用户名: 密码: 验证码:
车用有机朗肯底循环系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
降低二氧化碳排放是我国目前节能工作中亟需解决的关键问题,提高车用内燃机的燃料热效率是一个有效的解决途径。基于有机朗肯循环的车用内燃机余热利用是提高燃料热效率的有效途径,然而在实际应用中,还有许多理论和工程问题需要解决。本文针对采用有机朗肯循环的车用内燃机余热利用,从有机工质的选择、有机朗肯循环系统结构设计、有机朗肯循环与车用内燃机的匹配、蒸发器的性能分析等几个方面进行了理论分析。随后,采用本单位研发的单螺杆膨胀机,设计了有机朗肯循环的实验系统,并进行了初步的实验研究。本文的主要研究工作如下:
     针对车用有机朗肯循环的工作条件,对比分析了九种高沸点单组份干工质的热力学性能。考虑的工质具体包括:R113、R141b、R123、R245ca、R11、R245fa、R236ea、R114、R600(丁烷)。理论分析的结果表明九种有机工质的热效率相差不大,R11和R141b稍高于其它工质,但是随着蒸发压力和冷凝温度的变化,各有机工质的可行工作区域有很大差别,R11、R141b、R123、R245fa和R245ca的可行工作区域优于其它有机工质。在此基础上,结合工质的环保和安全性能评估,认为R245fa是九种有机工质中最适合于车用有机朗肯循环使用的工质。
     在考虑车辆上的实际工作条件下,从理论上分析了简单有机朗肯循环、带回热器的有机朗肯循环、带开式回热器的抽气回热式有机朗肯循环、带闭式回热器的抽气回热式有机朗肯循环、带再热器的有机朗肯循环等五种不同结构的有机朗肯循环系统的工作特性。采用遗传算法,构建了每一种有机朗肯循环的优化数学模型,分析了膨胀机入口压力、冷凝器出口温度、有机工质过热度、膨胀机等熵效率等工作参数对循环最大热效率的影响。优化分析的结果表明采用带回热器的有机朗肯循环具有较高的热效率,同时具有较低的损率,适合于车用有机朗肯循环使用。
     利用车用汽油机性能试验的数据,分析了其余热能随内燃机转速和内燃机输出转矩变化的分布特性。在此基础上,设计了针对车用汽油机的双有机朗肯循环来实现同时回收排气系统余热能和冷却系统余热能,采用R245fa为工质的高温有机朗肯循环来回收排气余热能,采用R134a为工质的低温有机朗肯循环来回收冷却系统余热能和高温有机朗肯循环的残余热能。理论分析的结果表明:在内燃机有效热效率的高峰区域内,组合系统(包含内燃机的动力循环和双有机朗肯循环)的输出功率提高量较小,为14~16%;在内燃机小负荷区域内,组合系统的输出功率提高量最大,为30~50%。在内燃机的整个工作范围内,组合系统的有效热效率提高了3到6个百分点。
     利用车用柴油机性能试验的数据,分析了其余热能的分布特性,设计了车用柴油机用双有机朗肯循环来实现同时回收排气系统和冷却系统余热能。采用R245fa为工质的高温有机朗肯循环来回收排气系统余热能,采用R134a为工质的低温有机朗肯循环来回收压气机出口的进气中冷余热能、冷却系统余热能和高温有机朗肯循环的残余热能。理论分析的结果表明:在内燃机有效热效率的高峰区域内,组合系统的输出功率提高量较小,为14~16%,在内燃机小负荷和高转速区域内,组合系统的输出功率提高量最大,为38~43%。在内燃机的整个工作范围内,组合系统的有效燃油消耗率也大幅下降。
     针对车用柴油机排气余热能利用,设计了一种能承受高温高压的管翅式蒸发器。基于设计的蒸发器几何尺寸,构建了分析蒸发器传热性能的数学模型,编写了蒸发器传热性能分析软件。针对R425柴油机的排气余热回收,分析的结果表明:蒸发器出口的排气温度随着内燃机功率的升高而增加;尽管蒸发器管侧有机工质的对流传热系数远大于壳侧排气的对流传热系数,总传热系数仅比排气侧稍高;预热区的传热量最大,过热区的最小,相应地,预热区的传热面积约占总传热面积的一半,而过热区的传热面积稍高于两相区。蒸发器的传热面积必须根据内燃机的常用工况来优化选择。
     针对内燃机排气余热回收,搭建了有机朗肯循环系统性能实验平台,采用自主开发的管翅式蒸发器和10kW单螺杆膨胀机,开展了初步的实验研究工作。
Reducing CO2emission is a critical issue for Chinese energy conservation policy.Improving the thermal efficiency of internal combustion engine is an effective solution.At present, using an organic Rankine cycle (ORC) to recover engine waste heat isconsidered the most feasible technology. However, it is found that there are manytheoretical and practical problems required to be solved. In this thesis, waste heatrecovery of internal combustion engine has been investigated, which included selectionof the working fluid, system structure design of organic Rankine cycle, application oforganic Rankine cycle for automotive engine. An experimental platform of organicRankine cycle was established with a finned-tube evaporator and a single screwexpander, and then a preliminary experiment was conducted. These efforts provide somebasic experiences and data for the subsequent theoretical investigation and the practicalapplication on vehicle. The main research works are summarized as follows:
     Taking into account the operation conditions of organic Rankine cycle assembled ona running vehicle, the thermodynamic performances of nine pure working fluids withhigh normal boiling points, which were R113, R141b, R123, R245ca, R11, R245fa,R236ea, R114, R600(butane), were compared and analyzed. The results indicate that thethermal efficiencies are very close among these working fluids and the efficiencies ofR11and R141b are a bit higher than that of others. However, when the evaporationpressure and the condensation temperature vary, the feasible working regions of thesenine working fluids are quite different. The feasible working regions of R11, R141b,R123, R245fa, and R245ca are better than others. Subsequently, the secure andenvironmental properties were evaluated. As a result, R245fa is the most suitable one forengine waste heat recovery.
