用户名: 密码: 验证码:
水解沉淀—前置反硝化生物滤池工艺处理城市污水效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
曝气生物滤池是近年发展起来的污水处理新工艺,具有高效去除SS、COD和脱氮作用,占地面积小、费用低和抗冲击负荷能力强等特点。前置反硝化生物滤池工艺是将A/O工艺与曝气生物滤池相结合,具有曝气生物滤池的所有优点,但在理论研究和实际应用中仍存在预处理效果欠佳、反硝化效率低以及同时碳化硝化曝气生物滤池硝化效率低等问题。
     本文针对前置反硝化生物滤池存在的问题,提出了水解沉淀-前置反硝化生物滤池组合工艺,全面分析了水解沉淀池预处理效能和机理,通过实验室模型实验和现场试验,考察了反硝化生物滤池(Denitrification biofilter,简称DN池)和碳化硝化曝气生物滤池(Carbonization and nitrification biological aerated filter,简称CN池)的处理效能和提高反硝化效率和硝化效率的方法,并推导出底物动力学模型,进一步全面了解了前置反硝化生物滤池除碳脱氮原理,对其设计、开发和应用推广具有实际意义。
     通过实验室模型分析了沿水解沉淀池高度主要污染物浓度变化规律,以及影响沉淀池处理效能的主要因素,结果认为污泥量和污泥层高度是决定水解沉淀池对污染物去除能力的主要因素。通过对水解沉淀池中污泥抽滤后测间隙水中氨氮浓度以及烧杯吸附实验,证明了沉淀池对NH_4~+-N的去除机理主要为吸附作用,NO_3~--N少量被吸附,NO2--N的去除主要由于反硝化的作用。在相同进水水质和运行条件下,通过对比实验证明,作为反硝化生物滤池的预处理工艺,水解沉淀池的出水可生化性提高要大于普通沉淀池,预处理效果前者明显高于后者。
     DN池对TN平均去除率为37.4%,对有机物的去除大部分是由于滤料截留和进水口处DO消耗,其次是作为反硝化反应的电子供体。硝态氮的反硝化作用主要发生在滤池中上部,DN池入口DO较高是DN池内反硝化效率低的主要原因之一。
     对反硝化作用的影响因素研究表明,反硝化速率随着温度的升高而增大。COD/NO_3~--N比小于14.0时COD是反硝化反应的限制因素,而大于此值对反硝化影响不大。水力负荷提高,DN池含氧层高度上移,DN池对COD和NO_3~--N的总去除率均呈下降趋势。综合考虑COD和的NO_3~--N去除,回流比为130%比较适合。
     将部分CN出水回流入沉淀池可有效的降低DN池内有氧区高度,DN池反硝化率有较大的提高。从减少对沉淀池内COD的消耗和水力负荷冲击的角度来讲分配比1:1为宜。调整进水DO浓度为0并延长DN池反冲洗时间发现, DN池可能出现厌氧氨氧化现象。
     稳定运行时CN池出水各项指标可以满足《城市污水处理厂综合排放标准》中的一级B标准。考察了温度、氨氮和COD的容积负荷、水力负荷对CN池的影响,实验结果证明,影响因素对氨氮去除影响显著,对有机物去除影响较小。
     采用硝化细菌在载体表面空间占位的方法强化了CN池硝化作用,结果显示,此种方式能够提高载体上硝化细菌的比例和氨氮的去除效率,但硝化作用的强化程度仍决定于进水的营养结构。
     采用微生物纯培养方法并结合扫描电镜观察等手段,研究了CN池和DN池生物膜形态和微生物优势菌群结构,考察了在一定的反冲洗模式和强度下,用各功能菌群的生物活性、生物量及二者的乘积考察了反硝化生物滤池和曝气生物滤池菌群功能的恢复。用最大可能计数法计算分析了各功能菌群生物量,其结果充分证明了的对污染物的降解功能与相应微生物功能群体的活性和数量有着必然的联系。
     以条件假设和微元物料衡算为基础,在高、中、低不同底物浓度条件下,首次分段建立了CN池内有机物去除动力学数学模型以及有机物竞争条件下氨氮去除动力学数学模型,同时建立了以有机物和硝态氮为基质的双底物反硝化动力学模型。
The increasingly stringent in sewage discharge standard is generally the trend ofdevelopment in the world recently. It was impossible to meet land use, noise, especiallyits total nitrogen effluent limitations by conventional secondary bio-treatment.Biological aerated filter is a new sewage treatment technology developed in recentyears,which was characterized for the efficient removal of COD and SS, nitrificationand denitrificationand, low land usage, less investment in capital construction andoperation cost, convenient management and capacity of anti impact load etc. The actualcontradiction induced by land resources shortage, large sewage, high sewage dischargestandard can be solved by biological aerated filter process. There are few documentabout pre-denitrification aerated biofilter and its application is less in practice. The keytechnologies of this technology are pretreatment technology selection, the pretreatmentdegree of important indicators, the control on COD/NO_3~--N and reflux ratio ofdenitrification influent and biofilter material etc.
     According to problems Existing in practical engineering application and theoreticalresearch on pre-denitrification aerated biofilter, hydrolysis precipitation andpre-denitrification aerated biofilter combined process was put forward. Respectivelybased on the hydrolyzsis sedimentation tank, Denitrification biofilter (DN biofilter forshort)and Carbonization and nitrification biological aerated filter (CN biofilter forshort), a comparatively extensive study and analize was made by lab and in field.
