用户名: 密码: 验证码:
中长链脂肪酸淀粉酯的酶法合成及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中长链脂肪酸淀粉酯是一类新型的化学改性淀粉,因其具有较好的粘度、透明度、疏水性、乳化性、冻融稳定性、抗凝沉性和可生物降解性,它的合成现已成为变性淀粉工业中的一个新兴研究热点。但是在目前的研究中,中长链脂肪酸淀粉酯的合成主要采用化学法。由于化学法所需的极端pH值、高温高压高机械条件以及有机溶剂的加入,不仅造成了环境污染和能源浪费,同时危害到人体健康,因此大大限制了其发展与应用。所以,开展生物法合成中长链脂肪酸淀粉酯的研究,生产纯天然、绿色更适合应用于食品、医药以及精细化学品等行业的中长链脂肪酸改性淀粉具有十分重要的现实意义。目前主要在有机溶剂介质中进行酶催化法制备中长链脂肪酸淀粉酯,有机溶剂的使用不仅限制了产品的应用,同时也对酶的催化活性产生一定的抑制作用。发展至今,限制酶促中长链脂肪酸淀粉酯合成的关键问题主要包括:淀粉颗粒结构紧密、活性羟基深藏在分子内部、淀粉和中长链脂肪酸的极性相差较大不易混溶,这就使酶促酯化反应很难进行。为解决以上问题,本论文主要从淀粉的预处理活化、酶的筛选、酰化试剂的选择和反应体系的建立等方面进行深入研究。以天然玉米淀粉为原料,选用各种碳链长度的中长链脂肪酸为酰化剂,脂肪酶为催化剂,在无溶剂体系中进行中长链脂肪酸淀粉酯的绿色合成,并对处理淀粉和各中长链脂肪酸淀粉酯的理化性质进行分析。通过对酶促反应条件的优化、反应机理的探索和反应动力学模型的建立,以棕榈酸为例,揭示酶促玉米淀粉与中长链脂肪酸发生酯化反应所需的必要条件和一般规律。本研究所获得的实验数据不仅将补充和完善现有非水相体系酶催化反应理论,同时也为中长链脂肪酸淀粉酯的实际生产和应用提供一定的理论依据。主要研究内容和结论如下:
     1、玉米淀粉的预处理活化及对酶促酯化反应的影响。为解决原玉米淀粉颗粒结构紧密不易与中长链脂肪酸发生酯化反应的难题。用NaOH/尿素水溶液在低温条件下对玉米淀粉进行预处理。选择碳链长度适中、熔点在酶最适反应温度范围内的棕榈酸作为中长链脂肪酸的代表性底物,以酶催化预处理淀粉与棕榈酸发生酯化反应的酶促反应初速度和产物取代度为考察指标,获得玉米淀粉处理过程的重要参数值为:氢氧化钠/尿素水溶液的浓度为9%、氢氧化钠与尿素的质量比为2、氢氧化钠/尿素水溶液的预冷温度为-9℃、乙醇的添加量为50%。在此条件下淀粉的冷水溶解度高达96.42%,平均颗粒直径小于0.10μm,结晶度由原来的24.82%降低至10.32%,此时酶的催化反应速度最大(0.34mmol·h-1·mg-1)比催化原玉米淀粉发生酯化反应的速度高出4个数量级,并且棕榈酸预处理淀粉酯的取代度(0.82)明显高于原玉米淀粉酯(0.23×10-2)。原玉米淀粉经预处理后,使酶促酯化反应活性提高的机理在于:预处理后淀粉颗粒粒径越小酶活性中心对其的识别能力越强;结晶度越小活性羟基暴露的越完全,越易进入到酶周围的水化层与分布在水化层表面的棕榈酸发生酯化反应;从而使酶促酯合成的反应速度加快,产物取代度变大。
     2、甲醇醇解-气相色谱分析测定中长链脂肪酸淀粉酯取代度方法的建立。甲醇醇解-气相色谱分析测定取代度的方法分为两部分:其一,中长链脂肪酸淀粉酯的甲酯化,甲酯化的程度在取代度的测定中起到至关重要的作用。以棕榈酸淀粉酯为例对甲酯化的条件进行了优化,并以棕榈酸淀粉酯的测定值与真实值的拟合度为指标,获得最佳甲酯化条件为:甲醇用量2mL/30mg、甲醇钠用量8mg/30mg、甲酯化温度为70℃、甲酯化时间为40min;其二,脂肪酸甲酯在气相色谱仪中的定量测定,以棕榈酸淀粉酯为例,首先将棕榈酸甲酯的量转化成与淀粉发生酯化反应的棕榈酸的量,再通过公式计算出棕榈酸淀粉酯的取代度。该方法与广泛应用的皂化-滴定法相比,误差小、重复性好更适合用于中长链脂肪酸淀粉酯取代度的测定。
     3、以棕榈酸淀粉酯的酶催化合成为例,构建酶促中长链脂肪酸淀粉酯的合成体系。在所研究的脂肪酶中,Novozym435在非水相体系中表现出较高的催化预处理淀粉与棕榈酸发生酯化反应的催化活性。以棕榈酸为酯化剂,固定化脂肪酶Novozym435为催化剂,分别在无溶剂体系和微溶剂体系下进行预处理玉米淀粉与棕榈酸的酶促酯化反应。并以取代度和酶酯化比活力为指标考察不同反应体系中酶的催化反应活性。在微溶剂体系中,由于高极性有机溶剂夺取了脂肪酶周围的必须水,酶的刚性增强从而使酶酯化比活力下降,因此在无溶剂体系下可以获得取代度高达1.04的棕榈酸淀粉酯,而在微溶剂体系下只能获得取代度为0.72×10-2的棕榈酸淀粉酯。最终选定无溶剂体系作为Novozym435催化预处理玉米淀粉与中长链脂肪酸发生酯化反应的反应介质。
     4、无溶剂体系酶促中长链脂肪酸淀粉酯的合成。以平均粒径<0.10μm的预处理玉米淀粉为原料,不同碳链链长度的中长链脂肪酸(C8-C20)为酯化剂,固定化脂肪酶Novozym435为催化剂,在无溶剂体系下进行各中长链脂肪酸淀粉酯的合成。研究发现无溶剂体系中,固定化脂肪酶Novozym435对碳链长度在C8-C16之间的脂肪酸均具有很好的催化能力,酶的酯化比活力基本保持在1.30mmol·h-1·mg-1左右。
     5、以棕榈酸淀粉酯的酶催化反应合成为例,探讨无溶剂体系酶促中长链脂肪酸淀粉酯的合成机理。在无溶剂体系中,底物分子周围没有有机溶剂,因此不会对酶活力产生影响;同时在反应过程中酶与底物直接接触,无需去溶剂效应这一过程而使反应速度加快;通过控制反应体系的水活度不仅可以为脂肪酶提供发挥其催化活性所必需的水,同时也可以改变酶促反应的平衡,避免水解反应的发生。反应体系适度的水活度使固定化脂肪酶表面形成一层均匀连续的、厚度适宜的水化层。由于脂肪酶催化玉米淀粉与脂肪酸的酯化反应属于界面反应,水化层的连续性和厚度直接影响着底物在油水界面的分布和向脂肪酶活性中心的扩散;预处理淀粉分子上的羟基(亲水性)和棕榈酸上的羧基(疏水性)具有相反的极性,因而适宜比例的两底物可以有序地分布排列在固定化脂肪酶分子的表面;从而在酶分子表面形成水分子层和底物分子层的油水界面,这种水分子层和底物分子层的形成不仅有利于底物分子流动,同时油水界面的形成也为脂肪酶发挥其催化活性提供了必要条件;在对无溶剂体系脂肪酶催化玉米淀粉与棕榈酸酯化反应的反应进程研究中发现,反应速度出现两次突然加快的现象,第一次加速主要是由于底物最大程度的克服了体系中的外扩散和内扩散限制从而使酶促反应速度达到最大;而第二次加速是由于棕榈酸淀粉酯的生成和积累使其发挥了良好的表面活性剂效应,有利于脂肪酶周围油水界面的形成和底物的分布与排列。同时,棕榈酸淀粉酯具有疏水性有助于其生成后迅速脱离酶的催化活性中心,从脂肪酶表面的水化层逃离出来,从而促进酶促酯化反应的进行,避免水解反应的发生,提高酶催化酯化反应活性使反应速度突然加快。产物棕榈酸淀粉酯的HLB值和取代度对脂肪酶Novozym435的催化活性具有一定的影响,产物的HLB(亲水亲油平衡值)越小,取代度越高酶促反应的初速度越大,其对酶酯化活性的促进作用越强。
     6、以棕榈酸淀粉酯的酶催化反应合成为例,对无溶剂体系酶促预处理玉米淀粉与中长链脂肪酸发生酯化反应的动力学进行研究。对无溶剂体系中影响酶催化活性的条件进行优化,最佳条件为:底物摩尔比1:5;温度65℃;时间24h;酶用量5%;转速180r/min;初始水活度为0.57。在该反应条件下无底物扩散限制,因此可以采用底物摩尔数与反应初速度的关系对反应动力学模型进行推导。研究表明,无溶剂体系Novozym435催化预处理玉米淀粉与棕榈酸的酯化反应符合乒乓反应机制。反应动力学模型为V=(1.7350×Cfatty-acid×Cstarch)/(Cfatty-acid×Cstarch+0.0156×Cstarch+2.3947×Cfatty-acid)。酶促反应顺序为:酰基供体棕榈酸(A)首先与酶结合形成棕榈酸-酶复合体(EA),EA再转化成棕榈酸酰基-酶复合体(EI),此时释放H20(Q)。然后EI再与酰基受体预处理玉米淀粉形成另一个二元复合体(EIB),由于EIB不稳定,最终释放出棕榈酸淀粉酯(P)以及酶。