     The operating characteristics of five various ORCs, which included a simple ORC,an ORC with an internal heat exchanger (IHE), an ORC with an open feed organic fluidheater (OFOH), an ORC with a closed feed organic fluid heater (CFOH), and an ORCwith a reheater, were analyzed theoretically for engine waste heat recovery. Theoptimization mathematical model for each ORC was obtained using a genetic algorithm.The influences of the expander inlet pressure, the condenser outlet temperature, theworking fluid superheated temperature, and the expander isentropic efficiency on themaximum thermal efficiency were estimated. The results show that the ORC with anIHE has a higher thermal efficiency and a lower exergy destruction rates, and is the bestchoice for vehicular application.
     The performance MAP of a gasoline engine was measured on an engine test benchand the heat quantities wasted by the exhaust and coolant systems were obtained and compared within the engine’s entire operating region. Based on these data, thecharacteristics of a novel system combining a gasoline engine with a dual loop ORCwhich recovered the waste heat from both the exhaust and coolant systems was analyzed.A high temperature loop recovers the exhaust heat while a low temperature loop recoversboth the residual high temperature loop heat and the coolant heat. The workingparameters of a dual loop ORC were defined, and the performance of a combinedengine-ORC system was evaluated across this entire region. The results show that the netpower of the low temperature loop is higher than that of the high temperature loop, andthe relative output power improves by from14%to16%in the peak effective thermalefficiency region and from30%to50%in the small load region, and the absoluteeffective thermal efficiency increases by3~6%throughout the engine’s operating region.
     The performance MAP of a light-duty diesel engine was created using an engine testbench. The heat waste from the exhaust, the intake air, and the coolant were calculatedand compared throughout the engine’s entire operating region. Based on these data, thecharacteristic of a novel system combining a vehicular light-duty diesel engine with adual loop ORC, which recovered waste heat from the engine exhaust, intake air, andcoolant, was analyzed. A high temperature loop recovers the exhaust heat, whereas a lowtemperature loop recovers the residual heat from the high temperature loop and the wasteheat from both the intake air and the coolant. The working parameters of the dual loopORC were defined, and the performance of the combined engine–ORC system wasevaluated across this entire region. The results show that the net power of the lowtemperature loop is higher than that of the high temperature loop, and the relative outputpower improves from14%to16%in the peak effective thermal efficiency region andfrom38%to43%in the small load region. In addition, the brake specific fuelconsumption (bsfc) of the combined system decreases significantly throughout theengine’s operating region.
     A finned-tube evaporator was designed to recover the exhaust waste heat of a dieselengine, which could work under the high temperature and pressure conditions. Amathematical model of the evaporator was determined based on the detailed geometryand the specific ORC working conditions. Accordingly, a program was created toanalyze the evaporator performance as the diesel engine running through all of itsoperating regions defined by the engine speed and engine load. The results show that theexhaust temperature at the evaporator outlet increases with engine speed and engine load.Although the convective heat transfer coefficient of the organic working fluid issignificantly larger than that of the exhaust gas, the overall heat transfer coefficient isslightly greater than that of the exhaust gas. Furthermore, the heat transfer rate is thegreatest in the preheated zone and least in the superheated zone. Consequently, the heattransfer area for the preheated zone is nearly half of the total area. In addition, the area ofthe superheated zone is slightly greater than that of the two-phase zone. It is concluded that the heat transfer area for a finned tube evaporator should be selected carefully basedon the engine’s most typical operating region.
     The experimental platform of ORC system for engine exhaust heat recovery wasbuilt up using a10kW single screw expander and the designed finned-tube evaporator.Subsequently, a preliminary test and discussion were carried out.
引文
[1] http://baike.baidu.com/view/71190.htm.
    [2] http://kuaixun.stcn.com/content/2012-03/12/content_5007359.htm.
    [3] H. Hao, H. Wang, M. Ouyang. Fuel Conservation and GHG (Greenhouse gas) EmissionsMitigation Scenarios for China's Passenger Vehicle Fleet. Energy.2011,36:6520~6528.
    [4] H. Hao, H. Wang, M. Ouyang. Fuel Consumption and Life Cycle GHG Emissions byChina's On-road Trucks: Future Trends through2050and Evaluation of MitigationMeasures. Energy Policy.2012,43:244~251.
    [5]李庆峰,肖进,黄震.自由活塞式内燃发电机研究现状.小型内燃机与摩托车.2008,37(4):91~96.
    [6]程家瑜,苏文江.日本对21世纪前30年科技发展的预见——日本第七次技术预见调查研究报告之一.世界科学.2003,(4):58~60.
    [7] M. Rowe. An Overview of Thermoelectric Waste Heat Recovery Activities in Europe.Thermoelectrics Applications Workshop, San Diego, CA., USA,2009.
    [8] http://www.energy.gov/news/8506.htm
    [9] J.M. Calm, D.A. Didion. Trade-offs in Refrigerant Selections: Past, Present, and Future. IntJ Refrig.1998,21(4):308~321.
    [10]朱明善,王鑫.制冷剂的过去、现状和未来.制冷学报.2002,(1):14~20.
    [11]赵亮,王长悦,安江波.制冷剂的运用和发展趋势.内燃机与动力装置.2009,(6):84~108.
    [12] O. Badr, P.W. O’callaghan, S.D. Probert. Thermodynamic and Thermophysical Properties ofOrganic Working Fluids for Rankine-cycle Engines. Applied Energy.1985,19(1):1~40.
    [13] O. Badr, S.D. Probert, P.W. O’callaghan. Selecting a Working Fluid for a Rankine-cycleEngine. Applied Energy.1985,21(1):1~42.