     Under stable operation condition, the average removal of SS, COD and TN was57.9%,45.9%and55.0%respectively with12~16.5℃and hydraulic loading of0.6m3/m2h. The change law of main pollutant consistence along longitudinal directionand the influence factors on hydrolyzsis sedimentation tank performance were studiedin lab. The result was height and concertration of suspended sludge layer in the tank isthe main determinants of pollutants removal rate. To sum up, the effluent of hydrolysisprecipitation can meet the qualification of pretreatment for pre-denitrification aeratedbiofilter.
     The test results of Air pump filtration and the adsorption test for sewage and sludgein the tank displayed, that the ammonia concentrations of interstitial water in sludgealways outclass that of influent. All above results demonstrated that NH_4~+-N removalmechanism is adsorption by the sludge in the tank, and has slight sorption for NO_3~--N,but it was been shown denification for NO2--N. Hydrolysis is happened in thesedimention but hydrolysis degrees were weaker. The contrast data of pretreatmenteffect under the same conditions of influent quality and operation, hydrolysissedimentation tank is vioursly higher than common sedimentation tank as pretreatmentprocess of denitrification biobiofilter.
     The average removal rate of TN and COD in DN biofilter is respectively37.4%and34.1%at hydraulic retention time of1.4h and the influent was consist of the CNbiofilter effluent at100%reflux and the effluent of sedimention. Most of COD isremoved because of interception of biofilter and DO consumption firstly, secondlybecause it was used as electron donor of denitrification. Denitrification of NO_3~--Nhappened at upper part of DN biofilter, and higher DO concentration at the entrance ofDN biofilter is the one of main reasons on low denitrification efficiency.
     The studies on the denitrification influence factors showed, that denitrificationefficiency increased with temperature raised. COD/NO_3~--N of14.0was taken as criticalvalue, but COD will be the main limiting factor less than that, and above that,it haslittle effect on denitrification larger than that. With hydraulic loading rising, the biofilteroxidation layer hight moved up, total removal rate of COD and NO_3~--N in DN biofiltershowed the downtrend. By comprehensive consideration, the reflux rate of130%isrelatively suitable.
     The oxidation layer hight of biofilter is availably reduced and dinitrification rate ofDN biofilter is raised when the CN effluent partially returned into the sedimental tank.Shunting ratio is1:1is relatively suitable considering decreasing COD consume andhydraulic loading shock in sedimental tank. Anammox is detected when DOconcertration in DN biofilter is zero and backwashing time of DN bioflter is prolonged.
     All indexes can meet the First Grade Standard of GB8978—1996during stablerunning. The influence of temperature, volume loading of NH_4~+-N and COD,hydraulic load were studied. The results showed that influence infactors had significanteffect on NH_4~+-N removal and had less effect on COD removal.
     Nitrification was strengthened by method of nitrifying bacteria occupying firstlyon the surface of biofilter material. The results showed that, it could improve thequantities of nitrifying bacteria in biofilter material and NH_4~+-N removal rate. But theenhancement degree of nitrification was still determinde by nutrient structure ofinfluent.
     By conventional microbial culture methods combined with scanning electronmicroscope, the biofilm pattern of CN biofilter and DN biofilter and dominantmicroorganism structure were studied. Activity recovery of microbial community,located at medium in denitrification biofilter (DN) and biological aerated filter (CN),was studied by biological activity, biomass, and product of both under a mode andstrength of backwashing. The biomass of functional micro-flora was evaluated byMaximum Probable Number. All above results demonstrated was proved that pollutantbiodegrade maybe inevitable related to the corresponding activity and quantities offunctional micro-flora.
     On the basis of the hypothetical conditions and the micro-unit material balance,kinetic mathematical model of organic and NH_4~+-N removal in the organic competitive condition in CN biofilter were piecewise established under high middle and lowsubstrate concentration. Meanwhile, kinetic mathematical model of double substratesdenitrification was established, organic and NOx--N as substrate.
引文
[1]周生贤.2009年中国环境状况公报[EB/OL].2010-5-31. http://wenku.baidu.com/view/cb2e5237ee06eff9aef807ed.html.
    [2]华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系与对策[J].给水排水.2000,26(12):1-4
    [3]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006:10-13
    [4]周凤霞,白京生.环境微生物[M].北京:化学工业出版社,2003:87
    [5]张兰英,刘娜,王显胜.现代环境微生物技术[M].北京:清华大学出版社,2007:247-249.
    [6]任南琪,马放,杨基先,等.污染控制微生物学[M].哈尔滨工业大学出版社.2006:328-333.
    [7]李军,杨秀山,彭永臻.微生物与水处理工程[M].化学工业出版社.2002:370-390.
    [8]丁元娜,代进,滕欣宇.生物脱氮新技术研究现状探讨[J].纯碱工业,2011,1:22-25
    [9] S. Milia, G. Cappai, M. Perra, et al. Biological treatment of nitrogen-rich refinerywastewater by partial nitritation (SHARON) process[J].Environmental Technology,2012,13(33):1477-1483.
    [10] J. Claros, J. Serralta, A. Seco, et al. Real-time control strategy for nitrogen removalvia nitrite in a SHARON reactor using pH and ORP sensors[J]. ProcessBiochemistry,2012,10(44):1510-1515.
    [11] Voets J P, Vanstaen H, Verstraete W. Removal of nitrogen from highly nit rogenouswaste waters [J]. Journal of Water Pollution Control Federation,1975,47:394~398.