     7、预处理淀粉及各中长链脂肪酸淀粉酯理化性质分析。原玉米淀粉经NaOH/尿素水溶液处理后其冷水溶解度和淀粉乳的透明度、凝沉稳定性、冻融稳定性提高,但粘度下降。预处理淀粉经酯化改性后,使其具有良好的乳化性和乳化稳定性,且乳化效果明显好于明胶和蔗糖酯,但与单甘脂相似。同时进一步提高了淀粉乳的粘度、凝沉稳定性和冻融稳定性。与辛烯基琥珀酸淀粉酯和醋酸淀粉酯相比,低取代度中长链脂肪酸淀粉酯的乳化性和冻融稳定性要优于辛烯基琥珀酸淀粉酯和醋酸淀粉酯。且随取代度的升高,乳化性先增强而后降低到40%左右,而冻融稳定性则随取代度的升高而升高。在对中长链脂肪酸淀粉酯乳化性的评价中得出,随中长链脂肪酸淀粉酯质量浓度的增加其乳化性和乳状液稳定性增强;随乳化油量的增多,乳状液稳定性下降;贮存温度越高,乳状液越不稳定;中长链脂肪酸淀粉酯乳状液具有降低油-水界面张力的能力,并随其质量浓度的升高而升高。但在不同油水界面产生的界面压力不同,经实验发现在橄榄油-水界面产生的界面压比在大豆油-水中产生的界面压大。
Chemical modification starch is often required to better suit its properties to specific applications. Many reports exist in literature pertaining to the preparation of starch esters or its components with the ultimate aim of significantly modifying the physical-chemical properties of starches and imparting suitable mechanical characteristics so as to render them more useful as engineering materials than the native starch. Although the introduction of an ester group into starch is an important chemical modification task, it is very difficult to synthesize high substituted starch derivatives, mainly because of the almost impossible proposition of dissolving granular starch in a suitable medium. Sophisticated experimental techniques and systems of solvents are used to achieve a homogeneous reaction medium for modification of the chosen starch. Unlike chemical esterification modification, an enzymatic one is an environmentally friendly method which occurs under milder conditions. The use of lipase as catalyst for ester production has a great potential. In fact, using a biocatalyst eliminates the disadvantages of the chemical process by producing very high purity compounds with less fewer or no downstream operations. However, the intact starch granules inhibit medium-long chain fatty acids from making contact with the molecules in the crystalline region, thus the chemical reactivity and reaction efficiency of native starch is usually low. And the starch and medium-long chain fatty acids are very difficult to immiscible, because of their polarity are opposite. So the enzymatic esterification of starch with medium-long chain fatty acid is extreme difficult to conduct. The aim of this work was to modify the structure in the crystalline region, or decrease the size of crystalline regions to increase reaction activity of starch and biosynthesize medium-long chain fatty acid esters of starch (MLFES) using lipase Novozym435as catalyst in non-aqueous system. The main contents and conclusions were as followed:
     In order to improve the esterification activity of native corn starch (NS), NS was pretreated by using NaOH/urea/HbO solution. The optimum pretreatment conditions were the ratio of NaOH to urea is2, the concentration of the NaOH/urea/H2O solution is9%, the amount of ethanol is50%, the pre-cooling temperature is-9℃, and the concentration of starch is5%. It has been found that the average particle size of pretreatment corn starch (PS) decreased to less than0.1Oμm, smaller than those of NS (4-15μm). XRD revealed that crystalline pattern of PS was VH-type, which was different from that of NS (A-type). The effects of pretreatment on esterification activity of corn starches were investigated by analyzing the initial rate of enzymatic esterification and the degrees of substitutions (DS) of the esterification products. The initial rate of enzymatic esterification of PS with palmitic acid was0.34mmol·h-1·mg-1, it was high to four orders of magnitude than enzymatic esterification of NS with palmitic acid. The maximum DS of pretreatment starch palmitate was0.82, while the DS of native starch palmitate was very low and even could not be detected.
