用户名: 密码: 验证码:
徐州市城市绿地土壤碳储量及质量评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市绿地土壤是城市生态系统的重要组成部分,是绿色植物生长的介质和营养供给者,同时对有害物质有过滤、氧化、吸附、固定及净化城市环境的作用,它关系到城市园林植物的生长、人居环境质量与人类健康。因此,开展城市绿地土壤研究对促进生态化城市建设和保证城市生态环境可持续发展具有重要意义。通过野外调查和室内分析相结合的方法,测定了徐州市城市绿地土壤碳储量、理化性质及酶活性,采用主成分分析的方法建立了土壤质量评价最小数据集,并对徐州市城市绿地土壤质量进行了综合评价,研究结果表明:
     (1)徐州城市绿地土壤碳储量:徐州市城市绿地土壤0~100cm土层有机碳总储量为5.63×10~8kg,无机碳总储量为1.51×10~8kg,总碳储量为7.14×10~8kg。徐州市城市绿地土壤碳主要储存在附属绿地、公园绿地及防护绿地,占总碳储量的89.09%。影响有机碳库的因素包括pH值、土壤密度、非毛管孔隙度、总孔隙度、田间持水量、速效钾、全氮、水解性氮、阳离子交换量,影响无机碳库的因素包括pH值、土壤密度、非毛管孔隙度、总孔隙度、全氮、水解性氮、电导率。
     (2)徐州城市绿地土壤物理性质:徐州市城市绿地土壤以粉(砂)质粘壤土、壤土、粉(砂)质粘土和粉(砂)壤土为主;0~20cm层土壤密度平均值为1.25g.cm-3,除了防护绿地土壤密度较小外,其他绿地土壤密度差异不显著,20~40cm层土壤密度平均值为1.33g.cm3,不同绿地类型土壤密度差异不显著。徐州市城市绿地土壤60%以上的土壤密度偏大,对城市园林植物的生长有一定影响。0~20cm层粘粒含量平均值为30.92%,防护绿地粘粒含量最高,公园绿地粘粒含量最低,20~40cm层粘粒含量平均值为33.12%,不同绿地土壤类型之间没有显著差异。徐州市城市绿地土壤75%粘粒含量过高或过低,不利于土壤肥力功能的发挥。0~20cm层和20~40cm层田间持水量平均值分别为30.17%和26.35%,不同绿地类型差异不显著。0~20cm土层毛管孔隙度和总孔隙度平均值分别为43.33%和54.46%,不同类型土地土壤差异不显著,非毛管孔隙度平均值为11.21%,防护绿地最高,道路绿地最低。20~40cm层毛管孔隙度和总孔隙度平均值分别为40.43%和48.78%,不同绿地类型之间差异不显著,非毛管孔隙度平均值为9%,附属绿地最高,道路绿地最低。从总体上看,50%绿地土壤的通气透水能力较差,不利于植物的生长发育。
     (3)徐州城市绿地土壤化学性质:在0~20cm土层中,土壤速效磷含量和速效钾含量平均值分别为2.22mg.Kg~(-1)和200.19mg.Kg~(-1),不同类型绿地土壤没有显著差异,水解性氮含量平均值为85.50mg.Kg~(-1),防护绿地含量最高,附属绿地含量最低。在20~40cm土层中,速效磷含量平均值为1.87mg.Kg~(-1),不同类型绿地土壤没有显著差异,速效钾含量平均值为167.54mg.Kg~(-1),水解性氮含量平均值为59.51mg.Kg~(-1),公园绿地速效钾含量最高,防护绿地水解性氮含量最高,道路绿地速效钾含量和水解性氮含量最低。在0~20cm土层中,全磷含量平均值为0.94g.Kg~(-1),街头绿地含量最高,附属绿地含量最低,全氮含量平均值为0.96g.Kg~(-1),防护绿地含量最高,街头绿地含量最低,全钾含量平均值为23.91g.Kg~(-1),街头绿地最高,生产绿地最低。在20~40cm土层中,全磷和全钾含量平均值分别为0.88g.Kg~(-1)和24.09g.Kg~(-1),全钾含量平均值为24.09g.Kg~(-1),公园绿地全磷含量最高,街头绿地全钾含量最高,全钾和全磷在生产绿地含量最低,全氮含量平均值为0.73g.Kg~(-1),防护绿地含量最高,附属绿地含量最低。在0~20cm土层中,有机质平均含量为22.37g.Kg~(-1),阳离子交换量平均值为15.5cmol(+).Kg~(-1),在20~40cm土层中,有机质含量平均值为17.84g.Kg~(-1),阳离子交换量平均值为14.54cmol(+).Kg~(-1),在上层(0~20cm)和下层(20~40cm)中,防护绿地土壤有机质含量和阳离子交换量均达到了最大值。电导率在0~20cm土层平均值为0.15mS.cm-1,防护绿地最高,生产绿地最低,20~40cm土层平均值为0.15mS.cm-1,不同绿地类型土壤没有显著差异,pH在7.5~8.5的约占93%,徐州城市绿地土壤总体呈碱性。从研究数据可以得出结论,土壤有机质、全氮、速效磷含量普遍偏低,可能会限制园林植物的生长;土壤速效钾富集,能满足植物对钾的需求,土壤保肥能力处于中等及中等靠上水平,盐分含量不会影响园林植物的生长。
     (4)徐州城市绿地土壤酶活性:在0~20cm土层中,不同绿地类型土壤脲酶之间没有显著差异;道路绿地过氧化氢酶活性最强,防护绿地活性最低;防护绿地磷酸酶活性和蔗糖酶活性最高;街头绿地多酚氧化酶活性最强;在20~40cm土层中,脲酶除了公园绿地显著较高外,其他几种绿地类型没有显著差异;附属绿地过氧化氢酶活性最强,道路绿地活性最低;不同绿地类型磷酸酶之间没有显著差异;防护绿地蔗糖酶活性最高,其他几种绿地类型没有显著差异;街头绿地多酚氧化酶活性较强。对于不同植被类型下土壤来说,林地土壤脲酶和磷酸酶、蔗糖酶活性最高,草灌木磷酸酶和蔗糖酶在草灌木地活性最低,过氧化物酶和过氧化氢酶活性没有显著差异。相关分析表明,总孔隙度、毛管空隙度、田间持水量及pH值对城市绿地土壤酶活性没有影响,土壤密度能显著抑制磷酸酶及蔗糖酶的活性,非毛管空隙度能显著提高磷酸酶、过氧化氢酶及蔗糖酶的活性,自然含水量影响过氧化氢酶活性;速效磷能显著抑制过氧化氢酶和过氧化物酶的活性,速效钾能显著提高脲酶和过氧化物酶的活性,水解性氮和有机质对脲酶、磷酸酶及蔗糖酶有显著影响,阳离子交换量对磷酸酶和蔗糖酶有显著影响;脲酶和过氧化物酶显著负相关,与蔗糖酶、磷酸酶呈极显著正相关,过氧化氢酶和磷酸酶呈显著正相关,与多酚氧化酶呈极显著负相关;磷酸酶与蔗糖酶之间呈极显著相关关系。本研究结果表明,土壤理化性质对土壤酶活性及土壤酶活性之间均有不同程度的相关性,说明土壤理化性质对土壤酶有一定的影响,土壤酶作为评价土壤质量指标是可行的。