    [12] C J Tang, P Zheng, C H Wang, et al. Performance of high-loaded ANAMMOXUASB reactors containing granular sludge[J]. Water Research,2011,1(45):135-144.
    [13]孙洪伟,彭永臻,王淑莹,等.厌氧氨氧化生物脱氮技术的演变、机理及研究进展[J].工业用水与废水,2008,39(1):6-11.
    [14]李捷,熊必永,张杰.生活污水脱氮新技术[J].哈尔滨工业大学学报,2007,39(4):561-565.
    [15] C J Lan, M Kumar, C C Wang, et al. Development of simultaneous partialnitrification, anammox and denitrification (SNAD) process in a sequential batchreactor[J]. Bioresource Technology,2011,9(102):5514-5519.
    [16]蔡昌凤,梁磊.高效好氧反硝化细菌的筛选及脱氮特性的研究[J].环境科学与技术,2011,34(1):41-44.
    [17] Fang Qian, Zhang Chao sheng, Lin Man ting, et al. Relations of Sustained StableSimultaneous Nitrification and Denitrification to Modes of Oxygen Supply[J].China Water&Wastewater2011-23
    [18]蔡昌凤,梁磊.高效好氧反硝化细菌的筛选及脱氮特性的研究[J].2011,3(41):50-53.
    [19]吕锡武.同时硝化反硝化的理论和实践[J].环境化学,2002,6(21):564-570.
    [20]张自杰,排水工程.北京:中国建筑工业出版社[M].2000:320-321.
    [21]高守有,彭永臻,胡天红,等.氧化沟工艺及其生物脱氮原理[J].哈尔滨商业大学学报(自然科学版),2005,21(4):435-439.
    [22] Van Loosdrecht M C. Environmental impacts of nutrient removal processes:casestudy [J]. Envir. Engrg.1997,123:33-40.
    [23]张杰,曹相生,孟雪征.曝气生物滤池的研究进展[J].中国给水排水2002,18(8):26-29.
    [24]乔晓时.马栏河污水处理厂BIOFOR曝气生物滤池工艺运行效果评价[D].大连理工大学硕士学位论文,2004:22.
    [25]游卫强,杨燮明.新会龙泉污水处理厂曝气生物滤池工艺的优化[J],化学工程与装备,2009,8:2232-2235.
    [26]张薇,史开武,孔惠.曝气生物滤池(BAF)的发展与现状[J],北京石油化工学院学报,2005,13(3):24-30.
    [27]陈永志,彭永臻,王建华等. A2/O—曝气生物滤池深度生物脱氮除磷工艺分析[J],中国给水排水,2011,27(10):29-32.
    [28]邓征宇,杨春平,曾光明等.曝气生物滤池技术进展[J],2010,33(8):88-93.
    [29]邱立平,陈京英,刘永等.曝气生物滤池处理机理及反冲洗控制研究进展[J],济南大学学报,2010,24(2):216-220.
    [30]郑俊,吴浩汀,程寒飞.曝气生物滤池污水处理新技术及工程实例.北京:化学工业出版社,2002:26-38.
    [31] V Belgiorno, G D Feo, M A Rodolfo, et al. Combined Carbonaceous andNitrification with Biological Aerated Filter [J]. Journal of Enviromental Scienceand Health,2003,38(10):2147-2156.
    [32] A Antonio, M Jacek, P Krishna. Influence of Aeration on Nitrogen Removal in aSubmerged Biological Aerated Filter for Residuals Removal[J]. Proceedings of theWater Environment Federation,2011(14):767-780.
    [33] Mezzanotte V, Canziani R, Sardi E, et al. Removal of Pesticides by a CombinedOzonation/Attached Biomass Process Sequence [J]. Ozone-Science&Engineering.2005,27(4):327~33.
    [34]万平,陈建军,钟理.新型污水处理工艺—曝气生物滤池[J].工业水处理,2004,24(5):1-5.
    [35] Mezzanotte V, Canziani R, Sardi E, et al. Removal of Pesticides by a CombinedOzonation/Attached Biomass Process Sequence [J]. Ozone-Science&Engineering.2005,27(4):327-33.
    [36] Osorio F, Hontoria E. Study of the Influence of Backwashing Intensity in BiofilmSystems to Determine the Captured Solids Removal for Modeling Purposes [J].Environmental Engineering Science,2006,23(5):780-787.
    [37] Canler J P, Perret J M. Biological Aerated Fileter: Assessment Based on12SewageTreatment Plants [J]. Water Science&Technology,1994,29(10/11):13-22.
    [38]王飞际.一种新的污水处理技术—BIOPUR法[J].给水排水,2001,27:11-14.
    [39] Ohashi, A. Silva D, Mobarry V, et al. Influence of substrate C/N ratio onthe structure of multi-species biofilms consisting of nitrifiers heterortropes[J]. Wat.Sci. Tech.1995,32(8):75-84.
    [40]陈永志,彭永臻,王建华.内循环对A2/O曝气生物滤池工艺脱氮除磷特性影响[J].2011,1(32):193-198.
    [41] J J Chen, McCarty D, Slack D, et al. Full scale case studies of a simplified aeratedfilter(BAF) for organics and nitrogen removal[J]. Water Sci. Technol,2000,41(4-5):1-4.
    [42] Z h Liang, S Li, W Q Guo, et al. The Kinetics for Electrochemical Removal ofAmmonia in Coking Wastewater[J]. Chinese Journal of Chemical Engineering,2011,4(19):570-574.