    [14] B.F. Tchanche, G. Papadakis, G. Lambrinos, A. Frangoudakis. Fluid Selection for aLow-temperature Solar Organic Rankine Cycle. Applied Thermal Engineering.2009,29(11-12):2468~2476.
    [15]刘杰,陈江平,祁照岗.低温有机朗肯循环的热力学分析.化工学报.2010,61(S2):9~14.
    [16] J.P. Roy, M.K. Mishra, A. Misra. Parametric Optimization and Performance Analysis of aWaste Heat Recovery System Using Organic Rankine Cycle. Energy.2010,35:5049~5062.
    [17] J.P. Roy, M.K. Mishra, A. Misra. Performance Analysis of an Organic Rankine Cycle withSuperheating under Different Heat Source Temperature Conditions. Applied Energy.2011,88:2995~3004.
    [18] J.P. Roy, A. Misra. Parametric Optimization and Performance Analysis of a RegenerativeOrganic Rankine Cycle Using R-123for Waste Heat Recovery. Energy.2012,39:227~235.
    [19] T. Guo, H.X. Wang, S.J. Zhang. Selection of Working Fluids for a Novel Low-temperatureGeothermally-powered ORC Based Cogeneration System. Energy Conversion andManagement.2011,52:2384~2391.
    [20] D. Mikielewicz, J. Mikielewicz. A Thermodynamic Criterion for Selection of Working Fluidfor Subcritical and Supercritical Domestic Micro CHP. Applied Thermal Engineering.2010,30:2357~2362.
    [21] A. Schuster, S. Karellas, R. Aumann. Efficiency Optimization Potential in SupercriticalOrganic Rankine Cycles. Energy.2010,35:1033~1039.
    [22] C. He, C. Liu, H. Gao, H. Xie, Y. Li, S. Wu, J. Xu. The Optimal Evaporation Temperatureand Working Fluids for Subcritical Organic Rankine Cycle. Energy.2012,38:136~143.
    [23] C. Liu, C. He, H. Gao, X. Xu, J. Xu. The Optimal Evaporation Temperature of SubcriticalORC Based on Second Law Efficiency for Waste Heat Recovery. Entropy.2012,14:491~504.
    [24] P.J. Mago, L.M. Chamra, C. Somayaji. Performance Analysis of Different Working Fluidsfor Use in Organic Rankine Cycles. Proc. IMechE Part A: J. Power and Energy.2007,221(3):255~263.
    [25] A.A. Lakew, O. Bolland. Working Fluids for Low-temperature Heat Source. AppliedThermal Engineering.2010,30(10):1262~1268.
    [26] Z.Q. Wang, N.J. Zhou, J. Guo, X.Y. Wang. Fluid Selection and Parametric Optimization ofOrganic Rankine Cycle Using Low Temperature Waste Heat. Energy.2012,40:107~115.
    [27] B. Saleh, G. Koglbauer, M. Wendland, J. Fischer. Working Fluids for Low-temperatureOrganic Rankine Cycles. Energy.2007,32:1210~1221.
    [28]徐建,董奥,陶莉,于立军.利用低品位热能的有机物朗肯循环的工质选择.节能技术.2011,29(3):204~210.
    [29] S. Zhang, H. Wang, T. Guo. Performance Comparison and Parametric Optimization ofSubcritical Organic Rankine Cycle (ORC) and Transcritical Power Cycle System forLow-temperature Geothermal Power Generation. Applied Energy.2011,88:2740~2754.
    [30] H. Chen, D.Y. Goswami, E.K. Stefanakos. A Review of Thermodynamic Cycles andWorking Fluids for the Conversion of Low-grade Heat. Renewable and Sustainable EnergyReviews.2010,14:3059~3067.
    [31] T.C. Hung, T.Y. Shai, S.K. Wang. A Review of Organic Rankine Cycles (ORCs) for theRecovery of Low-grade Waste Heat. Energy.1997,22(7):661~667.
    [32] T.C. Hung, S.K. Wang, C.H. Kuo, B.S. Pei, K.F. Tsai. A Study of Organic Working Fluidson System Efficiency of an ORC Using Low-grade Energy Sources. Energy.2010,35(3):1403~1411.
    [33] G. Angelinoa, C. Invernizzi. Experimental Investigation on the Thermal Stability of SomeNew Zero ODP Refrigerants. International Journal of Refrigeration.2003,26:51~58.
    [34] The Montreal Protocol on Substances that Deplete the Ozone Layer. United NationsEnvironment Programme.2000.
    [35] Kyoto Protocol to the United Nations Framework Convention on Climate Change. UnitedNations.1998.
    [36] J.M. Calm. Toxicity Data to Determine Refrigerant Concentration Limits. ARTI ReportDOE/CE/23810-110. Air-Conditioning and Refrigeration Technology Institute.2000.
    [37] W.T. Tsai. An Overview of Environmental Hazards and Exposure Risk ofHydrofluorocarbons (HFCs). Chemosphere.2005,61:1539~1547.
    [38] D. Luo, R. Corey, R. Propper, J. Collins, A. Komorniczak, M. Davis, N. Berger, S. Luma.Comprehensive Environmental Impact Assessment of Exempt Volatile Organic Compoundsin California. Environmental Science and Policy.2011,14:585~593.
    [39] K.H. Kim, Z.H. Shon, H.T. Nguyen, E.C. Jeon. A Review of Major Chlorofluorocarbonsand Their Halocarbon Alternatives in the Air. Atmospheric Environment.2011,45:1369~1382.
    [40] N. Yamada, M.N.A. Mohamadb, T.T. Kien. Study on Thermal Efficiency of Low-toMedium-temperature Organic Rankine Cycles Using HFO–1234yf. Renewable Energy.2012,41:368~375.