     (5)徐州城市绿地土壤综合评价:通过主成分分析法选取土壤密度、pH值、速效磷、速效钾、水解性氮、阳离子交换量、有机质、粘粒含量等8项指标组成评价徐州市城市绿地土壤质量的最小数据集;并采用内梅罗公式对土壤质量进行了综合评价,0~20cm土壤综合肥力指数(P)大小依次为公园绿地(1.469)、防护绿地(1.326)、道路绿地(1.304)、生产绿地(1.253)、街头绿地(1.300)、附属绿地(1.112)。各个绿地类型0~20cm土壤的肥沃程度均处于中等水平(1.0Urban green space is an important part of city forest ecosystem,is medium and nutrientsupply of green plants,at the same time it can filter,oxidize,adsorb,fix and purify city environment,it influences the growth of city garden plant,the quality of living environment and health ofhuman being. Thus,to develop urban green space is meaningful to promote ecological cityconstruction and ensure city ecological environment to develop sustainably. Through fieldinvestigation and laboratory analysis, we determined carbon storage of land of Xuzhou urbangreen space, and its physical and chemical properties and enzymatic activity, through principalcomponent analysis we established soil quality evaluation of the minimum data set, andcomprehensively evaluate Xuzhou urban green space, what the results show are as the following:
     (1) In Xuzhou,organic carbon and total reserves of the urban green space land from0to100cm is5.63×10~8kg,inorganic carbon reserves is1.51×10~8kg, carbon reserves is7.14×10~8kg. InXuzhou,carbon reserves of urban green space are mainly in attached green space, public park,andgreen buffer,it occupies89.09%of carbon reserves.
     (2) In Xuzhou, the urban green space mainly is powder (sand) quality clay loam, loam,powder (sand) clay and powder (sandy) loam, which are good for fertilizer retention ventilatedpermeability and water retention;the average value of density of loam from0to20cm is1.25g.cm-3, only the density of green buffer is small, the differences of the density of other loamare not obvious, the average value of the density of loam from20to40cm is1.33g·cm3,thedifferences between different green space are not obvious. The density of more than60%ofurban green space is a little big in Xuzhou, which has a certain influence on the growth of urbangreen plants. The average value of cosmid content from0to20cm is30.92%, the cosmid contentof green buffer is the highest, and the cosmid content of park is the lowest, the average value ofcosmid content from20to40cm is33.12%, the difference between different green space is notobvious. The cosmid content of75%of urban green space in Xuzhou is too high or too low,which is not good for loam to exert its function. The average value field capacity from0to20cmand from20to40cm are separately20.17%and23.35%, there is no obvious difference betweendifferent green space. Loam capillary porosity and total porosity from0to20cm are separately43.33%and54.46%, there is no obvious difference between different green space, the averagevalue of noncapillary poropsity is11.21%, which of green buffer is the highest, and which ofroad green space is the lowest. The average value of capillary porosity and total porosity from20to40cm are separately40.43%and48.78%,there is no obvious difference between differentgreen space, the average value of noncapillary porosity is9%, which of the attached greenspace is the highest, and which of the road green space is the lowest. Generally, air permeabilityof50%of green space is not good, which is not good for growth of plants.