    [43] Y Y Wu, S Q Zhou, D Y Chen,et al.Transformation of metals speciation in acombined landfill leachate treatment[J].Science of The Total Environment,2011,9(409):1613-1620.
    [44] J Canler, P Perret. Biological aerated filter: assessment of the process based on12sewage treatment plants [J]. Water Sci. Technol.1994,29:13-22.
    [45] J G dong, J J Tong, Y F Tan. Wastewater treatment efficiency of a multi-mediabiological aerated filter (MBAF) containing clinoptilolite and bioceramsite in abrick-wall embedded design Bioresource Technology [J].2011,2(102):550-557.
    [46]林玉泉,刘雷,邓祖兵.絮凝—吸附—曝气生物滤池处理制革有机废水的研究[J].2008,6:89-91.
    [47] Z M Fu, Y G Zhang, X J Wang.Textiles wastewater treatment using anoxic filterbed and biological wriggle bed-ozone biological aerated filter[J]. BioresourceTechnology,2011,4(102):3748–3753.
    [48] L Yang, L Chou, H W Shie. Biobiofilter Treatment of Aquacluture Water for ReuseApplication [J]. Water Research,2001,35(13):3097~3108.
    [49] M Han, Z W Zhao, F Y Cui,et al. Pretreatment of contaminated raw water by anovel double-layer biological aerated filter for drinking water treatment[J].Desalination and Water Treatment,2012,37:308-314.
    [50] F Liu, C C Zhao, G H Liu. Tertiary treatment of textile wastewater with combinedmedia biological aerated filter (CMBAF) at different hydraulic loadings anddissolved oxygen concentrations [J]. Journal of Hazardous Materials,2008,160(1):161-167.
    [51]严子春.折流曝气生物滤池处理城市污水的特性及其除磷脱氮效能研究[D].重庆大学博士学位论文,2004
    [52]张红晶.侧向流曝气生物滤池处理生活污水的特性及其除磷脱氮效能研究[D].重庆大学博士学位论文,2006
    [53]孙兴滨,孙永锋,崔福义等.不同填料曝气生物滤池启动挂膜试验研究[J].给水排水,2011,37(1):63-66.
    [54]王建华,陈永志,彭永臻.硝化型曝气生物滤池的挂膜与启动[J].环境工程学报,2010,10:2199-2203.
    [55] Y X Liu, T O Yang, D X Yuan, et al. Study of municipal wastewater treatment withoyster shell as biological aerated filter medium[J]. Desalination,2010,254:149-153.
    [56]刘柳,沸石一火山岩双层滤料曝气生物滤池处理城市生活污水的试验研究[D].兰州理工大学硕士学位论文,2008
    [57]刘灿灿,瓷粒和陶粒填料曝气生物滤池运行特性的研究[D].苏州科技学院硕士学位论文,2008
    [58]黄明,肖利平.A/O一体化曝气生物滤池降解酱油废水的研究[J].环境工程学报,2008,2(2):200-204.
    [59]陈学群,黄元杰,朱海峰.曝气生物滤池深度处理制革废水的研究[J].西部皮革,2009,31(1):325-28.
    [60]杨学,杨云龙,刘晓慧.曝气生物滤池深度处理焦化废水试验研究[J].山西建筑,2009,35(3):20-21.
    [61] Rebecca E Moore, Jo Quarmby, Tom Stephenson. Assessing the potential offoamed clay as a biological aerated filter (BAF) Medium [J]. BiotechnologyLetters,1999,21:589–593.
    [62]郑俊,吴浩汀.曝气生物滤池工艺的理论与工程应用[M].北京:化学工业出版社,2005:65.
    [63]曾正中,王厚成,李勃,等.曝气生物滤池两种填料挂膜的对比试验[J].环境工程,2008,26(1):21-23.
    [64]孙同喜,蒋轶锋,郑萌璐,等.活化沸石曝气生物滤池预处理微污染源水的研究[J].中国环境科学2011,31(3):377~383
    [65] W S Chang, S W Hong, Park J. Effect of zeolite mediafor the treatment of textilewastewater in a biological aerated filter[J]. Process Biochem,2002,37:693-698.
    [66]杜尔登,刘翔,王华,等.沸石曝气生物滤池去除氨氮性能及生物学特征分析[J].环境污染治理技术与设备,2006,7(9):88~93.
    [67]郭彦,陈吕军,温东辉.沸石曝气生物滤池中亚硝酸盐氮积累的研究[J].中国给水排水,2006,22(9):74~77.
    [68] Allan M, Mendoza-espinosa L, Stephenson T. Comparison of floating and sunkenmedia biological aerated filters for nitrificanon. J Chem Technol Biotechnol[J].1998,72(3):273-279.
    [69] Hirai M, Kamamooto M, Yani M, et al. Comparison of biological NH3removalcharacteristics among four inorganic packing materials [J]. Biosci Bioeng.2001,91(4):428-430.
    [70] Hwang Yoowoo, Yoneyama Yutaka, Noguchi Hiroshi. Denitrificationcharacteristics of reject water in upflow biofiltration [J]. Process Biochem.2000,35(10):1241-1245.
    [71] Chang W S,Hong S W,Joonkyu P. Effect of zeolitemedia for the treatment oftextile wastewater in a biological aerated filter [J]. Process Biochem.2002,37(5):693-698.
    [72] Rebecca Moore, Joanne Quarmby, Tom Stephenson.the effects of media size onthe performance of biological aerated filters [J]. Wat. Res.2001,35(10):2514–2522.
