Aquacultural Engineering,2008,39(2-3):72-77.
    Smolders, G.J.F., van der Meij, J., van Loosdrecht, M.C.M., Heijnen, J.J. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process. Biotechnology and Bioengineering,1994,44(7):837-848.
    Smolders, G.J.F., van Loosdrecht, M.C.M., Heijnen, J.J. A metabolic model for the biological phosphorus removal process. Water Science and Technology,1995,31(2):79-93.
    Su, J.-J., Zhou, Q., Zhang, H.-Y., Li, Y.-Q., Huang, X.-Q., Xu, Y.-Q. Medium optimization for phenazine-1-carboxylic acid production by a gacA qscR double mutant of Pseudomonas sp. M18 using response surface methodology. Bioresource Technology,2010,101(11): 4089-4095.
    Suhr, K.I., Pedersen, P.B. Nitrification in moving bed and fixed bed biofilters treating effluent water from a large commercial outdoor rainbow trout RAS. Aquacultural Engineering, 2010,42(1):31-37.
    Sui, L., Cai, J., Sun, H., Wille, M., Bossier, P. Effect of poly-p-hydroxybutyrate on Chinese mitten crab, Eriocheir sinensis, larvae challenged with pathogenic Vibrio anguillarum. Journal of Fish Diseases,2012a,35(5):359-364.
    Sui, L., Liu, Y., Sun, H., Wille, M., Bossier, P.. De Schryver, P. The effect of poly-β-hydroxybutyrate on the performance of Chinese mitten crab (Eriocheir sinensis Milne-Edwards) zoea larvae. Aquaculture Research.2012b,25(2):122-129.
    Takacs, I., Fleit, E. Modelling of the micromorphology of the activated sludge floc:Low DO, low F/M bulking. Water Science and Technology,1995,31(2):235-243.
    Tay, Yang, Liu. Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors. Applied Microbiology and Biotechnology,2002,59(2):332-337.
    Third, K.A., Newland, M., Cord-Ruwisch, R. The effect of dissolved oxygen on PHB accumulation in activated sludge cultures. Biotechnology and Bioengineering,2003, 82(2):238-250.
    Thompson, F.L., Abreu, PC., Wasielesky, W. Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture,2002,203(3-4):263-278.
    Tong, J., Chen, Y. Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation. Environmental Science & Technology,2007,41(20):7126-7130.
    Torres-Beristain, B., Verdegem, M., Kerepeczki, E., Verreth, J. Decomposition of high protein aquaculture feed under variable oxic conditions. Water Research,2006,40(7):1341-1350.
    Tsuneda, S., Ohno, T., Soejima, K., Hirata, A. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor. Biochemical Engineering Journal,2006,27(3):191-196.
    Urbain, V., Block, J.C., Manem, J. Bioflocculation in activated sludge:an analytic approach. Water Research,1993,27(5):829-838.
    Van Ginneken, V.J.T., Van Eersel, R., Balm, P., Nieveen, M., Van Den Thillart, G. Tilapia are able to withstand long-term exposure to low environmental pH, judged by their energy status, ionic balance and plasma cortisol. Journal of Fish Biology,1997,51(4):795-806.
    van Rijn, J. The potential for integrated biological treatment systems in recirculating fish culture-A review. Aquaculture,1996,139(3-4):181-201.
    van Rijn, J., Tal, Y., Schreier, H.J. Denitrification in recirculating systems:Theory and applications. Aquacultural Engineering,2006,34(3):364-376.
    Velasco, M., Lawrence, A.L., Neill, W.H. Development of a static-water ecoassay with microcosm tanks for postlarval Penaeus vannamei. Aquaculture,1998,161(1-4):79-87.
    Vidal, G., Aspe, E., Marti, M.C., Roeckel, M. Treatment of recycled wastewaters from fishmeal factory by an anaerobic filter. Biotechnology Letters,1997,19(2):117-122.
    Vinatea, L., Galvez, A.O., Browdy, C.L., Stokes, A., Venero, J., Haveman, J., Lewis, B.L., Lawson, A., Shuler, A., Leffler, J.W. Photosynthesis, water respiration and growth performance of Litopenaeus vannamei in a super-intensive raceway culture with zero water exchange: Interaction of water quality variables. Aquacultural Engineering,2010,42(1):17-24.
    Vincent, W.F., Silvester, W.B. Growth of blue-green algae in the Manukau (New Zealand) oxidation ponds-I. Growth potential of oxidation pond water and comparative optima for blue-green and green algal growth. Water Research,1979,13(8):711-716.
    Vymazal, J. Removal of nutrients in various types of constructed wetlands. Science of The Total Environment,2007,380(1-3):48-65.
    Wang, J.-K. Managing shrimp pond water to reduce discharge problems. Aquacultural Engineering,1990,9(1):61-73.
    Wang, L.K., Li, Y. Sequencing Batch Reactors, in:Biological Treatment Processes, (Eds.) L.K. Wang, N.C. Pereira, Y.-T. Hung, Vol.8, Humana Press,2009, pp.459-511.
    Wang, Y.-B., Li, J.-R., Lin, J. Probiotics in aquaculture:Challenges and outlook. Aquaculture, 2008,281(1-4):1-4.