     (3) The content of soil available phosphorus and available potassium from0to20cm are respectively2.22mg.Kg~(-1) and200.19mg.Kg~(-1), there is no significant difference in differentgreen land types, the average value of hydrolyze nitrogen content is85.50mg.Kg~(-1), green bufferis the highest, and which of attached green space is the lowest.In20~40cm soil layer, the averagevalue of available phosphorus content is1.87mg.Kg~(-1), there was no significant differencebetween the different green land types, the average value of available potassium content is167.54mg.Kg~(-1), the average value of hydrolyze nitrogen content is59.51mg.Kg~(-1), content ofavailable potassium is highest in public park, the hydrolyzable nitrogen content is the highest ingreen buffer, the content of vailable potassium content and hydrolytic nitrogen is the lowest theroad green space. In0~20cm soil layer, the average value of total phosphorus content from0to20cm is0.94g.Kg~(-1), street green belt was the highest,the attached green space is the lowest,theaverage value total nitrogen is0.96g.Kg~(-1), total nitrogen content of green buffer is the highest,street green belt was the lowest, the average value of total potassium content is23.91g.Kg~(-1),street green belt is the highest, nursery the is the lowest. In20~40cm soil layer, average contentof total phosphorus and total potassium were respectively0.88g.Kg~(-1) and24.09g.Kg~(-1), theaverage content of total potassium is24.09g.Kg~(-1), content of the total phosphorus is highest inpublic park, street green belt is highest for the total potassium content, thecontent of the totalpotassium and total phosphorus was the lowest in the nursery, average content of total nitrogenis0.73g.Kg~(-1), content of green buffer is the highest, attached green space was the lowest. Theaverage content of organic matter and cation exchange capacity from0to20cm are separately22.37g.Kg~(-1) and15.5cmol (+).Kg~(-1), The average content of organic matter and cation exchangecapacity from20to40cm are separately17.84g.Kg~(-1) and14.54cmol (+).Kg~(-1), the organicmatter and cation exchange capacity is the highest in the green buffer. The conclusion can beconcluded from the research data, soil organic matter, total nitrogen, available phosphorus isgenerally low and limit the garden plant growth;soil available potassium is enrichment and canmeet the demand of plant;fertilizer ability is middle;salt content does not affect to the growth ofgarden plants.
     (4)There is no significant differences for urease in different greenland types. The activity of peroxidase in street greenland is the highest, whereas the lowest in protection greenland. In theother sides, the phosphatase and saccharase are most activity in protection greenland, and the polyphenoloxidase is most activity in street greenland. In20-40cm soil layers, the urease has no significant differences among the greenland types except the garden greenland. For catalase, the activity is highest in affiliated greenland, while lowest in street greenland. There is no significant differences for phosphatase in different greenland types. the saccharase has no significant differencesamong the greenland types except the protection greenland. The activty of polyphenoloxidase instreet greenland is higher than other greenland types. For soil and different landcover types, the acitivity of urease, phosphatase and saccharase are highest in forest land, and the acitivity of phosphatase and saccharase are lowest in grass land. In addition, the acitivity of peroxidase and catalas e has no significant differences.The total porosity,capillary porosity, Field moisture capacity, fieldmoisture capacity and PH value has nothing effect on oil enzyme activity of urban green space,soil density obviously can block the activity of phosphatase and sucrose enzyme, non-capillaryporosity obviously can promote activity of phosphatase,catalase and sucrose enzyme,naturalwater content has an effect on the activity of peroxidase;available phosphorus obviously canblock the activity of catalase and peroxidase,available phosphorus obviously can promote theactivity of urease and peroxidase, available nitrogen and organic matter has obvious effect onUrease,phosphatase and sucrose enzyme,cation exchange capacity has obvious effect onphosphatase and sucrose enzyme;urease and peroxidase are obviously negative correlated, andare obviously positive correlated with sucrose enzyme and phosphatase, catalase is obviouslypositive correlated with phosphatase, and is obviously negative correlated with polyphenoloxidase;phosphatase is obviously correlated with sucrose enzyme. The researches show that soilphysical and chemical properties and soil enzyme activity and soil enzyme activity itself arecorrelated from different stages, and it means that soil physical and chemical properties has acertain effect on soil enzyme, thus, soil enzyme as soil quality index is feasible.
     (5) The eight indicators is selected as minimum data of soil quality assessment, includingsoil density,pH,available phosphorus,available potassium,hydrolytic nitrogen,cation exchangecapacity,organic matter,clay content. Soil integrated fertility index(P) from0to20cm varied inthe order of park green space (1.45),protective green space soil (1.42),road green space soil(1.37),production green space soil(1.18),roadside green space soil (1.17) and attached greenspace soil (1.07). Soil integrated fertility from0to20cm of all the functional areas was medium(1.0
引文
[1]Singh S K,Singh A K,Sharma B K,et al. Carbon stock and organic carbon dynamics in soils ofRajasthan,India [J].Journal of Arid Environments,2007,68(3):408~421.
    [2]Post W M, Emanuel W R, Zinke P J,et al. Soil carbon pools and world life zones [J].Nature,1982,298(8):156~15.
    [3]Schlesinger W H.Evidence from chronoseauence studies for a low carbon storage potential ofsoil[J].Nature,1990,348(15):232~234.
    [4]Houghton R A. Changes in the storage of terrestrial carbon since1950[A].Lal R,et al(ed.).Soils and Globe Change [C]. CRC Press,1995,45~65.
    [5]许乃政,张桃林,王兴祥,等.长江三角洲地区土壤有机碳库研究[J].长江流域资源与环境,2010,19(7):790~795.
    [6]Feller C,Bernoux M. Historical advances in the study of global terrestrial soil organic carbonsequestration[J].Waste Management,2008,28(4):734~740.
    [7]Milne E,Adamat R A,Batjes N H,et al.National and subnational assessments of soil organiccarbon stocks and changes:The GEFSOC modelling system[J].Agriculture,Ecosystems&Environment,2005,122(1):3~12.
    [8]UN Word Urbanization Prospects: The2001Revision.Source:http://www.un.org
    [9]仝川,董艳.城市生态系统土壤碳库特征[J].生态学杂,2007,26(10):1616~1621.
    [10]章明奎,周翠.杭州市城市土壤有机碳的积累和特性[J].土壤通报,2006,37(1):19~21.
    [11]David J N, Daniel E C. Carbon storage and sequestration by urban trees in the UAS.Environmental Pollution,2002,116:381~389.