    [73] Qiu L P, Zhang S B, Wang G B, et al.Performances and nitrification properties ofbiological aerated filters with zeolite, ceramic particle and carbonate media[J].Bioresource Technology,2010,19(101):7245-7251.
    [74] N B Chang, F Hossain, M Wanielista. Filter Media for Nutrient Removal in NaturalSystems and Built Environments: I—Previous Trends and Perspectives[J].Environmental Engineering Science,2010,27(9):689-706.
    [75] Hu Y Y, Wang L L. Effect of media heights on the performance of biologicalaerated filter [J]. Environ Sci.2005,17(2):281-284.
    [76]谢曙光,张晓健,王占生.低温下曝气生物滤池内生物量变化[J].北京大学学报(自然科学版),2004,40(6):979-983.
    [77] Xie S G, Zhan X J, Wang Z S. Thermolability of nitrifying activity in biologicalaerated filter [J]. Acta. Sci. Natural Univ. Pekinen,2005,41(2):282-288.
    [78]马骥,胡勇有,凌霄.水力负荷对不同流向曝气生物滤池性能的影响[J].黑龙江科技信息,2008,12:36-38.
    [79]邱立平,马军,张立昕.水力停留时间对曝气生物滤池处理效能及运行特性的影响[J].环境污染与防治,2004,26(6):433-436.
    [80] Pujol P, Lemmel H, Goudsilles M. A key point of nitrification in an upflowbiofiltration reactor[J]. Wat Sci Tech,1998,38(3):43-49.
    [81] Canler J P, Perretl J M. Biological aerated filters:assessment of the process basedon12sewage treatment palnts[J]. Wat. Sci. Tech.1994,29(10-11):13-22.
    [82] Payraudeau M, Paffoni C, Gousailles M. Tertiary nitrification in an up flowbiofilter on floating media:influence of temperature and load[J]. Wat. Sci. Tech.2000,41(4-5):21-27.
    [83]徐亚明,吴浩汀.气水比回流比及冲击负荷对BAF的影响[J].环境科学与技术,2004,27(6):47-49
    [84] H J Liu, F G Yang, S Y Shi,et al. Effect of substrate COD/N ratio on performanceand microbial community structure of a membrane aerated biofilm reactor[J].Journal of Environmental Sciences,2010,4(22):540-546.
    [85]严子春,何强,张涵.折流曝气生物滤池中污染物与微生物沿程变化规律[J].微生物学通报,2010,9(37):1278-1282.
    [86]肖文胜,徐文国,杨桔才.曝气生物滤池中生物膜的活性研究[J].北京理工大学学报,2003,23(5):655-657.
    [87]彭永臻,王海东,王淑莹.曝气生物滤池的微生物种群优化与分布[J].北京工业大学学报,2006,32(6):542-546.
    [88]邱立平,马军.曝气生物滤池的生物膜及其微生物种群特征[J].中国环境科学2005,25(2):214-217.
    [89]邱立平,王广伟,张守彬.上向流曝气生物滤池反冲洗实验研究[J].环境工程学报,2011,7(5):1522-1526.
    [90]张建锋,王磊波.滤池气水反冲洗强度控制指标的建立与分析[J].给水排水,2008,34(2):15-18.
    [91] Ik-Keun Yoo, Dong Jin Kim. Effects of Hydraulic Backwash Load on EffluentQuality of Upflow BAF[J]. J. Environ. Sci. Health,2001,36(4):575-585.
    [92] Boller, M, Gujer W, Tschui M. Parameters affecting nitrifying biofilm reactor[J].Wat. Sci. Tech.1994,29(10-11):1-11.
    [93] Markus Boller, Daniel Kobler,Gerhard Koch. Particle Separation, Solids Budgetsand Headloss Development in Different Biobiofilters [J]. Wat. Sci. Tech.1997,36(4):239-247.
    [94]孙群,邹伟国,王国华,等.高效生物滤池在污水处理中的应用[J].中国给水排水,2002,18(2):76-79..
    [95]张杰,陈秀荣.曝气生物滤池反冲洗的特性[J].环境科学,2003,24(5):58-61.
    [96] Lee Y W, Chung J, Jeong Y D, et.al. Backwash based methodology for theestimation of solids retention time in biological aerated biofilter[J]. EnvironmentalTechnology,2006,27:776-787.
    [97]徐哲明,童国璋,张磊.曝气生物滤池中有机底物的降解模型分析[J].环境科技,2010,23(1):4-7.
    [98]刘文洪,韩祯,程文等.曝气生物滤池中有机物降解的动力学特性研究[J].工程热物理学报,2010,31(4):609-612.
    [99]刘杰,赫俊国,李兴权.复合式生物硝化作用动力学模型[J].2008,34(2):54-56.
    [100]张波,石驰,吴春笃,等.曝气生物滤池去除有机物动力学模型的试验研究[J].技术与应用,2007,10:44-46.
    [101] Mann A T, Stephenson T. Modeling biological aerated filters for wastewatertreatment [J]. Wat. Res.1997,31(10):2443-2448.
    [102] Le Tallec X. Vidal A. Thornberg, D. Upflow biological filter: modeling andsimulation offiltration.[J]. Wat. Sci. Tech.1999,39(4):79–84.
    [103]张代钧,曹琳,严晨敏,等.生物膜多基质模型及其对BAF处理合成污水的模拟[J].中国环境科学,2005,25(2):231-235.