    [41] R. Rajendran,许懿.美国制冷剂应用发展.制冷与空调.2010,10:152~155.
    [42]马一太,王伟.制冷剂的替代与延续技术.制冷学报.2010,31(5):11~23.
    [43]吴晓阳.氟利昂制冷剂的替代与发展探讨.宁波化工.2009,(2):9~11.
    [44] F. Heberle, D. Bruggemann. Exergy Based Fluid Selection for a Geothermal OrganicRankine Cycle for Combined Heat and Power Generation. Applied Thermal Engineering.2010,30:1326~1332.
    [45] M. Prei inger, F. Heberle, D. Bruggemann. Thermodynamic Analysis of Double-stageBiomass Fired Organic Rankine Cycle for Micro-cogeneration. Int. J. Energy Res.2012,36:944~952.
    [46] U. Drescher, D. Bruggemann. Fluid Selection for the Organic Rankine Cycle (ORC) inBiomass Power and Heat Plants. Applied Thermal Engineering.2007,27(1):223~228.
    [47] H. Liu, Y. Shao, J. Li. A Biomass-fired Micro-scale CHP System with Organic RankineCycle (ORC)–Thermodynamic Modelling Studies. Biomass and Bioenergy.2011,35:3985~3994.
    [48] I.H. Aljundi. Effect of Dry Hydrocarbons and Critical Point Temperature on the Efficienciesof Organic Rankine Cycle. Renewable Energy.2011,36:1196~1202.
    [49] N.B. Desai, S. Bandyopadhyay. Process Integration of Organic Rankine Cycle. Energy.2009,34:1674~1686.
    [50] R. Chacartegui, D. Sánchez, J.M. Mu oz, T. Sánchez. Alternative ORC Bottoming Cyclesfor Combined Cycle Power Plants. Applied Energy.2009,86:2162~2170.
    [51] R. Rayegan, Y.X. Tao. A Procedure to Select Working Fluids for Solar Organic RankineCycles (ORCs). Renewable Energy.2011,36:659~670.
    [52] T. Guo, H.X. Wang, S.J. Zhang. Fluids and Parameters Optimization for a NovelCogeneration System Driven by Low-temperature Geothermal Sources. Energy.2011,36:2639~2649.
    [53] N.A. Lai, M. Wendland, J. Fischer. Working Fluids for High-temperature Organic RankineCycles. Energy2011,36:199~211.
    [54] C. Invernizzi, P. Iora, P. Silva. Bottoming Micro-Rankine Cycles for Micro-gas Turbines.Applied Thermal Engineering.2007,27(1):100~110.
    [55] F.J. Fernández, M.M. Prieto, I. Suárez. Thermodynamic Analysis of High-temperatureRegenerative Organic Rankine Cycles Using Siloxanes as Working Fluids. Energy.2011,36:5239~5249.
    [56] L. Feng, W. Gao, H. Qin, B. Xie. Heat Recovery from Internal Combustion Engine withRankine Cycle.2010Asia-Pacific Power and Energy Engineering Conference (APPEEC).Chengdu, China,2010.
    [57] J. Ringler, M. Seifert, V. Guyotot, W. Hubner. Rankine Cycle for Waste Heat Recovery of ICEngines. SAE2009-01-0174.
    [58] C.R. Kuo, S.W. Hsu, K.H. Chang, C.C. Wang. Analysis of a50kW Organic Rankine CycleSystem. Energy.2011,36:5877~5885.
    [59] B.T. Liu, K.H. Chien, C.C. Wang. Effect of Working Fluids on Organic Rankine Cycle forWaste Heat Recovery. Energy.2004,29(8):1207~1217.
    [60] T. Yamamoto, T. Furuhata, N. Arai, K. Mori. Design and Testing of the Organic RankineCycle. Energy.2001,26(3):239~251.
    [61] J.H. Lee, T.S. Kim. Analysis of Design and Part Load Performance of Micro Gas TurbineOrganic Rankine Cycle Combined Systems. Journal of Mechanical Science and Technology.2006,20(9):1502~1513.
    [62] T.Q. Nguyen, J.D. Slawnwhite, K. Goni Boulama. Power Generation from ResidualIndustrial Heat. Energy Conversion and Management.2010,51:2220~2229.
    [63] H.D.M. Hettiarachchi, M. Golubovic, W.M. Worek, Y. Ikegami. Optimum Design Criteriafor an Organic Rankine Cycle Using Low-temperature Geothermal Heat Sources. Energy.2007,32(9):1698~1706.
    [64] R.F. Garcia. Efficiency Enhancement of Combined Cycles by Suitable Working Fluids andOperating Conditions. Applied Thermal Engineering.2012,42:25~33.
    [65] P. Bombarda, C.M. Invernizzi, C. Pietra. Heat Recovery from Diesel Engines: aThermodynamic Comparison between Kalina and ORC Cycles. Applied ThermalEngineering.2010,30(2-3):212~219.
    [66] C. Zamfirescu, I. Dincer. Thermodynamic Analysis of a Novel Ammonia–water TrilateralRankine Cycle. Thermochimica Acta.2008,477(1-2):7~15.
    [67] T. Guo, H. Wang, S. Zhang. Comparative Analysis of Natural and Conventional WorkingFluids for Use in Transcritical Rankine Cycle Using Low-temperature Geothermal Source.Int. J. Energy Res.2011,35:530~544.
    [68] F. Ayachi, E.B. Ksayer, P. Neveu. Exergy Assessment of Recovery Solutions from Dry andMoist Gas Available at Medium Temperature. Energies.2012,5:718~730.
    [69] Y. Chen, P. Lundqvist, A. Johansson, P. Platell. A Comparative Study of the Carbon DioxideTranscritical Power Cycle Compared with an Organic Rankine Cycle with R123as WorkingFluid in Waste Heat Recovery. Applied Thermal Engineering.2006,26(17-18):2142~2147.