     The methanolysis-GC method was established to determine the DS of MLFES. Transesterification of acetyl groups from MLFES to methanol has been employed, where the resulting methyl acetate was distilled, then analysed with GC. Once the MLFES was quantified, the average mol of acyl groups per anhydroglucose unit was calculated to give the DS of MLFES. The optimum methanolysis reaction conditions were30mg of starch palmitate dissolved in1mL DMSO and mixed with1mL of sodium methoxide (0.07M) in methanol solution, refluxed for40min at70℃. The accuracy and reproducibility of the method was tested by replicate analysis of MLFES that DS was0.20, showing a standard deviation of less than3%.
     Enzymatic synthesis of starch palmitate was used for as an instance to establishment of the reaction system of enzymatic synthesis MLFES. The activities of a number of commercially available lipases such as Novozym435, PPL and Lipozyme TL IM were evaluated, amongst which Novozym435was found to be the most active. The esterification specific activity of enzyme and the DS of starch palmitate were employed to investigate the enzymatic activity in different reaction system. In micro-solvent system, the DS of starch palmitate was only0.72x10-2, it was distinct lower than the DS of starch palmitate that synthesis in solvent-free system. This mainly because of the essential water of lipase was carried off by high polar solvent that made the rigidity of enzyme increasing. The increase of rigidity of enzyme must result in the esterification specific activity of enzyme weakening. So, the solvent-free system was selected as the reaction medium for enzymatic esterification of PS with medium-long chain fatty acids.
     Study on the solvent-free synthesis mechanism of MLFES catalyzing by Novozym435. In solvent-free system, the enzyme activity could not be inhibited by solvent and could contact with substrate directly without the process of removing solvent from the surface of enzyme and substrate, so the reaction rate was accelerated. Novozym435could catalyze esterification of PS with medium-long chain fatty acid (Cg-C)6) in solvent-free system, and the esterification specific activity of enzyme was about1.3mmol·h-1·mg-1. The positive factors for enzymatic synthesis of MLFES include suitable aw. right proportion of substrates, the generation and accumulation of MLFES in solvent-free system. The suitable aw (0.57) made the formation of a continuous, uniform and moderate thickness water layer on the surface of immobilized lipase. Two substrates with suitable proportion (1:5) could been arranged on the surface of immobilized lipase orderly, because of the opposite polarity of the hydroxyl (hydrophilic) of PS and the carboxyl (hydrophobic) of palmitic acid. Thus, there was a substrate molecules layer on the water molecules layer of lipase that not only conduced to the flow of substrate molecules, but also contributed to the formation of oil-water interface. The formation of oil-water interface is the necessary condition for lipase to play its catalytic activity. The suddenly acceleration phenomenon happened two times in the enzymatic synthesis process. The first acceleration was mainly due to the external and internal diffusion limitation of reaction system had been overcome completely, so the reaction rate was speed up suddenly. And the second acceleration was mainly because of the generation and accumulation of starch palmitate. Starch palmitate could play a good surfactant role that not only contributed to the formation of oil-water interface, but also affected the distribution and arrangement of substrates on oil-water interface. The HLB (Hydrophile-Lipophile Balance Number) value and DS of MLFES affected the catalytic activity of Novozym435. The smaller HLB value and the higher DS of MLFES could speed up the enzymatic initial rate. The starch palmitate could separate itself from the enzyme catalytic activity site and escaped from the hydration layer of lipase as quickly as it had been generated, because of its hydrophobic. So that also accelerated the enzymatic esterification reaction and avoided the occurrence of hydrolysis reaction.
     Kinetic studies of esterification reactions catalyzed by Novozym435leading to the synthesis of starch palmitate from PS and palmitic acid in solvent-free system were investigated in detail. Initial reaction rates were determined from kinetic runs involving the molar ratio of substrate (PS:palmitic acid=1:5), the reaction temperature (65℃), amount of lipase (5%), rotate speed (180r/min), initial aw(0.57). Graphical double reciprocal plots showed that the kinetics of the enzyme catalyzed reactions exhibited Ping-Pong Bi-Bi mechanism. An attempt to obtain the best fit of this kinetic model through computer simulation yielded in good approximation, the kinetic equation was v=(1.7350×Cfatty-acid×Cstarch)/(Cfatty-acid×Cstarch+0.0156×Cstarch+2.3947×Cfatt)-acid).The enzymatic reaction order was expounded as follow. First, acyl donor-palmitic acid (A) combined with enzyme (E) into a compound of palmitic acid-enzyme (EA). Then, EA transformed into another compound of palmitoyl-enzyme (EI) and released H2O (Q). Second, El combined with acyl acceptor-pretreatment starch (B) into a dualistic compound (EIB). At last, EIB break up into palmitic acid ester of starch (P) and E, because of the instability of EIB.