    [104] X Wu, W Y Yao, J Zhu,et al. Biogas and CH4productivity by co-digesting swinemanure with three crop residues as an external carbon source[J]. BioresourceTechnology,2010,11(101):4042-4047.
    [105] N Adouani, T Lendormi, L Limousy,et al. Effect of the carbon source on N2Oemissions during biological denitrification[J].Resources, Conservation andRecycling,2010,5(54):299-302.
    [106]贾艳萍,张兰河,王山山.碳氮比与氨氮负荷对序批式活性污泥法同步硝化反硝化的影响[J].化学工程,2012,40(5):6-10.
    [107]马斌,张树军,王俊敏,等. A/O+Anammox工艺处理低C/N城市污水的脱氮性能[J].中南大学学报(自然科学版),2011,8(42):2526-2530。
    [108] MaY, Peng Y Z, Wang S Y,et al. Fuzzy control of nitrate recirculation and externalcarbon addition in A/O nitrogen removal process[J]. Chinese Journal of ChemicalEngineering,2005,13(2):244-249.
    [109]郑俊,吴浩汀,程寒飞.曝气生物滤池污水处理新技术及工程实例[M].北京:化学工业出版社,2003,95
    [110]焦晨,陈悦.浅谈A/O前置反硝化及曝气生物滤池处理工艺在化学工业污水处理中的应用[J].内蒙古石油化工,2010,1:15-16.
    [111]陈媛,成炜.前置反硝化UBAF在城镇污水处理厂的应用[J].工业水处理,2010,30(6):75-77.
    [112] Allemande J E, Kim B J, Quivery D M, et al. Alkaline hydrolysis ofmunitions-grade nitrocellulose [J]. Wat. Sci. Technol.1994,30(3):63-72.
    [113]吕槛,赵永志,王佳伟.初沉污泥水解酸化对A2/O工艺强化除磷影响[J].北京工业大学学报,2008,9(34):981-985.
    [114]高永青,彭永臻,王建龙,等.剩余污泥水解酸化过程中胞外聚合物的影响因素研究[J].中国环境科学,2010,30(1):58~63.
    [115] Yang S F, Li X Y. Influences of extracellular polymeric substances (EPS) on thecharacteristics of activated sludge under nonsteady-state conditions [J]. Wat. Res.2009,44:91-96.
    [116]曾艳,张明青,唐琳等.曝气池活性污泥胞外聚合物对高分散悬浊液的絮凝性能研究[J].工业水处理,2011,3(5):24-26.
    [117]王兰,唐静,赵璇.微生物絮凝剂絮凝机理的研究方法[J].环境工程学报,2011,3(5):481-488.
    [118]徐强.污水处理节能减排新技术、新工艺、新设备[M].化学工业出版社,2010,1:146.
    [119]游卫强,杨燮明.新会龙泉污水处理厂BAF工艺的优化[J].化学工程与装备,2009(8):223-225.
    [120]黄绪达,王琳,王洪辉.麦岛污水处理厂BIOSTYR高效生物滤池设计[J].中国给水排水,2008,24(4):51-54.
    [121]国家环境保护保总局水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].中国环境科学出版社,2002:105,271,279.
    [122]朱大钧,张治平.5B-1型COD快速测定仪测定废水中CODCr方法探讨[J].新疆环境保护,2000,22(3):185~186
    [123]韩润平,王志武,吴新平,等.滴定法测定污水中的碳酸氢根和挥发性脂肪酸[J].河南科学,2003,21(3):278-280.
    [124]于鑫,张晓键,王占生.饮用水生物处理中生物量的脂磷法测定[J].给水排水,2002,128(15):1-5.
    [125] S Velten, M Boller, O K ster,et al.Development of biomass in a drinking watergranular active carbon (GAC) filter[J]. Water Research,2011,19(45):6347-6354.
    [126] W S Guo, H H Ngo, S Vigneswaran,et al. Effect of different flocculants onshort-term performance of submerged membrane bioreactor[J]. Separation andPurification Technology,2010,3(70):274-279.
    [127] F Hammes, F Goldschmidt, M Vital,et al. Measurement and interpretation ofmicrobial adenosine tri-phosphate (ATP) in aquatic environments[J]. WaterResearch,2010,13(44):3915-3923.
    [128]乔铁军,张晓健.原位基质摄取速率法检测微生物活性[J].中国给水排水,2002,18:80-82.
    [129] Matulewich V A, Strom P F, Finstein M S. Length of incubation for enumeratingnitrifying bacteria present in various environments [J].Appl. Microbiol.1975,29(2):265~268
    [130]鲁如坤.《土壤农业化学分析方法》[M].中国农业科技出版社,2000:257.
    [131] Pujol R, Canler J P. Biosorption and Dynamics of Bacterial Populations inActivated Sludge [J]. Wat. Res.1992,26(2):209~212.
    [132]孙美琴,彭超英,梁多.水解酸化预处理工艺及应用[M].四川环境,2003,4(22):52-55.
    [133]朱杰,黄涛.畜禽养殖废水达标处理新工艺[M].化学工业出版社,2010:83.
    [134]任健,李军,王洪臣. SRT对初沉污泥水解酸化影响的试验研究[J].中国给水排水,2009,5(25):15-19.
    [135]王晓青,杨顺生,杨少武.超声波污泥9d泥龄水解酸化情况的研究[J].污染防治技术,2011,24(1):4-8.