    [70] H. Chen, D.Y. Goswami, M.M. Rahman, E.K. Stefanakos. Energetic and Exergetic Analysisof CO2-and R32-based Transcritical Rankine Cycles for Low-grade Heat Conversion.Applied Energy.2011,88:2802~2808.
    [71] Y.J. Baik, M. Kim, K.C. Chang, S.J. Kim. Power-based Performance Comparison betweenCarbon Dioxide and R125Transcritical Cycles for a Low-grade Heat Source. AppliedEnergy.2011,88:892~898.
    [72] H. Teng, G. Regner, C. Cowland. Waste Heat Recovery of Heavy-Duty Diesel Engines byOrganic Rankine Cycle Part II: Working Fluids for WHR-ORC. SAE2007-01-0543.
    [73] J.L. Wang, L. Zhao, X.D. Wang. A Comparative Study of Pure and Zeotropic Mixtures inLow-temperature Solar Rankine Cycle. Applied Energy.2010,87(11):3366~3373.
    [74] H. Chen, D.Y. Goswami, M.M. Rahman, E.K. Stefanakos. A Supercritical Rankine CycleUsing Zeotropic Mixture Working Fluids for the Conversion of Low-grade Heat into Power.Energy.2011,36:549~555.
    [75] F. Heberle, M. Prei inger, D. Brüggemann. Zeotropic Mixtures as Working Fluids inOrganic Rankine Cycles for Low-enthalpy Geothermal Resources. Renewable Energy.2012,37:364~370.
    [76] J.J. Bao, L. Zhao, W.Z. Zhang. A Novel Auto-cascade Low-temperature Solar RankineCycle System for Power Generation. Solar Energy.2011,85:2710~2719.
    [77] B. Niu, Y. Zhang. Experimental Study of the Refrigeration Cycle Performance for theR744/R290Mixtures. International Journal of Refrigeration.2007,30:37~42.
    [78] W. Li, X. Feng, L.J. Yu, J. Xu. Effects of Evaporating Temperature and Internal HeatExchanger on Organic Rankine Cycle. Applied Thermal Engineering.2011,31:4014~4023.
    [79] V. Maizza, A. Maizza. Unconventional Working Fluids in Organic Rankine-cycles for WasteEnergy Recovery Systems. Applied Thermal Engineering.2001,21(3):381~390.
    [80] O. Badr, P.W. O’callaghan, S.D. Probert. Rankine-cycle Systems for Harnessing Power fromLow-grade Energy Sources. Applied Energy.1990,36(4):263~292.
    [81]马新灵,孟祥睿,魏新利,王培萍,常佳.有机朗肯循环的热力学分析.郑州大学学报.2011,32(4):94~98.
    [82] P.J. Mago, L.M. Chamra, K. Srinivasan, et al. An Examination of Regenerative OrganicRankine Cycles Using Dry Fluids. Applied Thermal Engineering.2008,28(8-9):998~1007.
    [83] M. Yari. Exergetic Analysis of Various Types of Geothermal Power Plants. RenewableEnergy.2010,35:112~121.
    [84] M. Yari, S.M.S. Mahmoudi. A Thermodynamic Study of Waste Heat Recovery fromGT-MHR Using Organic Rankine Cycles. Heat Mass Transfer.2011,47(2):181~196.
    [85] A. Borsukiewicz-Gozdur. Dual-fluid-hybrid Power Plant Co-powered by Low-temperatureGeothermal Water. Geothermics.2010,39:170~176.
    [86] E.W. Miller, T.J. Hendricks, H. Wang, R.B. Peterson. Integrated Dual-cycle EnergyRecovery Using Thermoelectric Conversion and an Organic Rankine Bottoming Cycle.Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power andEnergy.2011,225:33~43.
    [87] N.P. Leslie, R.S. Sweetser, O. Zimron, T.K. Stovall. Recovered Energy Generation Using anOrganic Rankine Cycle System. ASHRAE Transactions.2009,115:220~230.
    [88] R.J. Xu, Y.L. He. A Vapor Injector-based Novel Regenerative Organic Rankine Cycle.Applied Thermal Engineering.2011,31(6/7):1238~1243.
    [89] X. Li, C. Zhao, X. Hu. Thermodynamic Analysis of Organic Rankine Cycle with Ejector.Energy.2012,42:342~349.
    [90] N. Yamada, T. Minami, M.N.A. Mohamad. Fundamental Experiment of PumplessRankine-type Cycle for Low-temperature Heat Recovery. Energy.2011,36:1010~1017.
    [91] T. Ho, S.S. Mao, R. Greif. Comparison of the Organic Flash Cycle (OFC) to OtherAdvanced Vapor Cycles for Intermediate and High Temperature Waste Heat Reclamationand Solar Thermal Energy. Energy.2012,42:213~223.
    [92] M. Bianchi, A. De Pascale. Bottoming Cycles for Electric Energy Generation: ParametricInvestigation of Available and Innovative Solutions for the Exploitation of Low andMedium Temperature Heat Sources. Applied Energy.2011,88:1500~1509.
    [93] A.B. Little, S. Garimella. Comparative Assessment of Alternative Cycles for Waste HeatRecovery and Upgrade. Energy.2011,36:4492~4504.
    [94] J. Fischer. Comparison of Trilateral Cycles and Organic Rankine Cycles. Energy.2011,36:6208~6219.
    [95] K.K. Srinivasan, P.J. Mago, S.R. Krishnan. Analysis of Exhaust Waste Heat Recovery froma Dual Fuel Low Temperature Combustion Engine Using an Organic Rankine Cycle. Energy.2010,35(6):2387~2399.
    [96] P.J. Mago, L.M. Chamra. Exergy Analysis of a Combined Engine-organic Rankine CycleConfiguration. Proceedings of the Institution of Mechanical Engineers, Part A: Journal ofPower and Energy.2008,222:761~770.