     The physical-chemical properties of PS and MLFES were studied. The crystallinity decrease and hydrophilic group exposure of PS allowed water enter into the interior of starch, that made the improvement of its cold-water solubility and transparency, but the viscosity of PS decreased. In addition, MLFES exhibited higher freeze-thaw stability and retrogradation stability. The introduction of medium-long chain fatty acid endowed starch with better emulsifiability and emulsifiability stability. And the emulsifying effectiveness of MLFES was better than gelatin and sucrose ester but similar to monostearin. Compare with octenyl succinic starch ester and acetic acid starch ester, the emulsifiability and freeze-thaw stability of low DS of MLFES were superior to octenyl succinic anhydride starch ester and acetate starch ester. The results of emulsifiability evaluation experiment showed that the emulsifiability and the emulsification stability of MLFES increased with the increase of its concentration, storage temperature, but decreased with the increase of amount of emulsified oil. The MLFES could reduce the oil-water interfacial tension, and the reduce capacity increased with the increase of its concentration. But, the reduce capacity was different, when applying to emulsify different oil.
引文
[1]Brain W Peckham. The first hundred years corn reifining in the United States. Starch,2001, 53:257-260
    [2]张燕萍.变性淀粉制造与应用.北京:化学工业出版社,2001:1-2
    [3]刘亚东,金征宇.变性淀粉在我国应用研究现状及发展趋势分析.粮食与油脂,2005,10:7-10
    [4]罗勤贵.变性淀粉在食品中的应用现状.中国食品质量报,2008,20(7):1-3
    [5]Donald A M, Waigh T A, Jenkins P J. Internal structure of starch granules revealed by scattering studies. In:Frazier P J, Donald A M, Richmond P (Eds.), Starch:Structure and Functionality. The Royal Society of Chemistry:Cambridge,1997:172-179
    [6]耿凤英.预处理对淀粉结构及化学反应活性的影响.天津大学博士论文,2010:2-5
    [7]Daniel J G, Brigitte B, Paul M B. Microscopy of starch:evidence of a new level of granule organization. Carbohydrate Polymers,1997,32(3-4):77-191
    [8]Vander Burgt Y E M, Bergsma J, Bleeker I P. Distribution of methyl substituents over crystalline and amorphous domains in methylated starches. Carbohydrate Research,1999,320:100-107
    [9]Vander Burgt Y E M, Bergsma J, Bleeker I P. Distribution of methyl substituents in amylose and amylopectin from methytated potato starches. Carbohydrate Research,2000,325:183-191
    [10]Aburto J, Alie I, Borredon E. Preparation of long chain esters of starch using fatty acid chlorides in the absence of an organic solvent. Starch/Stiirke,1999,51(4):132-135
    [11]汪连爱.双光束双波长分光光度计测定稻米中直链淀粉的方法.粮食与饲料工业,1999,3(28):45-46
    [12]Tester R F, Karkalas J, Qi X. Starch-composition, fine structure and architecture. Journal of Cereal Science,2004(39):151-165
    [13]Cheetham N W H, Tao L P. Variation in crystalline type with amylose content in maize starch granules. Carbohydrate Polymers,1998,36:277-284
    [14]具本植,尹荃,张淑芬,杨锦宗.疏水化淀粉衍生物研究进展.化学通报,2007,10:1-7
    [15]刘东亚,金征宇.变性淀粉在我国应用、研究现状及发展趋势分析.粮食与油脂,2005,10:7-10
    [16]姚献平,郑丽萍.淀粉衍生物及其在造纸中的应用技术.北京:中国轻工业出版社,1999:6-15
    [17]葛杰,张功超,白立丰.变性淀粉在我国的应用及发展趋势.黑龙江八—农垦大学学报,2005,17(1):69-72
    [18]罗勤贵.变性淀粉的生产与应用现状.粮食加工,2006,31(6):50-53
    [19]张天胜.生物表面活性剂及其应用.北京:化学工业出版社,2005:3-10
    [20]吕生华,马建中.降解淀粉/DMDAAC-AM接枝共聚物复鞣剂的合成及应用.精细化工,2003,20(9):561-563
    [21]Richard F T, John K, Xin Q. Starch-composition, fine structure and architecture. Journal of Cereal Science,2004,39(2):151-165
    [22]张本山,张友全,曾新安,杨连生.预糊化玉米淀粉亚微晶结构及性质的研究.郑州工程学院学报,2000,21(4):23-26
    [23]张干伟,童群义.淀粉来源及预处理方式对淀粉接枝共聚反应的影响.无锡轻工大学学报,23(6):23-26
    [24]梅小峰,朱谱新,吴大诚.淀粉糊化对接枝共聚反应的影响.棉纺织技术,2005,33(5):261-264
    [25]Gunaratne A, Hoover R. Effct of heat-moisture treatment on the stmcture and physicochemical properties of tuber and root starches. Carbohydrate Polymers,2002,49(4):425-437
    [26]Jacobs H, Mischenko N, Koch M H J. Evaluation of the impact of annealing on gelatinisation at intermediate water content of wheat and potato starches:A differential scanning calorimetry and small angle X-ray scattering study. Carbohydrate Research,1998,306:1-10
    [27]Hoover R, Vasanthan. Effect of heat-moisture treatment on the structure and physicochemical properties of cereal, legume and tuber starches. Carbohydrate Research,1994,252:33-53
    [28]Frano C M L, Ciacco. Effect of heat-moisture treatment on the enzymetic susceptihility of corn starch granules. Starch/St rke,1995,47:223-228