    [136]刘爽,袁林江,王振.污泥水解酸化过程中污染物的释出及其影响因素研究[J].环境工程学报,2009,7(3):1316-1320.
    [137] Zhang P, Chen Y G, Huang T Y, et al. Waste activated sludge hydrolysis andshort-chain fatty acids accumulation in the presence of SDBS in semi-continuousflow reactors: Effect of solids retention time and temperature[J]. ChemicalEngineering Journal,2009,148:348-353.
    [138]何作伟,程家迪,熊惠磊.剩余污泥水解酸化释放有机物的效果及影响因素研究[J].2011,37:216-219.
    [139]王而力,王雅迪,王嗣淇.西辽河不同粒级沉积物的氨氮吸附-解吸特征[J].环境科学研究,2012,9(25):1016-1023.
    [140]王君雅,吴蕾,李文文等.几种废渣对氨氮吸附性能研究[J].广西轻工业,2012,4:106-108.
    [141]王浩,陈吕军,温东辉.天然沸石对溶液中氨氮吸附特性的研究[J].生态环境,2006,15(2):219-223.
    [142]刘宏波,文湘华,赵芳,等.采用活性污泥富集与回收废水中碳源的实验研究[J].环境科学,2011,32(4):1042-1047.
    [143]孔海霞,袁林江,王晓昌.活性污泥对污水中有机物、铵和磷酸盐的生物吸附试验研究[J].西安建筑科技大学学报(自然科学版),2007,39(5):735-740.
    [144]刘宏波,文湘华,赵芳,等.采用活性污泥富集与回收废水中碳源的实验研究[J].2011,32(4):1042-1047.
    [145] B. Kartal, J. G. Kuenen,M. C. M. van Loosdrecht. Sewage Treatment withAnammox[J]. Science,2010,7(328):702-703.
    [146] Chen Y,Randall A A,Mccue T. The efficiency of enhanced biological phosphorusremoval from real wastewater affected by different ratio of acetic to propionic acid[J]. Water Res.2004,38:27-36.
    [147] Thomas M,Wright P,Blackall L,et al.Optimisation of Noosa BNR plant toimprove performance and reduce operating costs [J].Water Sci. Technol.2003,47(12):141-148.
    [148] A Soaresa, P Kampas, SMaillard,et al. Comparison between disintegrated andfermented sewage sludge for production of a carbon source suitable for biologicalnutrient removal[J]. Journal of Hazardous Materials,2010,175:733-739.
    [149] P.J. Strong,, B. McDonald, D.J. Gapes.Enhancing denitrification using a carbonsupplement generated from the wet oxidation of waste activated sludge[J].Bioresource Technology,2011,9(102):5533-5540.
    [150] Y. Fernández-Nava, E. Mara ón, J. Soons,et al.Denitrification of high nitrateconcentration wastewater using alternative carbon sources[J]. Journal ofHazardous Materials,2010,173:682-688.
    [151] Sunil S. Adav, Duu-Jong Lee, J. Y. Lai. Enhanced biological denitrification ofhigh concentration of nitrite with supplementary carbon source[J]. AppliedMicrobiology and Biotechnology,2010,3(85):773-778.
    [152]许文峰,李桂荣,汤洁.不同碳源对缺氧生物滤池生物脱氮的试验研究[J].吉林大学学报(地球科学版),2007,37(1):139-143.
    [153] Hamlin H J, Michaels J T, Beaulaton C M, et al. Comparing denitrification ratesand carbon sources in commercial scale upflow denitrification biological biofilters in aquaculture[J]. Aquacultural Engineering,2008(38):79-92.
    [154] Elefsiniotis P, Li D. The effect of temperature and carbon source on denitrificationusing volatile fatty acids[J]. Biochemical Engineering Journal,2006,28:148-155.
    [155] Carrera J, Vicent T, Lafuente F J. Influence of temperature on denitrification of anindustrial high-strength nitrogen wastewater in a two-sludge system [J]. Water S.A.2003,29(1):11-16.
    [156] Carrera J, Baeza J A, Vicent T, et al. Biological nitrogen removal of high-strengthammonium industrial wastewater with two-sludge system [J]. Water Research,2003,37:4211-4221.
    [157] Cervantes F, Monroy O, Gomez J. Influence of ammonium on the performance ofa denitrifying culture under heterotrophic conditions [J]. Appl. Biochem.Biotechnol.1999,81:13-21.
    [158] Oh J, Yoon S M, Park J M. Denitrification in Submerged Biological ofConcentrated Nitrate Wastewater[J]. Water Science and Technology,2000,43(1):217-223.
    [159]徐亚明,吴浩汀.气水比回流比及冲击负荷对曝气生物滤池的影响[J].环境科学与技术,2004,27(6):46-49.
    [160]曹雪梅. A2/O工艺反硝化除磷的实现及性能的研究[D].哈尔滨工业大学硕士学位论文,2007:39-41.
    [161]郑俊,汪荣,张刚.回流比对前置反硝化BAF处理效果的影响研究[J].中国给水排水,2007,23(21):24-27.
    [162]郭俊元,杨春平,曾龙云,等.回流比水力负荷对前置反硝化生物滤池工艺处理污水的影响研究[J].环境科学学报,2010,30(8):1615-1621.
    [163] Strous M, Heijnen J J, Kuenen J G, et al. The sequenceing batch reactor as apowful tool for the study of slowly growing anaerobic ammonium oxidizingmicroorganisms[J]. Appllied Microbiology Biotechnology,1998,50(5):589-596
    [164]朱静平,胡勇有,闫佳.有机碳源条件下厌氧氨氧化ASBR中的主要反应[M].环境科学,2006,7(27):1353-1357.