    [12]崔晓阳,方怀龙.城市绿地土壤及其管理[M].北京:中国林业出版社,2001.
    [13]欧阳音林.城市土壤与园林绿化[J].热带林业,2004,32(1):31~34.
    [14]包兵,丁武泉,吴丹.重庆市城区园林土壤质量现状研究[J].环境科学与技术,2008,31(12):23~25.
    [15]于法展,单勇兵,李保杰.徐州城区公园绿地土壤密度与孔隙度的时空变化[J].城市环境与城市生态,2007,20(4):12~14.
    [16]于法展,尤海梅,李保杰.徐州市不同功能城区绿地土壤的理化性质分析水[J].土保持研究,2007,14(3):85~88.
    [17]于法展,李保杰.徐州市城区公园绿地土壤养分状况[J].生态科学,2006,25(5):454~458.
    [18]贾宇平.土壤碳库分布与储量研究进展[J].太原师范学院学报,2004,3(4):62~64.
    [19]陈庆强,沈承德,易惟熙,等.土壤碳循环研究进展[J].地球科学进展,1998,13(6):555~562.
    [20]吴乐知.土壤有机碳储量的估算研究进展[J].安徽农业科学,2010,38(35):13780~13781.
    [21]Bohnhl.Estmiate of organic carbon inworld soils[J].Soil Science Society of America Journa,1976(40):468~470.
    [22]Bohn H L. Estimate of organic carbon in world soils [J].Soil Science,1982(46):1118~1119.
    [23]Postw M, Emanuelw R, Zinke P J, et al.Soil carbon pools and world life zones[J]. Nature,1982,298(8):156~159.
    [24]Batjes N H, Dijkshoorn J A. Carbon and nitrogen stocks in the soils of the Amazon region[J]. Geoderma,1999,89:273~286.
    [25]金峰,杨浩,赵其国.土壤有机碳储量及影响因素研究进展[J].土壤,2000(1),11~17.
    [26]潘根兴.中国土壤有机碳库及其演变与应对气候变化[J].气候变化研究进展,2008,4(5):282~289.
    [27]潘根兴.中国有机碳、无机碳库量研究[J].科技通报,1999,15(5):330~332.
    [28]王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533~544.
    [29]李克让,王绍强,曹明奎.中国植被和土壤碳储量[J].中国科学,2003,33(1):72~80.
    [30]Pouyat R.,Groffillan P,Yesilonis L,et al.Sole carbon pools and fluxes in urhan ecosystem[J].Environment pollution.2002,116:107~118.
    [31]Braek C L.Pollution mitigation and carbon sequestration by an urban forest[J].EnvironmentalPollution,2002,116:5195~5200.
    [32]Jo,H.K. Energy consumption and carbon release from management of urban vegetation[J].Korean Journal of Environment and Ecology,1999,13(2):101~103.
    [33]Jo.H. K.Impacts of urban greenspace on offsetting carbon emission for middle Korea[J].Joumalof Environment Management.2002(64):115~126.
    [34]章明奎,周翠.杭州市城市土壤有机碳的积累和特性[J].土壤通报,2006,37(1):19~21.
    [35]仝川,董艳.城市生态系统土壤碳库特征[J].生态学杂志2007,26(10):1616~1621.
    [36]涂成龙,刘丛强.城市公路绿化带土壤有机碳的分异[J].水土保持学报,2008,22(1):100~104.
    [37]刘兆云.城市绿地年龄对土壤有机碳积累的影响[J].生态学杂志,2010,29(1):142~145.
    [38]何跃,张甘霖.城市土壤有机碳和黑碳的含量特征与来源分析[J].土壤学报,2006,43(2):178~182.
    [39]孙艳丽,马建华,李灿.开封市城市土壤有机碳含量和密度的变化分析[J].河南大学学报,2008,38(5):491~496.
    [40]王秋兵,段迎秋,魏忠义.沈阳市城市土壤有机碳空间变异特征研究[J].土壤通报,2009,40(2):252~257.
    [41]Beyer L, Kahle P, KretschmerH,et al. Soil organic matter composition of man~impacted urban sites in North Germany. Journal of Plant Nutrition and Soil Science,2001(164):359~364.
    [42]沈宏.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32~38.
    [43]赵劲松,袁星,张旭东,等.土壤溶解性有机质的特性与环境意义[J].应用生态学报,2003,14(1):126~130.
    [44]王晶,谢宏图,朱平,等.土壤活性有机质(碳)的内涵和现代分析方法概述[J].生态学杂志,2003,22(6):109~112.
    [45]Blair G J, Lefroy R D, Lisle L. Labile soil carbon fractions based on the degree of oxidation and thedevelopment of a carbon management Parameters for agricultural systems[J].Aus.J.Agric.Res. Ecol.1995(46):1459~1466.
    [46]Anderson T H, Domsch K H. Application of ecophysiological quotients (qCO2andqD) onmicrobial biomasses from soils of different cropping histories [J].Soil biology&biochemistry,1990,22:251~255.
    [47]倪进治,徐建民,谢正苗.土壤轻组有机质[J].环境污染治理技术与设备,2000,1(2):58~64.
    [48]苏永中,赵哈林.农田沙漠化过程中土壤有机碳和氮的衰减及其机理研究[J].中国农业科学,2003,36(8):928~934.
    [49]Ghani A, Dexter M, Perrott K W. Hot water extractable carbon in soils: A sensitive measurementfor determining impacts of fertilization, grazing and cultivation [J].Soil Biol.Biochem.2003,35:1231~1243.
    [50]Bolan N S, Baskaran S, Thiagarajan S. An evaluation of the measure method dissolved organic carbon insoils, manures,sludge and stream water[J].Commun Soil Sci. Plant Anal.,1996,27(13~14):2732~2737.