    [97] M.S. Wei, J.L. Fang, C.C. Ma, S.N. Danish. Waste Heat Recovery from Heavy-duty DieselEngine Exhaust Gases by Medium Temperature ORC System. Sci China Tech Sci.2011,54(10):2746~2753.
    [98] A. Khaliq, S.K. Trivedi. Second Law Assessment of a Wet Ethanol Fuelled HCCI EngineCombined With Organic Rankine Cycle. Transactions of the ASME–Journal of EnergyResources Technology.2011,134(2), DOI:10.1115/1.4005698.
    [99] A.A. Boretti. Energy Recovery in Passenger Cars. Transactions of the ASME–Journal ofEnergy Resources Technology.2011,134(2), DOI:10.1115/1.4005699.
    [100] A. Boretti. Recovery of Exhaust and Coolant Heat with R245fa Organic Rankine Cycles ina Hybrid Passenger Car with a Naturally Aspirated Gasoline Engine. Applied ThermalEngineering.2012,36:73~77.
    [101] D.A. Arias, T.A. Shedd, R.K. Jester. Theoretical Analysis of Waste Heat Recovery from anInternal Combustion Engine in a Hybrid Vehicle. SAE2006-01-1605.
    [102] H. Teng, G. Regner, C. Cowland. Achieving High Engine Efficiency for Heavy-Duty DieselEngines by Waste Heat Recovery Using Supercritical Organic-fluid Rankine Cycle. SAE2006-01-3522.
    [103] H. Teng, G. Regner, C. Cowland. Waste Heat Recovery of Heavy-duty Diesel Engines byOrganic Rankine Cycle Part I: Hybrid Energy System of Diesel and Rankine Engines. SAE2007-01-0537.
    [104] I. Vaja, A. Gambarotta. Internal Combustion Engine (ICE) Bottoming with Organic RankineCycle (ORCs). Energy.2010,35(2):1084~1093.
    [105] V. Dolz, R. Novella, A. García, J. Sánchez. HD Diesel Engine Equipped with a BottomingRankine Cycle as a Waste Heat Recovery System. Part1: Study and Analysis of the WasteHeat Energy. Applied Thermal Engineering.2012,36:269~278.
    [106] J.R. Serrano, V. Dolz, R. Novella, A. García. HD Diesel Engine Equipped with a BottomingRankine Cycle as a Waste Heat Recovery System. Part2: Evaluation of AlternativeSolutions. Applied Thermal Engineering.2012,36:279~287.
    [107] D.T. Hountalas, G.C. Mavropoulos, C. Katsanos, W. Knecht. Improvement of BottomingCycle Efficiency and Heat Rejection for HD Truck Applications by Utilization of EGR andCAC Heat. Energy Conversion and Management.2012,53:19~32.
    [108] C.O. Katsanos, D.T. Hountalas, E.G. Pariotis. Thermodynamic Analysis of a Rankine CycleApplied on a Diesel Truck Engine Using Steam and Organic Medium. Energy Conversionand Management.2012,60:68~76.
    [109] M. He, X. Zhang, K. Zeng, K. Gao. A Combined Thermodynamic Cycle Used for WasteHeat Recovery of Internal Combustion Engine. Energy.2011,36:6821~6829.
    [110] J. Kalina. Integrated Biomass Gasification Combined Cycle Distributed Generation Plantwith Reciprocating Gas Engine and ORC. Applied Thermal Engineering.2011,31:2829~2840.
    [111] H. Wang, R. Peterson, K. Harada, E. Miller, R. Ingram-Goble, L. Fisher, J. Yih, C. Ward.Performance of a Combined Organic Rankine Cycle and Vapor Compression Cycle for HeatActivated Cooling. Energy.2011,36:447~458.
    [112] D.T. Hountalas, C.O. Katsanos, D.A. Kouremenos, E.D. Rogdakis. Study of AvailableExhaust Gas Heat Recovery Technologies for HD Diesel Engine Applications. Int. J.Alternative Propulsion.2007,1(2/3):228~249.
    [113] W.M.S.R. Weerasinghe, R.K. Stobart, S.M. Hounsham. Thermal Efficiency Improvement inHigh Output Diesel Engines-A Comparison of a Rankine Cycle with Turbo-compounding.Applied Thermal Engineering.2010,30(14-15):2253~2256.
    [114]刘广林,鹿院卫,马重芳,吴玉庭.超临界地热有机朗肯循环工质参数优化.工程热物理学报.2010,31(11):1886~1888.
    [115] W. Gu, Y. Weng, Y. Wang, B. Zheng. Theoretical and Experimental Investigation of anOrganic Rankine Cycle for a Waste Heat Recovery System. Proceedings of the Institution ofMechanical Engineers, Part A: Journal of Power and Energy.2009,223:523~533.
    [116] A. Algieri, P. Morrone. Comparative Energetic Analysis of High-temperature Subcriticaland Transcritical Organic Rankine Cycle (ORC)-A Biomass Application in the SibariDistrict. Applied Thermal Engineering.2012,36:236~244.
    [117] O. Badr, P.W. O’callaghan, S.D. Probert. Performances of Rankine-cycle Engines asFunctions of Their Expanders' Efficiencies. Applied Energy.1984,18(1):15~27.
    [118] M. Aneke, B. Agnew, C. Underwood. Performance Analysis of the Chena BinaryGeothermal Power Plant. Applied Thermal Engineering.2011,31:1825~1832.
    [119] F.A. Al-Sulaiman, F. Hamdullahpur, I. Dincer. Greenhouse Gas Emission and ExergyAssessments of an Integrated Organic Rankine Cycle with a Biomass Combustor forCombined Cooling, Heating and Power Production. Applied Thermal Engineering.2011,31:439~446.