    [29]Perera C, Hoover. Influence of hydroxypropylation on retrogredntion properties of native, defatted and heat-moisture treated potato starches. Food Chemistry,1999,64:361-375
    [30]徐忠,缪铭,王鹏.湿热处理对不同淀粉颗粒结构及性质的影响.哈尔滨商业大学学报(自然科学版),2005,21(5):649-653
    [31]赵凯,张守文,方桂珍.压热处理对玉米淀粉颗粒结构及热焓特性的影响研究.食品科学,2004,25(11):31-33
    [32]Baldwin P M, Adler J, Davies M C. Starch damage part 1:Characterization of granule damage in ball-milled potato starch study by SEM. Starch/St rke,1995,47:247-251
    [33]Tamaki S. Structural change of potato starch granules by ball-mill treatment. Starch/Strke,1997, 49:431-436
    [34]Huang Z Q, Lu J P, Li X H. Effect of mechanical activation on physico-chemical properties and structure of cassava starch. Carbohydrate Polymers,2007,68:128-135
    [35]黄祖强,童张法,胡华宇.机械活化对木薯淀粉冻融稳定性的影响.食品工业科技,2006,3(27):58-60
    [36]Huang Z Q, Xie X L, Chen Y. Ball-milling treatment effect on physicochemical properties and features for cassava and maize starches. Comptes Rendus Chimie,2008,11:73-79
    [37]Luo Z G, He X W, Fu X. Effect of microwave radiation on the physicochemical properties of normal maize, waxy maize and amylomaize V starches. Starch/Starke,2006,58:468-472
    [38]邱怡,叶君,毕彦霖.微波辐射下高含水量木薯淀粉的热效应及结晶结构的变化.造纸科学与技术,2007,26(2):34-36
    [39]Lewandowicza G, Jankowski T, Fornal J. Effect of microwave radiation on physico-chemical properties and structure of cereal starches. Carbohydrate Polymers,2000,42:193-199
    [40]Mason T J, Paniwnyk L, Lorimer J P. The uses of ultrasound in food technology [J]. Ultrasonics Sonochemistry,1996,3(3):253-260
    [41]赵奕玲,廖丹葵,张友全.超声波对木薯淀粉性质及结构的影响.过程上程学报,2007,7(6):1138-1143
    [42]Renata C B, Bozena R, Salah L. Degradation of chitosan and starch by 360 kHz ultrasound. Carbohydrate Polymers,2005,60(2):175-184
    [43]罗志刚,扶雄,罗发兴.超声处理下水相介质中高链玉米淀粉糊的性质.华南理工大学学报(自然科学版),2008,36(11):74-78
    [44]Kerf M D, Mondelaers W, Lahorte P. Characterisation and disintegration properties of irradiated starch. International Journal of Pharmaceutics,2001,221(1-2):69-76
    [45]Joseph O A, Kwaku G D, Amanda M. Effect of y-irradiation on some physicochemical and thermal properties of cowpea (Vigna unguiculata L. Walp) starch. Food Chemistry,2006,95: 386-393
    [46]Joseph O A, Kwaku G D, Amanda M. Functional properties of cowpea (Vigna unguiculata L. Walp) flours and pastes as affected by y-irradiation. Food Chemistry,2005,93:103-111
    [47]Graham J A, Panozzo J F, Lim P C. Effects of gamma irradiation on physical and chemical properties of chickpeas (Cicerarietinum). Journal of the Science of Food and Agriculture,2002, 82:1599-1605
    [48]Nemtanu M R, Minea R, Kahraman K. Electron beam technology for modifying the functional properties of maize starch. Nuclear Instruments and Methods in Physics Research A,2007, 580:795-798
    [49]Kang K, Kim J K, Kim S K. Three stage hydrolysis pattern of rice starch by acid treatment. J. Appl. Glycosci.,1994,4:201-204
    [50]Vasanthan T, Bhatty R S. Physicochemical properties of small-and large-granule starches of waxy, regular, and high-amylose barleys. Cereal Chemistry,1996,73:199-207
    [51]孙秀萍.酸水解淀粉制备淀粉微晶及其结晶结构与性质的研究.天津大学硕士论文,2003:48-72
    [52]Thirathumthavorn D, Charoenrein S. Thermal and Pasting Properties of Acid-treated.Rice Starches. Starch/Starke,2005,57:217-222
    [53]Wang Y J, Truong V D, Wang L F. Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydrate Polymers,2003,52:327-333
    [54]Oosten B J. Tentative hypothesis to explain how electrolytes affect the gelatinization temperature of starches in water. Starch/St rke,1982,34:233-240
    [55]Chen J, Jane J. Preparation of granular cold-water-soluble starches by alcoholic-alkaline treatment. Cereal Chemistry,1994,71 (2):618-622
    [56]秦海丽,顾正彪.酒精碱法制备颗粒状冷水可溶淀粉的研究进展.粮食与饲料工业,2005,1:18-19
    [57]阮少兰,刘亚伟,阮竞兰.颗粒冷水可溶淀粉制备技术研究.中国粮油学报,2005,20(4):29-33
    [58]高群玉,蔡丽明,陈惠音.颗粒状冷水可溶马铃薯淀粉的制备及性质研究.食品工业科技,2007,28(3):117-120
    [59]高群玉,蔡丽明,陈惠音.颗粒状冷水可溶木薯淀粉的制备及性质研究.武汉工业学院学报2006,25(4):1-5
    [60]Chen J, Jane J. Properties of Granular Cold-Water-Soluble Starches Prepared by Alcoholic-Alkaline Treatments. Cereal Chemistry,1994,71(6):623-626
    [61]Tijsen C J, Voncken R M, Beenackers A A C M. Design of a continuous Process for the production of highly substituted granular carboxymethyl starch. Chemical Engineering Science, 2001,56(2):411-418
    [62]刘晓婷,董海洲.碱催化干法制备阳离子淀粉的研究.中国粮油学报,2004,19(3):38-41
    [63]具本植,张淑芬,杨锦宗.氨基甲酸乙基淀粉的半干法制备.现代化工,2003,23(8):22-24
    [64]Wang, Y J, Wang L F. Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite. Carbohydrate Polymers,2003,52:207-217