    [51]柳敏.土壤活性有机碳[J].生态学杂志,2006,25(11):1412~1417.
    [52]刘留辉,邢世和,高承芳,等.国内外土壤碳储量研究进展和存在问题及展望[J].土壤通报,2009,40(3)699~701.
    [53]许乃政.长江三角洲地区土壤无机碳库研究[J].长江流域资源与环境,2009,18(11):1038~1044.
    [54]张桃林,潘剑君,赵其国.土壤质量研究进展与方向[J].土壤,1999(1):1~7.
    [55]Warkentin B P.The changing concept of soil quality [J].Journal of Soil and Water Conservation,1995,50(3):226~228.
    [56]Staben M L, Bezdicek D F, Smith J L, et al. Assessment of soil quality in conservation reserve program andwheat fallow soils[J].Soil Sci Soc Amer,1997,61:124~130.
    [57]Doran J W, Parkin T B.Defining Soil Quality for A Sustainable Environment. SSSASpec.Publ.35. SSSA and ASA,Madison,1994,3~21.
    [58]曹志洪.解译土壤质量演变规律,确保土壤资源持续利用[J].世界科技研究与发展,2001,23(3):28~32.
    [59]郑昭佩,刘作新.土壤质量及其评价[J].应用生态学报,2003,14(1):131~134.
    [60] George Z, Stamatis S, Vasilios T. Impacts of agricultural practices on soil and water quality inthe Mediterranean region and proposedassessment ethodology [J].Agriculture, Ecosystems and Environment,2002,88:137~146.
    [61]黄勇,杨忠芳.土壤质量评价国外研究进展[J].地质通报,2009,28(1):130~136.
    [62]熊东红,贺秀斌,周红艺.土壤质量评价研究进展[J].世界科技研究与发展,2005,27(1):71~75.
    [63]陆鹏,苏以荣.土壤质量指标评价及其时空变异[J].中国生态农业学报,2007,15(4):190~194.
    [64]Andrews S S,Karlen D L,Mitchell J P.A comparison of soil quParametersing methods forvegetable[J]. Agriculture,Ecosystems and vironment,2002,90(1):25~45.
    [65]Andrews S S.Sustainable agriculture alternatives:Ecological managerial implications of poultrylitter management alternativesplied to agronomic soils[D].University of Georth Athens,1998.
    [66]Sparling G P,Schipper L A,Bettjeman W,et al.Soil quality mtoring in New Zealand: practicallessons from a6~year trial[J]. Aculture, Ecosystems and Environment,2004,104:523~534.
    [67]齐伟,张风荣,牛振国.土壤质量时空变化一体化评价方法及其应用[J].土壤通报,2003,34(1):1~5.
    [68]楼文高.基于人工神经网络的三江平原土壤质量综合评价与预测模型[J].中国管理科学,2002,10(1):79~83.
    [69]郝冠军,郝瑞军.上海世博会规划区典型绿地土壤肥力特性研究[J].上海农业学报,2008,24(4):14~19.
    [70]黄勇,杨忠芳.土壤质量评价国外研究进展[J].地质通报,2009,28(1):56~57.
    [71]Pierce F J, Larson W E, Dowdy R H, et al. Productivity of soils: assessing long~term changes due toerosion[J]. Soil and Water Conservation,1983,38:39~44.
    [72]黄宇,汪思龙,冯宗炜.不同人工林生态系统林地土壤质量评价[J].应用生态学报,2004,15(12):2199~2205.
    [73]孙波,赵其国.红壤退化中的土壤质量评价指标及评价方法[J].地理科学进展,1996,18(2):118~128.
    [74]陈龙乾,邓喀中,徐黎华.矿区复垦土壤质量评价方法[J].中国矿业大学学报,1999,8(5):449~452.
    [75]刘世梁,傅伯杰,陈利顶.两种土壤质量变化的定量评价方法比较[J].自然资源学报,2003,12(5):422~426.
    [76]刘世梁,傅伯杰,吕一河.坡面土地利用方式与景观位置对土壤质量的影响[J].生态学报,2003,23(3):414~420.
    [77]王效举,龚子同.红壤丘陵小区域不同利用方式下土壤变化的评价和预测[J].土壤学报,1998,35(1):135~139.
    [78]铁光,杨广林,王立坤.基于相对土壤质量指数法的土壤质量变化评价与分析[J].东北农业大学学报,2003,34(1):56~59.
    [79]武伟,唐明华,刘洪斌.土壤养分的模糊综合评价[J].两南农业大学学报,2000,22(3):270~272.
    [80]胡月明,吴谷丰,江华.基于GIS与灰关联综合评价模型的土壤质量评价[J].西北农林科技大学学报(自然科学版),29(4):39~42.
    [81]付强,金菊良,门宝辉,等.基于RAGA的PPE模型在土壤质量等级评价中的应用研究[J].水土保持通报,2002,22(5):51~54.
    [82]曾国熙,梁川,裴源生.土壤质量排序和分类质量研究中密切值法的应用[J].东北水利水电,2004,22(235):34~36.
    [83]潘峰,梁川,付强.基于层次分析法的物元模型在土壤质量评价中的应用[J].农业现代化研究,2002,23(2):23~25.
    [84]Klaus Lorenz,Ellen Kandeler. Biochemical characterization of urban from Stuttgart, Germany[J].Soil Biology&Biochemistry,2005(37):1373~1385.
    [85]JIM C Y.Soil Characteristics and Management in an Urban Park in Hong Kong[J].Environmental Management,2006,22(5):683~695.