    Wasielesky Jr, W., Atwood, H., Stokes, A., Browdy, C.L. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture.2006,258(1-4):396-403.
    Wilen, B.-M.. Balmer, P. The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge flocs. Water Research,1999,33(2):391-400.
    Wilen, B.-M., Lund Nielsen, J., Keiding, K., Nielsen, P.H. Influence of microbial activity on the stability of activated sludge flocs. Colloids and Surfaces B:Biointerfaces.2000,18(2): 145-156.
    Williams, M.J., Bell, J.D., Gupta, M.V., Dey, M., Ahmed, M., Prein, M., Child, S., Gardiner. PR., Brummett, R., Jamu, D. Responsible aquaculture can aid food problems. Nature,2000, 406(6797):673-673.
    Xu, W.-J., Pan. L.-Q. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture,2012a,356-357(0):147-152.
    Xu, W.J., Pan, L.Q., Sun, X.H., Huang, J. Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero-water exchange culture tanks. Aquaculture Research,2012b,23(6):166-172.
    Xu, W.-J., Pan, L.-Q. Dietary protein level and C/N ratio manipulation in zero-exchange culture of Litopenaeus vannamei:Evaluation of inorganic nitrogen control, biofloc composition and shrimp performance. Aquaculture Research,2013,2(11):179-184.
    Zhao, P., Huang, J., Wang, X.-H., Song, X.-L., Yang, C.-H., Zhang, X.-G., Wang, G.-C. The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicus. Aquaculture,2012 354-355(0):97-106.
    Zheng, Y.-M., Yu, H.-Q., Liu, S.-J., Liu, X.-Z. Formation and instability of aerobic granules under high organic loading conditions. Chemosphere,2006,63(10):1791-1800.
    Zhou, Y., Pijuan, M., Zeng, R.J., Lu, H., Yuan, Z. Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)? Water Research,2008,42(10-11): 2361-2368.
    万红,宋碧玉.序批式生物膜法处理水产养殖废水的研究.水生态学杂志,2008,(06):81-84.
    阮赟杰,谭洪新,罗国芝,王晨尧,车轩,孙大川.硫自养反硝化对含盐水体脱氮及其动力学模型.农业工程学报,2009,25(2):72-79.
    岳维忠,黄小平,黄良民,谭烨辉,殷健强.大型藻类净化养殖水体的初步研究.海洋环境科学,2004,11(01):135-140.
    胡海燕,卢继武,杨红生.大型藻类对海水鱼类养殖水体的生态调控.海洋科学,2003,12(02):19-21.
    夏耘,郁二蒙,谢骏,余德光,王广军,李志斐,王海英,龚望宝.基于PCR-DGGE技术分析生物絮团的细菌群落结构.水产学报,2012,36(010):1563-1571.
    崔福义,林涛,马放,张立秋.水体治理中鲢鳙生物操纵作用的实验研究.南京理工大学学报(自然科学版),2004,12(06):668-672.
    农业部.中国渔业生态环境状况公报,2012.
    刘春光,邱金泉,王雯,庄源益.富营养化湖泊治理中的生物操纵理论.农业环境科学学报,2004,56(01):198-201.
    刘晃,徐皓,蒋励.我国水产品池塘养殖氨排放总量的估算.全国畜禽和水产养殖污染监测与控制治理技术交流研讨会,2008,中国广东深圳.
    刘敏,徐敏娴,许迪亮,蒲红宇.鲢、鳙非经典生物操纵作用的研究进展与应用现状.水生态学杂志,2010,23(03):99-103.
    刘晶,秦玉洁,丘焱伦,潘伟斌.生物操纵理论与技术在富营养化湖泊治理中的应用.生态科学2005,44(02):188-192.
    刘增胜,柳正,农业部渔业局.中国渔业年鉴,2009,中国农业出版社.
    刘兴国,刘兆普,徐皓,顾兆俊,朱浩.生态工程化循环水池塘养殖系统.农业工程学报,2010,38(11):237-244.
    刘锐,陈洁.我国水产品加工业发展现状及潜力分析.农业展望,2010,6(04):33-35.
    卢振彬,蔡清海,张学敏.厦门同安湾水产养殖对海域污染的评估.南方水产,2007,3(1):88-95.
    张导,张琰,宋学宏,朱江.苏州市环太湖农业面源污染调查及控制对策.农业环境与发展,2009,26(6):167-173.
    环保部.环境统计年报,2008.
    蒋进元,宋宏宾,周岳溪,崔俊涛,窦立军.三级生物膜工艺处理水产养殖循环水,环境科学研究,2010,29(09):1210-1215.
    陈同斌,黄启飞,高定,郑玉琪,吴吉夫.中国城市污泥的重金属含量及其变化趋势.环境科学学报,2003,23(5):561-569.
    陈军,徐皓,倪琦,刘晃.我国工厂化循环水养殖发展研究报告.渔业现代化,2009,36(4):1-7
    黄欢,汪小泉,韦肖杭,何晓云,张敏,姚伟忠.杭嘉湖地区淡水水产养殖污染物排放总量的研究.中国环境监测,2007,23(2):95-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700