    [65]玉秀艳,朱文仓,王彪.氧化淀粉研究的新进展.粘接,2004,25(3):35--38
    [66]王彦斌,苏琼.双氧水氧化淀粉的机理初探.西南民族学院学报,1997,23(3):278-280
    [67]杜建功,赵雅琴,张占拄.双氧水对淀粉的氧化性能研究.化工科技,2001,9(6):16-18
    [68]Franco C M L, Ciacco C F, Tavares D Q. Studies on the susceptibility of granular cassava and corn starches to enzymatic attack. II Study of the granular structure of starch. Starch/Strke,1988, 40 (1):29-32
    [69]Sreenath H K. Studies on starch granules digestion by a-amylase. Starch/Strke,1992,44(2):61-63
    [70]徐忠,廖铭,刘命理.玉米多孔淀粉颗粒结构及性质的研究.食品科学,2006,27(1):128-132
    [71]任便利,陈均志,叶林宇.酶-化学法制取氧化淀粉.粮食与饲料工业,2005,11:21-22
    [72]赛华丽,高群玉,梁世中.抗性淀粉的酶法研制.食品与发酵工业,28(5):6-9
    [73]Peltonen, S H. Application and methods for the prepation of fatty acid esters of polysaccharides. US,5589577.1996
    [74]Wolf B W, Wolever T M S, Bolognesiet C. Glycemic Response to a Food Starch Esterified by 1-Octenyl Succinic Anhydride in Humans. J. Agric. Food Chem.,2001,49(5):2674-2678
    [75]Patricia M H, Steven R H, Bryan W. The glycemic, insulinemic, and breath hydrogen responses in humans to a food starch esterified by 1-octenyl succinic anhydride. Nutrition Research,2004, 24:581-592
    [76]卢坚勇.国外磷酸淀粉酯及其制备简述.湖南化工,1988,4:57-58
    [77]姜元荣,倪巧儿,吴嘉根.淀粉磷酸酯取代度的分析方法.无锡轻工大学学报,1999,18(3):70-73
    [78]田龙,杜敏华.干法制备交联淀粉磷酸酯的工艺优化.粮食加工,2006,31(6):79-81
    [79]刘亚东,金征宇.变性淀粉在我国应用,研究现状及发展趋势分析.粮食与油脂,2005,10:7-10
    [80]周家春,张达力,曾瀚权.淀粉磷酸化及其抗冷冻脱水的研究.广州食品工业科技,1999,16(1):43-45
    [81]于楚男.淀粉黄原酸酯的合成及应用研究.合成化学,2010,B09:104-105
    [82]张淑媛,李白法,周梅.不溶性淀粉黄原酸酯脱除废水中铜.环境化学,1989,8(1):47-50
    [83]王瑞华.改型不溶性淀粉黄原酸酯含硫量的测定.环境污染与防治,1990,12(2):37-39
    [84]马冰洁,罗杨,唐洪波,李艳平.不溶性淀粉黄原酸酯的制备.食品加工,2009,12:131-133
    [85]李光雄,陈森梅.甲酸淀粉醋的研究.那阳师范高等专科学校学报,2001,21(3):63-64
    [86]卢桂琴,黄新民.醋酸淀粉醋的生产和应用.湖南化工,1993,4:15-17
    [87]Randal. L S, Atanu B. Preparation of water-soluble and water-swellable starch acetates using microwave heating. Carbohydr Polym,2006,64:16-21
    [88]Sirirat S, Chureerat P,Vilai R. Paste and gel properties of low-substituted acetylated canna starches. Carbohydrate Polymers,2005,61:211-221
    [89]Chang Y H, Lii C Y. Preparation of starch phosphates by extrusion. J. Food Sci.,1992, 57:203-205
    [90]Miladinov V D, Hanna M A. Starch esterification by reactive extrusion. Industrial Crops and Products 2000,11(1):51-57
    [91]Khalil M I, Hashem A H. Preparation and Characterization of Starch Acetate. Starch,2000,,47: 394-398
    [92]Lawrence R. Physical Properties of Cross-linked and Acetylated Normal and Waxy Rice Starch. Starch,2001,51:249-252
    [93]张水洞,张翔,唐勇,黄汉雄,颜斌玉.草酸淀粉酯制备及其性能研究.化学研究与应用,2009,21(4):481-485
    [94]宋广勋,冯光炷,李和平.烯基琥珀酸酐淀粉修饰物的研究进展.食品研究与开发,2006,27(10):154-157
    [95]Wurzburg O B. Caldwell C G. Polysaccharide derivatives of substituted dicarboxylic acids. US 2, 661,349,1953
    [96]Parka S, Chungb M G, Yooa B. Effect of octenyl -succinylation on rheological properties of corn starch pastes. Starch/Starke,2004,56:399-406
    [97]Jeon Y S, Lowell A V, Gross R A. Studies of starch esterification, reactions with alkenyl succinates in aqueous slurry systems. Starch/S t3/4rke,1999,51 (1-2):90-93
    [98]Shogren R L, Viswanathan A, Felker F. Distribution of octenyl succinate groups in octenyl succinic anhydride modified waxymaize starch. Starch/Starke,2000,52:196-204
    [99]Song X Y, He G Q, Ruan H. Preparation and properties of octenyl succinic anhydride modified early indica rice starch. Starch/Starke,2006,58:109-117
    [100]Yoshimur T, Yoshimura R, Seki C. Synthesis and characterization of biodegradable hydrogels based on starch and succinic anhydride. Carbohydr Polym,2006,64:345-349
    [101]Atanu B. Microwave-assisted rap id modification of zein byoctenyl succinic anhydride. Cereal Chem.,2005,82(1):1-3
    [102]Wolf B W. Glycemic response to a food starch esterified by 1-octenyl succinic anhydride in humans. J. Agric Food Chem.,2001,49(5):2674-2678
    [103]Patricia M. The glycemic, insulinemic, and breath hydrogen responses in humans to a food starch esterified by 12-octenyl Succinic anhydride. Nutr Res,2004,24:581-592
    [104]Zwiercan G A, Lacourse N L, Lenchin J M. Imitation cheese products containing modified starch as partial caseinate replacement and method of preparation. US Patent 4,499,116,1985
    [105]Yasuo I, Toru T, Kyuichi Y, Atsuya T, Teruyuki K. Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innovative Food Science and Emerging Technologies,2008,9(2):140-146.