    [86]王建,白雪梅.城市绿地土壤综合质量评价—以重庆市北碚区为例[J].中国高新技术企业,2009(14)124~125.
    [87]卓文珊,唐建锋,管东生.城市绿地土壤特性及人类活动的影响[J].中山大学学报,2007,46(2):33~36.
    [88]边振兴,王秋兵.沈阳市公园绿地土壤养分特征的研究[J].土壤通报,2003,34(4):284~290.
    [89]孟昭虹,周嘉.哈尔滨城市土壤理化性质研究[J].哈尔滨师范大学学报,2005,21(4):102~105.
    [90]王辛芝,张甘霖,俞元春.南京城市土壤pH和养分的空间分布[J].南京林业大学学报:自然科学版,2006,30(4):69~72.
    [91]于法展,单勇兵,李保杰.淮海地区城市绿地土壤理化特性的比较研究[J].海南师范大学学报:自然科学版,2007,20(2):178~182.
    [92]段迎秋,魏忠义,韩春兰,等.东北地区城市不同土地利用类型土壤有机碳含量特征[J].沈阳农业大学学报,2008(3):45~48.
    [93]许乃政,刘红樱,梁晓红.上海市城市扩展格局及土壤无机碳分布特征分析[J].上海环境科学,2010,29(4):144~147.
    [94]张修玉,管东生,黎华寿.广州典型森林土壤有机碳库分配特征[J].中山大学学报(自然科学版),2009.4(5):137~142.
    [95]Schlesinger W H. Carbon storage in the caliche of arid soils: a case study from Arizona [J].Soil Science,1982,133(4):247~255.
    [96]Lal R.Soil carbon dynamics in cropland and rangeland[J].Environmental Pollution,2002,116:353~362.
    [97]Daniel R. Hirmas, Christopher A, Robert C.Graham Spatial and process-based modeling of soilinorganic carbon storage in an arid piedmont[J].Geoderma,2010,154:486~494.
    [98]赵洋,陈永乐,张志山,等.腾格里沙漠东南缘固沙区深层土壤无机碳密度及其垂直分布特征[J].水土保持学报,2012(5):56~58.
    [99]祖元刚,李冉,王文杰.我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性[J].生态学报,201131(18):5207~5216.
    [100]张成蕾.长期施肥对华北平原土壤无机碳库平衡与转化的影响[D].北京:中国农业大学,2007.
    [101]张雪妮.艾比湖湿地自然保护区土壤碳库研究[D].乌鲁木齐:新疆大学,2011.
    [102]杨黎芳,李贵桐,赵小蓉.栗钙土不同土地利用方式下有机碳和无机碳剖面分布特征[J].生态环境,2007,16(1):158~162.
    [103]潘根兴.中国干旱性地区土壤发生性碳酸盐及其在陆地系统碳移上的意义[J].南京农业大学学报,1999,22(1):52~57.
    [104]Feng Q, Endob K, Cheng G.. Soil carbon in desertified land in relation to site characteristics[J]. Geoderma,2002,106:21~43.
    [105]秦小光,李长生,蔡炳贵.气候变化对黄土碳库效应影响的敏感性研究[J].第四纪研究,2001,21(2):153~161.
    [106]张廷龙,孙睿,胡波,等.北京西北部典型城市化地区不同土地利用类型土壤碳特征分析[J].北京师范大学学报(自然科学版),2010,46(1):97~101.
    [107]岳曼,常庆瑞,王飞,等.土壤有机碳储量研究进展[J].土壤通报,2008,39(5):1173~1177.
    [108]张伟畅,盛浩,钱奕琴,等.城市绿地碳库研究进展[J].南方农业学报,2012,43(11):1712~1717.
    [109]涂夏明,曹军骥,韩永明.黄土高原表土有机碳和无机碳的空间分布及碳储量[J].干旱区资源与环境,2012,26(2):114~118.
    [1]杨金艳,王传宽.东北东部森林生态系统土壤碳贮量和碳通量.生态学报[J],2005,25(11):2875~2882.
    [2]中华人民共和国林业部科技司编.林业标准汇编[S].北京:中国林业出版社,1991.
    [3]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [4]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [5]周礼恺.土壤酶学[M].北京:科学出版社,1987.
    [6]中华人民共和国建设部.城市绿地分类标准(CJJ/T85—2002)[S].北京:中国建筑工业出版社,2002.
    [7]徐州市水利局.徐州水利志[M].徐州:中国矿业大学出版社,2004.
    [1]Feller C,Bernoux M.Historical advances in the study of global terrestrial soil organic carbonsequestration[J].Waste Management,2008,28(4):734~740.
    [2]JAanzen H H.Carbon cycling in earth systems a soil science perspective[J].Agriculture, Ecosystems&Environment,2004,104(3):399~417.
    [3]Hutchnson J J,Campbell C A, Desjardin R L.Some perspectives on carbon sequestration inAgriculture[J].Agricultural and Forest Meteorology,2007,142(24):288~302.
    [4]Milne E,Adamat R A,Batjes N H,et al.National and sub-national assessments of soil organic carbonstocks and changes:The GEFSOC modelling system [J].Agriculture,Ecosystems&Environment,2005,122(1):3~12.
    [5]Annette F,Mark D A R,Pete S,et al.Carbon sequestration in the agricultural soils of Europe [J].Geoderma,2004,122(1):21~23.
    [6]许乃政,张桃林,王兴祥,等.长江三角洲地区土壤无机碳库研究[J].长江流域资源与环境,2009,18(11):1038~1044.
    [7]王文静,王百田,吕钊,等.山西太岳山不同林分土壤有机碳储量研究[J].干旱区资源与环境,2013(27),81-85.