    [165] Park J W, Gnareazr,Czyk J J. Gravity Separation of Biomass Washed out fromAerated Submerged Filter [J]. Enviormnent Technology,1994,15:945-955.
    [166] Carrera J, Baeza J A, Vicent T, et al. Biological nitrogen removal of high-strengthammonium industrial wastewater with two-sludge system [J]. Water Research,2003,37:4211-4221.
    [167]闫立龙,李娟,张宝杰.曝气生物滤池中氨氮去除影响因素试验分析[M].城市环境与城市生态,2006,3(119):31-33.
    [168]王春荣,王宝贞,王琳.温度及氨氮负荷对曝气生物滤池硝化作用的影响[M].城市环境与城市生态,2004,4(17):24-27.
    [169] Fdz Polanco F. Spatial distribution of heterotrophs andnitrifiers in a submergedbiofilter for nitrification[J]. Wat Reas,2000,34(16):4081-4089.
    [170]李雨霏,韩洪军,张凌瀚.前置反硝化曝气生物滤池调试中出现的问题及解决措施[J].中国给水排水,2009,25(12):1-4.
    [171] Zhu S M, Chen S L. Effects of Organic Carbon on Nitrification Rate in FixedFilm Biobiofilters[J]. Aquacultural Engineering,2001,25(1):1-11.
    [172]张光明,谢寿昌.生态位概念演变与展望[J].生态学杂志,1997,16(6):46-51.
    [173] Grinnell J. The niche relationship of the California Thrasher [J]. Auk.1917,34:27-433.
    [174]李雪梅,程小琴.生态位理论的发展及其在生态学各领域中的应用[J].北京林业大学学报,2007,2(29):294-298.
    [175]王海东,王淑莹,彭永臻.进水负荷对硝化菌与异养菌竞争关系的影响[J].中国给水排水,2006,23(22):26-29.
    [176]赵殿生,刘冰,余国忠,等.贫营养条件下生物滤池中异养细菌和硝化细菌的关系[J].给水排水,2011,37:148-151.
    [177] Polanco F F, Mendez E, Uruena M A, et al. Spatial distribution of heterotrophsand nitrifiers in a submerged biobiofilter fornitrification[J]. Wat. Res.2000,34(16):4081-4089.
    [178] Wanner O, Gujer W. Competition in biofilms [J]. Wat. Sci. Technol.1995,17(2/3):26-39.
    [179] Van Loosdrecht M C M, Tijhuis L, Wijdieks A M S,et al. Population distributionin aerobic biofilms on small suspended particles[J]. Wat. Sci. Technol.1995,31(1):163-171.
    [180] Benkirane-Jessel N, Lavalle P, Hobsch E, et al. Short-time timeing of theBiological Activity of Functionalized Polyelectrolyle Multilayers [J].AdvancedFunctional Materials,2005,15(4):648-654.
    [181] Watanabe Y, Masuda S, Ishiguro M. Simultaneous nitrification and denitrificationin microaerobic biofilms [J]. Wat. Sci. Technol.1992,26:511-522.
    [182] Kloepper J W, Zablotowiez R M, Tipping B, et al. The Rhizosphere and PlantGrowth [J].1991,6:315-326.
    [183]杨威,刘苏闵,郭坚华.细菌定殖能力与其生物防治功能相关性研究进展[J].中国生物防治,2010,11(26):90-94.
    [184]凌霄,胡勇有.曝气生物滤池反冲洗关键因子的确定及机理浅析[J].给水排水,2005,31:19-23.
    [185]高永超,王加宁,迟建国等.污染土壤微生物群落结构分子鉴定技术研究进展[J].生物技术,2012,2(22):91-94.
    [186]丁嫚,,赵翠,温东辉.分子生物学技术在废水生物处理中的应用[J].环境工程,2010:86-92
    [187]冯叶成,王建龙,钱易.生物脱氮新工艺研究进展[J].微生物学通报,2001,4:15-19.
    [188]李晓东.城市污水处理厂数据挖掘及相关技术研究[D].湖南大学博士学位论文,2007,97.
    [189] Leslie Grady C P, Glen T D, Henry C L. Biological Wastewater Treatment [M].张锡辉,刘勇弟译,废水生物处理[M].化学工业出版社,2003:469
    [190]Costerton, Stoodley J W, Lewandowski Z, et al. Microbial biofilms[J]. AnnualReview of Microbiology,1995,49:711-745.
    [191] I Klapper, J Dockery. Mathematical Description of Microbial Biofilms[J]. SIAMRev.,2010,52(2):221–265.
    [192] William G Characklis, Kevin C Marshall. Modeling mixed population biofilms[M]. New York: Wiley,1990:397-443.
    [193] Bryan A. Stubblefield, Kristen E. Howery, Bianca N. Islam,et al. AppliedMicrobiology and Biotechnology[J].2010,6(86):1941-1946.
    [194] Wang C R, Li J, Wang B Z. Development of an empirical model for domesticwastewater treatment by biological aerated filter[J]. Process Biochemistry,2006,(41):778-782.
    [195] Bark P S, Dold P L. General model for biological nutrient removal in activatedsludge system: Model presentation [J]. Water Environ. Res.1997,68(5):969-984.
    [196] Bader E G. Kinetics of double-substrate limited growth [J]. Microbia PopulationDynamics,1982:1-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700