    [120] Y.R. Li, J.N. Wang, M.T. Du. Influence of Coupled Pinch Point Temperature Difference andEvaporation Temperature on Performance of Organic Rankine Cycle. Energy.2012,42:503~509.
    [121] M.I. Sohel, M. Sellier, L.J. Brackney, S. Krumdieck. An Iterative Method for Modelling theAir-cooled Organic Rankine Cycle Geothermal Power Plant. Int. J. Energy Res.2010,35(5):436~448.
    [122] D. Wei, X. Lu, Z. Lu, et al. Performance Analysis and Optimization of Organic RankineCycle (ORC) for Waste Heat Recovery. Energy Conversion and Management,2007,48(4):1113~1119.
    [123]魏东红,陆震,鲁雪生,顾建明.废热源驱动的有机朗肯循环系统变工况性能分析.上海交通大学学报.2006,40(8):1398~1402.
    [124]魏东红,陆震,鲁雪生,顾建明.环境温度对余热驱动的有机朗肯循环系统性能的影响.兰州理工大学学报.2006,32(6):59~62.
    [125] J. Sun, W. Li. Operation Optimization of an Organic Rankine Cycle (ORC) Heat RecoveryPower Plant. Applied Thermal Engineering.2011,31:2032~2041.
    [126] M. Khennich, N. Galanis. Optimal Design of ORC Systems with a Low-Temperature HeatSource. Entropy.2012,14:370~389.
    [127] Y. Dai, J. Wang, L. Gao. Parametric Optimization and Comparative Study of OrganicRankine Cycle (ORC) for Low Grade Waste Heat Recovery. Energy Conversion andManagement.2009,50(3):576~582.
    [128] P.J. Mago, K.K. Srinivasan, L.M. Chamra, C. Somayaji. An Examination of ExergyDestruction in Organic Rankine Cycles. Int. J. Energy Res.2008,32:926~938.
    [129] K.M. Lee, S.F. Kuo, M.L. Chien, et al. Parameters Analysis on Organic Rankine CycleEnergy Recovery System. Energy Conversion and Management.1988,28(2):129~136.
    [130] S. Quoilin, S. Declaye, B.F. Tchanche, et al. Thermo-economic Optimization of Waste HeatRecovery Organic Rankine Cycles. Applied Thermal Engineering.2011,31(14/15):2885~2893.
    [131] S. Quoilin, R. Aumann, A. Grill, A. Schuster, V. Lemort, H. Spliethoff. Dynamic Modelingand Optimal Control Strategy of Waste Heat Recovery Organic Rankine Cycles. AppliedEnergy.2011,88:2183~2190.
    [132]魏东红,鲁雪生,顾建明,陆震.移动边界模型应用于废热驱动的有机朗肯循环系统的动态仿真.上海交通大学学报.2006,40(8):1394~1402.
    [133]方金莉,魏名山,王瑞君,马朝臣.采用中温有机朗肯循环回收重型柴油机排气余热的模拟.内燃机学报,2010,28(4):362~367.
    [134]魏名山,方金莉,王瑞君,马朝臣.柴油机工况对中温有机朗肯循环性能影响的模拟.内燃机学报,2011,29(3):248~252.
    [135] G. Qiu, H. Liu, S. Riffat. Expanders for Micro-CHP Systems with Organic Rankine Cycle.Applied Thermal Engineering.2011,88:2183~2190.
    [136] C.H. Cho, S.Y. Cho, K.Y. Ahn. A Study of Partial Admission Characteristics on aSmall-scale Radial-inflow Turbine. Proceedings of the Institution of Mechanical Engineers,Part A: Journal of Power and Energy.2010,224:737~748.
    [137]李艳,连红奎,顾春伟.有机朗肯循环系统及其透平设计研究.工程热物理学报.2010,31(12):2014~2018.
    [138] E. Sauret, A.S. Rowlands. Candidate Radial-inflow Turbines and High-density WorkingFluids for Geothermal Power Systems. Energy.2011,36:4460~4467.
    [139] L.A. Hawkins, L. Zhu, E.J. Blumber. Development of a125kW AMB Expander/Generatorfor Waste Heat Recovery. Journal of Engineering for Gas Turbines and Power.2011,133(7),DOI:10.1115/1.4002660.
    [140] S.H. Kang. Design and Experimental Study of ORC (Organic Rankine Cycle) and RadialTurbine Using R245fa Working Fluid. Energy.2012,41:514~524.
    [141] J. Demierre, S. Henchoz, D. Favrat. Prototype of a Thermally Driven Heat Pump Based onIntegrated Organic Rankine Cycles (ORC). Energy.2012,41:10~17.
    [142] A. Kovacevic, N. Stosic, I.K. Smith. Numerical Simulation of Combined ScrewCompressor–expander Machines for Use in High Pressure Refrigeration Systems.Simulation Modelling Practice and Theory.2006,14:1143~1154.
    [143] W. He, Y.T. Wu, C.F. Ma, G.Y. Ma. Performance Study on Three-stage Power System ofCompressed Air Vehicle Based on Single-screw Expander. Science China TechnologicalSciences.2010,53(8):2299~2303.
    [144] W. Wang, Y.T. Wu, C.F. Ma, L.D. Liu, J. Yu. Preliminary Experimental Study of SingleScrew Expander Prototype. Applied Thermal Engineering.2011,31:3684~3688.
    [145]刘林顶.单螺杆膨胀机及其有机朗肯循环系统研究.北京工业大学硕士学位论文.2010.
    [146]王伟.单螺杆膨胀机能量转换过程的理论分析与实验研究.北京工业大学博士学位论文.2012.
    [147]何为.基于单螺杆膨胀机的新型气动汽车动力系统性能研究.北京工业大学博士学位论文.2012.