    [8]Post W M,Izaurralde R C,Mann L K,et al.Monitoring and verifying changes of organic carbon in soil[J].Climatic Change,2001,51(1):73~99.
    [9]孙艳丽.开封城市土壤有机碳密度、组成及时空变化分析[D].开封:河南大学,2011.
    [10]黄雪夏,倪九派,高明,等.重庆市土壤有机碳库的估算及其空间分布特征[J].水土保持学报,2005,19(1):54~58.
    [11]郝瑞军,方海兰,沈烈英.上海城市绿地土壤有机碳、全氮分布特征[J].南京林业大学学报:自然科学版,201l,35(6):34~36.
    [12]张伟畅,盛浩,钱奕琴,等.城市绿地碳库研究进展[J].南方农业学报,2012,43(11):1712~1717.
    [13]GUO Y,Aamundson R,Gong P,et al.Quantity and spatial variability of soil carbon in the conterminous United States [J].Soil Science Society of America Journal,2006,70:590~600.
    [14]祖元刚,李冉,王文杰.我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性[J].生态学报,31(18):5207~5215.
    [15]周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99~105.
    [1]张甘霖,卢瑛,龚子同,等.徐州城市土壤某些元素的富集特征及其对浅层地下水的影响[J].第四纪研究,2003,23(4):446~455.
    [2]Graeme I, Ekaterina V, Jurate K, et al. An ecotoxicity assessment of contaminated forest soils fromthe Kola Peninsula. Science of the Total Environment,2006,355,106~117.
    [3]Syrek D, Weiner W, Wojtylakc M, Olszowska G. Species abundance distribution of collembolan communities in forest soils polluted with heavy metals. Applied Soil Ecology,2006,31,239~250.
    [4]Yang J, McBride J, Zhou J, Sun Z. The urban forest in Beijing and its role in air pollution reduction. Urban Forestry&Urban Greening,2005,3(2),65~78.
    [4]徐建明.土壤质量指标与评价[M].北京:科学出版社,2010,44~51.
    [5]孙向阳.土壤学[M].北京:中国林业出版社,2005,132~133.
    [6]Bullock P,Gregory P J.Soils in the Urban Environment[M].Boston:Wiley-Blackwell,1991.
    [7]杨玉盛,陈光水.森林经营措施对土壤的扰动和压实影响[J].山地学报,2000,18(3):231~236.
    [8]梁晶,王肖刚,张庆费,等.上海市垃圾填埋场土壤特性研究[J].南京林业大学学报(自然科学版),2013,37(1):147~152.
    [9]Reisinger T W,Simmons G L,Pope P E.The impact of timber harvesting on soil properties,and seeding growth in the south[J]. Southern Journal of Applied Foresting,1988(1),12:58~67.
    [10]Zisa R P,Halverson H G,Stout B B. Establishment and early growth of conifers on compact soilsin urban areas[M].US Northeastern forest Experiment Station Research,Brorall, Pennsyvania, USA:1980,67~68.
    [11]卢瑛,甘海华,史正军,等.深圳城市绿地土壤肥力质量评价及管理对策[J].水土保持学报,2005,19(1):153~156.
    [12]董印丽,张宝军.邯郸市东方广场园林绿地土壤现状分析[J].湖北农业科学,2010,49(5):1098~1100.
    [13]王朴,胡红青,丁昭全.武汉城市园林绿地土壤现状分析[J].湖南农业科学,2009,48(1):78~80.
    [14]于法展,尤海梅,李保杰,等.徐州市不同功能城区绿地土壤的理化性质分析[J].水土保持研究,2007,14(3):85~88.
    [15]邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006.
    [16]Hant B,Walmsly T J,Bradshaw AD.Importance of soil physical conditions for urban tree growth[A].In:Hodge SJ(ed).Research for Practical Arboriculture[M]. London:Forestry Commission Bulletin97,HMSO,1991.51~62.
    [17]崔晓阳,方怀龙.城市绿地土壤及其管理[M].北京:中国林业出版社,2001:64~65.
    [18]姚贤良,程云生.土壤物理学[M].北京:农业出版社,1986:78~79.
    [19]徐建明.土壤质量指标与评价[M].北京:科学出版社,2010,44~51.
    [20]李文芳,杨世俊,文赤夫,等.土壤有机质的环境效应[J].环境科学动态,2004,(4):31~33.
    [21]刘晓冰,邢宝山, S J Herbert.土壤质量及其评价指标[J].农业系统科学与综合研究,2002,18(2):109~111.
    [22]全国土壤普查办公室.中国土壤[M].北京:中国农业出版社,1998.
    [23]孟昭虹,周嘉.哈尔滨城市土壤理化性质研究[J].哈尔滨师范大学自然科学学报,2005,21(4):102~105.
    [24]简兴,苗永美.蚌埠市绿地土壤几种化学指标的异质性分析[J].中国农学通报2009,25(9):165~168.
    [25]卢瑛,甘海华,史正军等.深圳城市绿地土壤肥力质量评价及管理对策[J].水土保持学报,2005,19(1):153~156)
    [26]于天仁.土壤化学原理[M].北京:科学出版社,1987,352~353.
    [27]Jim CY.Physical and chemical properties of a Hong Kong roadside soil in relation to urban treegrowth.Urban Ecosystems,1998,(2):171~181.
    [28]Craul P J.The nature of urban soils:their problems and future[J].Arboricultural Journal,1994,18:275~287.
    [29]卢瑛,龚子同,张甘霖.南京城市土壤的基本特性及其分类的初步研究[J].土壤,2001,33(1):47~51.
    [30]Ware G. Constraints to tree growth imposed by urban soil alkalinity[J]. Journal of Arboriculture,1990,16(2):35~38.