    [106]Evans I D, Haisman D R. The effect of solutes on the gelatinization temperature range of potato starch. Starch/Starke,2006,34(7):224-231
    [107]Hasuly M J, Trzasko P T. Textile warp size. European Patent EP0198291,1991
    [108]Lacourse N L, Altieri P A. Biodegradable shaped products and the method of preparation thereof US Patent 5,043,196,1991
    [109]Maliczyszyn W, Hernandez H R. Starch blends useful as external paper sizes. EP Patent 0,350,668,1992
    [110]Palmer J G. Tape joint compounds utilizing starch stabilized emulsions as binders. US Patent 4,845,152,1989
    [111]James W M, Eugene P. Starch Studies. Preparation and Properties of Starch Triesters. Ind. Eng. Chem.,1942,34 (10):1209-1217
    [112]程发,张晓红.淀粉硬脂酸酯的制备.天津大学学报,1995,6:814-819
    [113]赵秀娟,于国萍.脂肪酶催化合成硬脂酸淀粉酯的研究.东北农业大学学报,2008,10:89-93
    [114]Roy L, Whister A M, Jingan Z. Surface derivatization of granules. Cereal Chemistry,1998, 75(1):72-74
    [115]Aburto J, Alric I, Thiebayd S. Synthesis, Characterization and biodegradability of fatty acid esters of amylase and starch. Joural of Applied Polymer Science,1999,74(1):1440-1451
    [116]Fang J M, Fowler P A, Tomkinson J, Hill C A S. The preparation and characterisation of a series of chemically modified potato starches. Carbohydrate Polymers,2002,47(3):245-252
    [117]Tracey AN, Charles J K, John F K. Preparation of starch esters Carbohydrate Polymers,1998, 34(4):433-439
    [118]Saiyavit V, Narisa C, Sujin S. Studies of flavor encapsulation by agents produced from modified sago and tapioca starches. Starch,2001,53(8):281-287
    [119]Jonker E H. Fatty esters of starch, method of preparing and use. EP Patent 0,486,092,1992
    [120]Peltonen S, Harju K. Fatty acid esters of polysaccharides, their preparation and use in adhesives and coatings. Carbohydrate Polymers,2003,60(5):420-426
    [121]Murakami K, Ono K, Kishimoto M. Manufacture of water soluble starch fatty acid esters. Jpn. Kokai Tokkyo Koho JP 01054001 A21 Mar 1989 Heisei,4
    [122]James W M, Eugene P. Starch Studies. Preparation and Properties of Starch Triesters. Ind. Eng. Chem.,1942,34(10):1209-12171
    [123]刘国琴,陈洁,韩立鹏,李琳.干法合成硬脂酸小麦淀粉酯的特性研究.农业机械学报,2009,40:6-10
    [124]贾建,刘芳.微波法玉米油酸酯淀粉合成工艺参数及性质的研究.食品与饲料工业,2010,9:46-48
    [125]Saiyavit V, Narisa C, Sujin S. Immobilization of a thermostable alpha-amylase. ScienceAsia, 2002,8:247-251
    [126]Akhila R, Prasad V S, Emilia A T. Enzymatic esterification of starch using recovered coconut oil. International Journal of Biological Macromolecules,2006,39(4-5):265-272
    [127]Kapusniak J, Siemion P. Thermal reactions of starch with long-chain unsaturated fatty acids. Part 2. Linoleic acid. Journal of food engineering,2007,78(1):323-332
    [128]Klaushofer H, Berghofer E, SteyrerW, Die neuentwicklung modifizierter starke nam-beisp ielvon citrate stark. Erna Nutr,1978,2:51-55
    [129]Miesenberger E, Herstellung D. Hochveresterten, Citratstirke-derivaten and prufungihrer eignung alsresistente starke. Vienna,University farBodenkultur,1999:46-78
    [130]Shi R, Zhang Z Z, Liu Q Y. Characterization of citric acid/glycerol coplasticized thermop lastic starch prepared by meltblending. Carbohy. Polym,2007,69:748-755
    [131]封禄田,曾波,王晓波.柠檬酸改性玉米淀粉的研究.沈阳化工大学学报,2011,2:105-109
    [132]于密军.柠檬酸改性豌豆淀粉的研究.天津大学硕士论文,2008:76-98
    [133]王恺,刘亚伟,田树田,李书华.高取代度柠檬酸酯淀粉制备研究.粮食与油脂,2007,4:23-25
    [134]Thakore I M, Sonal D, Sarawade B D. Studies on biodegradability, morphology and thermomechanical properties of LDPE/modified starch blends. J Eur. Polym.,2001,37:151-160
    [135]Sindhu M, Abraham T E. Physico-chemical characterization of starch ferulates of different degrees of substitution. Food Chem.2007,105:579-589
    [136]陈均志,银鹏.辛烯基琥珀酸淀粉酯的制备研究.食品工业科技,2003,24(10):127-129
    [137]孙吉,韩育梅.丁二酸马铃薯淀粉酯的合成及性质研究.中国粮油学报,2010,1:47-51
    [138]Henky M, Sjoerd V K, Danielle K, Francesco P. Synthesis of fatty acid starch esters in supercritical carbon dioxide. Carbohydrate Polymers,2010,82:346-354
    [139]罗菊香,崔国星,张琳君,陈朝阳.有机碱催化制备马来酸单淀粉酯的研究.安徽农业科学,2011,34:21348-21349
    [140]卢海凤,张本山.醇溶剂法制备非晶颗粒态辛烯基琥珀酸淀粉酯的新工艺和机理的研究.现代食品科技,2009,10:1135-1139
    [141]徐爱国,张燕萍,孙忠伟.淀粉基脂肪替代品-低取代度硬脂酸淀粉酯的制备工艺研究.食品工业科技,2004,25(5):85-87
    [142]史巧玲,张燕萍.微波法酸解和酯化复合变性淀粉的制备及其性质的研究.食品研究与开发,2006,27(1):47-50
    [143]李建英,牛家平.顺丁烯二酸单淀粉酯的干法合成.河南科学,1995,2:154-157
    [144]薛秀梅.微波法辛烯基琥珀酸淀粉酯的制备、性质及应用.江南大学硕士论文,2007:56-78
    [145]Miladinov V D, Hanna M A. Starch esterification by reactive extrusion. Industrial Crops and Products-Ind croproducts,2000,11(1):51-57
    [146]Randal S, Girma B. Surface properties of water soluble maltodextrin, starch acetates and starch acetates/alkenylsuccinates. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007, 298:170-176
    [147]Chi H, Xu K, Xue D, Song C, Zhang W. Synthesis of dodecenyl succinic anhydride (DDSA) com starch. Food research international,2007,5:45-48
    [148]Tankam P F, Muller R, Mischnick P, Hopf H. Alkynyl polysaccharides:synthesis of propargyl potato starch followed by subsequent derivatizations. Carbohydrate research,2007, 342(14):2049-2060
    [149]Atanu B, Shogren R L, Gordon S, Salch J, Willett J L, Charles M B. Rapid and environmentally friendly preparation of starch esters. Carbohydrate Polymers,2008,74:137-141
    [150]刘国琴,陈洁,韩立鹏,李琳.干法合成硬脂酸小麦淀粉酯的特性研究.农业机械学报,2009,40:8-15
    [151]Marcin L. Biocatalytic esterification of common polysaccharides. Starch modification using lipases In Proceedings of the 14th International Electronic Conference on Synthetic Organic Chemistry, Santiago, Chile,2010:1-30