    [148] H. Wang, R.B. Peterson, T. Herron. Experimental Performance of a Compliant ScrollExpander for an Organic Rankine Cycle. Proceedings of the Institution of MechanicalEngineers, Part A: Journal of Power and Energy.2009,223:863~872.
    [149] R.B. Peterson, H. Wang, T. Herron. Performance of a Small-scale Regenerative RankinePower Cycle Employing a Scroll Expander. Proceedings of the Institution of MechanicalEngineers, Part A: Journal of Power and Energy.2008,222:271~282.
    [150] H.J. Kim, J.M. Ahn, I. Park, P.C. Rha. Scroll Expander for Power Generation from aLow-grade Steam Source. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy.2007,221:705~712.
    [151] V. Lemort, S. Quoilin, C. Cuevas, J. Lebrun. Testing and Modeling a Scroll ExpanderIntegrated into an Organic Rankine Cycle. Applied Thermal Engineering.2009,29:3094~3102.
    [152]顾伟,孙绍芹,翁一武,王玉璋.采用涡旋膨胀机的低品位热能有机物朗肯循环发电系统实验研究.中国电机工程学报.2011,31(17):20~25.
    [153] E.J. Bala, P.W. O’callaghan, S.D. Probert. Influence of Organic Working Fluids on thePerformance of a Positive-displacement Pump with Sliding Vanes. Applied Energy.1985,20(2):153~159.
    [154] Heat2power Company. Waste Heat Regeneration Systems for Internal Combustion Engine.Global Powertrain Congress2007, Berlin, Germany,2007.
    [155] Y.R. Li, M.T. Du, S.Y. Wu, L. Peng, C. Liu. Exergoeconomic Analysis and Optimization ofa Condenser for a Binary Mixture of Vapors in Organic Rankine Cycle. Energy.2012,40:341~347.
    [156] S. Karellasa, A. Schusterb, A.D. Leontaritis. Influence of Supercritical ORC Parameters onPlate Heat Exchanger Design. Applied Thermal Engineering.2012,33-34:70~76.
    [157]刘桂玉,刘咸定,钱立伦,马元.工程热力学.高等教育出版社,1989:559~592.
    [158] Y.A. Cengel, M.A. Boles, Thermodynamics–an Engineering Approach.6thed.McGraw-Hill Press,2008:423~469.
    [159] K. Wark, D.E. Ricards. Thermodynamics.6thed. McGraw-Hill Press,1999:487~519.
    [160]杨世铭,陶文铨.传热学.高等教育出版社.第四版.2006:459~509.
    [161] MATLAB version R14SP3. Matlab help. US: the MathWorks, Inc.,2005.
    [162] REFPROP version7.1. NIST standard reference database23. America: the U.S. Secretaryof Commerce;2003.
    [163] B.E. Poling, J.M. Prausnitz, J.P. O’Connell. The Properties of Gases and Liquids.5th ed.McGraw-Hill Press,2001.
    [164] David R.Hand book of chemistry and physics.80thed. Boca Raton: CRC Press;1999.
    [165] Honyewell Campany. Genertron245fa applications development guide. HoneywellFluorine Products,2000.
    [166] F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine. Fundamentals of Heat and MassTransfer. Sixth Ed. John Wiley&Sons Press,2007:408~436.
    [167] J.H. Holland. Adaptation in Natural and Artificial Systems: an Introductory Analysis withApplications to Biology, Control, and Artificial Intelligence. The University of MichiganPress,1975:20~32.
    [168] D.E. Goldberg. Genetic Algorithm in Search, Optimization, and Machine Learning.Addison-Wesley Press,1989:27~54.
    [169] The Mathworks Inc. Global Optimization Toolbox3User’s Guide. Mathworks, Natick MA,USA,2010.
    [170]中华人民共和国国家标准.汽车发动机性能试验方法. GB/T18297-2001.2001.
    [171] J.B. Heywood. Internal Combustion Engine Fundamentals. McGraw-Hill Press,1998:371~470.
    [172]蒋德明,陈长佑,杨嘉林,杨中极.高等车用内燃机原理.西安交通大学出版社,2006:88~104.
    [173] J.M. Calm, G.C. Hourahan. Refrigerant Data Summary. Eng Syst.2001,18:74~88.
    [174] http://en.wikipedia.org/wiki/Diesel_fuel
    [175] A. Bahadori. Estimation of Combustion Flue Gas Acid Dew Point during Heat Recoveryand Efficiency Gain. Applied Thermal Engineering.2011,31:1457~1462.
    [176] R.L. Webb, N.H. Kim. Principles of Enhanced Heat Transfer.2nd ed. Taylor&FrancisPress,2005:145~206.
    [177]史美中,王中铮.热交换器原理与设计.第四版.东南大学出版社,2009:159~171.
    [178]顾维藻,神家锐,马重芳,张玉明.强化传热.科学出版社,1990:399~458.
    [179] V. Gnielinski. New Equations for Heat Mass Transfer in Turbulent Pipe and Channel Flows.Int Chem Eng.1976,16:359~68.
    [180]黄晓艳,王华,王辉涛. R245fa传热特性的实验研究.武汉理工大学学报.2011,33(3):67~71.
    [181] S.M. Ghiaasiaan. Two-phase Flow, Boiling and Condensation in Conventional andMiniature Systems. Cambridge University Press,2008:321~353.
    [182] T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. Dewitt. Fundamentals of Heat and MassTransfer.7th ed. John Wiley&Sons Press,2011:711~721.
    [183]肯普.能量的有效利用—夹点分析与过程集成.项曙光,贾小平,夏力.化工出版社,2010:12~33.
    [184]刘彬.基于有机朗肯循环的柴油机排气余热回收总体方案研究.北京工业大学硕士学位论文.2012.
    [185]李士豪.流体力学.高等教育出版社,1990:160~168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700