    [31]Peter B.Soils in the Urban Environment[M].London:Blackwell Scientific Publications,1991:1~192.
    [32]黄昌勇.土壤学[M].北京:农业出版社,2000.
    [33]张琪方,海兰黄,懿珍,等.土壤阳离子交换量在上海城市土壤质量评价中的应用[J].土壤,2005,37(6):679~682.
    [34]简兴,苗永美.蚌埠市绿地土壤几种化学指标的异[J].中国农学通报,2009,25(09):165~168.
    [35]包兵,吴丹,胡艳燕,等.重庆主城区市街绿地土壤肥力质量评价及管理对策[J].西南大学学报,2007,29(11):100~105.
    [36]刘艳,王成,彭镇华.北京市崇文区不同类型绿地土壤酶活性及其与土壤理化性质的关系[J].东北林业大学学报,2010,38(4):66~70.
    [37]Schloter M,Munch J C. Indicators for evaluating soil quality[J].Agric ecosyst environ,2009,98:255~262.
    [38]曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105~109.
    [39]耿玉清,白翠霞,赵铁蕊,等.北京八达岭地区土壤酶活性及其与土壤肥力的关系[J].北京林业大学学报,2006,28(5):7~11. 
    [40]郑诗樟,肖青亮,吴蔚东,等.丘陵红壤不同人工林型土壤微生物类群、酶活性与土壤理化性状关系的研究[J].中国生态农业学报,2008,16(1):57~61.
    [41]Badiane N N Y, Chotte J L, Pateae,et al. Use of soil enzyme activities to monitor soil qualityin natural and improved fallows in semi-arid tropical regions[J].Applied soil ecology,2009,18:229~238.
    [42]Singhk P, Mandaltn,Tripathi S K. Patterns of restoration of soil physicochemical properties and microbial biomass in different landslide sites in the sal forest ecosystem of Nepal Himalaya[J].Ecological engineering,2008,17:385~401.
    [43]刘建新.不同农田土壤酶活性与土壤养分相关关系研究.土壤通报,2009,35(4):523~525.
    [44]马宁宁,李天来,武春成.长期施肥对设施菜田土壤酶活性及土壤理化性状的影响[J].应用生态学报,2010,21(7):1766~1771.
    [45]范君华,刘明,张建华.南疆膜下滴灌棉田土壤酶活性与土壤养分的关系[J].棉花学报,2010,22(4):367~371.
    [46]程东祥,王婷婷,包国章.长春城市土壤酶活性及其影响因[J].东北师大学报(自然科学版),2010,42(02):137~142.
    [14]卢瑛,冯宏,甘海华.广州城市公园绿地土壤肥力及酶活性特征[J].水土保持学报,2007,21(01):160~163
    [47]单奇华,余健,俞元春,等.城市林业土壤酶活性及对土壤肥力的指示作用[J].城市环境与城市生,2007,20(40):4~9.
    [48]吴际友,叶道碧,王旭军.长沙市城郊森林土壤酶活性及其与土壤理化性质的相关性[J].东北林业大学学报,2010,38(3):97~99.
    [49]陈双林,郭子武,杨清平.毛竹林土壤酶活性变化的海拔效应[J].生态学杂志,2010,29(3):529~533.
    [1]张鹏飞,田长彦,卞卫国,等.克拉玛依农业开发区土壤质量评价指标的筛选[J].干旱区研究,2004,21(2):166~170.
    [2]王玉杰,王千.主要土壤肥力因素指标的筛选模型[J].生物数学学报,2000,15(2):163~168.
    [3]黄嘉佑.气象统计分析与预报方法[M].北京:气象出版社,2000.
    [4]单奇花.城市林业土壤质量指标特性分析及质量评价[D].南京:南京林业大学,2008.
    [5]刘艳.北京市崇文区绿地表层土壤质量现状与评价[D].北京:中国林业科学研究院,2009.
    [6]王志明.关于城市化土壤侵蚀等级划分综合评判模型的探讨[J].水土保持研究,1998,5(2):131~135.
    [7]邓南荣,吴志峰,刘平,等.城市园林绿化用地土壤肥力诊断与综合评价[J].土壤与环境,2000,9(4):287~289.
    [8]阚文杰.一个定量综合评价土壤肥力的方法初探[J].土壤通报,1994,25(6):245~247.
    [9]邓南荣,吴志峰,刘平,等.城市园林绿化用地土壤肥力诊断与综合评价[J].土壤与环境,2000,9(4):287~289
    [10]徐建明.土壤质量指标与评价[M].北京:科学出版社,2010,44~51.
    [11]黄昌勇.土壤学[M].北京:农业出版社,2000.
    [12]项建光,方海兰,杨意,等.上海典型新建绿地的土壤质量评价[J].土壤,2004,36(4):424~429.
    [13]胡素英,刘豫明,黄懿珍.广州地区园林土壤质量现状分析[J].广东农业科学,2003(5):36~38.
    [14]张琪,方海兰.土壤阳离子交换量在上海城市土壤质量评价中的应用[J].土壤,2005,37(6):679~682
    [15]黎妍妍,许自成.湖南省主要植烟区土壤肥力状况综合评价[J].西北农林科技大学学报,2006,34(11):179~183.
    [16]中华人民共和国住房与城乡建设部.绿化种植土壤(CJ/T340~2011)[S].北京:中国标准出版社,2011.
    [17]吕晓男,陆允甫,王人潮.土壤肥力综合评价初步[J].浙江农业大学学报(农业与生命科学版),1999,25(4):378~382.
    [18]阚文杰,吴启堂.一个定量综合评价土壤肥力的方法初探[J].土壤通报,1994,25(6):245~247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700