    [152]Habib H, Moncef C, Youssef G, Adel S. Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating:Optimization by response surface methodology. Carbohydrate Polymers,2010,79:466-474
    [153]Akhila R, Sudha J D, Emilia A T. Enzymatic modification of cassava starch by fungal lipase. Industrial crops and products,2008,27:50-59
    [154]Habib H, Moncef C, Youssef G, Adel S. Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating:Optimization by response surface methodology. Carbohydrate Polymers,2010,79:466-474
    [155]Lei Q, Qu M G, Cheng H N. Enzyme-catalyzed synthesis of hydrophobically modified starch. Carbohydrate Polymers,2006,66:135-140
    [156]Apostolos A, Nina B, Sabine L F, Bernhard H, Peter J H. Lipase-catalysed acylation of starch and determination of the degree of substitution by methanolysis and GC. BMC Biotechnology, 2010,10(82):11-25
    [157]Juan X, Chen W Z, Rui Z W, Lu Y, Shan-shan D, Feng-ping W, Hui R, Guo-qing H. Lipase-coupling esterification of starch with octenyl succinic anhydride. Carbohydrate Polymers,2012, 87:2137-2144
    [158]Xuanxuan L, Zhigang L, Shujuan Y, Xiong F. Lipase-catalyzed Synthesis of Starch Palmitate in Mixed Ionic Liquids. Journal of Agricultural and Food Chemistry,2012,8(25):1-7
    [159]Genung L, Mallatt R. Analysis of Cellulose Derivatives:Determination of Total Combined Acyl in Cellulose Organic Esters. Industrial & Engineering Chemistry, Analytical Edition 1941, 13(6):369-374
    [160]Raj an A, Abraham T E. Enzymatic modification of cassava starch by bacterial lipase. Bioprocess and Biosystems Engineering,2006,29(1):65-71
    [161]Miladinov V D, Hanna M A. Physical and molecular properties of starch acetates extruded with water and ethanol. Industrial & Engineering Chemistry Research,1999,38(10):3892-3897
    [162]Forrest B. Identification and Quantitation of Hydroxypropylation of Starch by Ftir. Starch-Starke 1992,44(5):179-183
    [163]Rudolph S E, Glowaky R C. Preparation and Properties of Carboxyl-Functional Mixed Esters of Hydrolyzed Starch. J Polym Sci Pol Chem,1978,16(9):2129-2140
    [164]Schoch T J, Jensen C C.A Simplified Alkali-Lability Determination for Starch Products. Industrial & Engineering Chemistry Analytical Edition,1940,12(9):531-532
    [165]Wurzburg O B. Acetylation. In:Methods in Carbohydrate Chemistry. Edited by Whistler RL, vol. IV Starch. New York, Academic Press,1964:286-288
    [166]Apostolos A, Nina B, Sabine L F, Bernhard H, Peter J H. Lipase-catalysed acylation of starch and determination of the degree of substitution by methanolysis and GC. BMC Biotechnology, 2010,10(82):11-25
    [167]Zaks A, Kibanov A M. Enzymatic catalysis in organic media at 100℃. Science,1984,224: 1249-1251
    [168]Margolin A L, Klibanov A M. Peptide segment coupling catalyzed by the semisynthesis enzyme thiolsubtilisin. J. Am Chem. Soc.,1987,109:3802-3808
    [169]Koskinen A M P, Klibanov A M. Enzymatic Reactions in Organiic Media. New York:Blackie Acdaemic and Professional,1996:46-48
    [170]Gorman L A. Effect of acyl donor chain length and substitutions pattern on the enzymatic acylation of flavonoids. Biotechnology and Bioengineering,1992,39:392-403
    [171]Lanne C, Boeren S. Water activity dependence of lipase catalysis in organic media explains successful transesterification reactions. Biotechnology and Bioengineering 1987,30:81-105
    [172]Hemachander C, Bose N, Puvanakrishnan R. Whole cell immobilization of Ralstonia pickettii for lipase production. Process Biochemistry,2001,36:629-633
    [173]Luis J, Lopez G, Mickael L, Jerome L. Lipase-catalyzed synthesis of chlorogenate fatty esters in solvent-free medium. Enzyme and Microbial Technology,2007,41:721-726
    [174]周晓露,宗敏华,姚汝华.促进非水相酶反应的研究进展.分子催化,2000,14(6):452-460
    [175]茅庆成,许建和,胡英.逆胶束系统中脂肪酶对橄榄油的水解.华东化工学院学报,1992,18(2):276-280
    [176]Zaks A, Empie M, Gross A. Potentially commercial enzymatic processes for the fine and specialty chemical industry. Trends Biotechnol,1998,6(11):272-275
    [177]Hayes D G, Gulari E. Formation of polyol-fatty acid esters by lipase in reverse miccllar media. Biotech Bioeng,1992,40:110-118
    [178]Nuray C, Nuray Y, Ayhan S D, Ayla C. Optimization of benzoin synthesis in supercritical carbon dioxide by response surface methodology (RSM). J. of Supercritical Fluids,2008,47:227-232
    [179]Rao A M, John V T, Gonzalez R D. Catalytic and interfacial aspects of enzymatic polymers synthesis in reversed micellar systems. Biotech Bioeng,1993,41:531-540
    [180]Nuno F, Peter J H, Susana B. Control of enzyme ionization state in supercritical ethane by sodium/proton solid-state acid-base buffers. Enzyme and Microbial Technology,2003, 33:938-941
    [181]董新荣,刘仲华,李雨虹,谢达平.天然辣椒素酯的酶促合成与生物活性.天然产物研究与开发,2009,21:570-573
    [182]徐凤杰,谭天伟.脂肪酶催化合成异维生素C棕榈酸酯及其动力学.北京化工大学学报,2007,34:95-98
    [183]吴炜亮.固定化脂肪酶促酯交换反应制备低能量可可脂的研究.华南理工大学博士论文,2008:45-65
    [184]Kang I J, Pfromm P H, Rezac M E. Real time measurement and control of thermodynamic water activities for enzymatic catalysis in hexane. Journal of Biotechnology,2005,119(2):147-154
    [185]Kuhll P, Elchhorn U, Jakubke H D. Enzymic peptide synthesis in microaqueous, solvent-free systems. Biotechnology and Bioengineering,1995,3(45):276-278
    [186]Alexander M K. Enzymatic catalysis in anhydrous organic solvents.1989,14(4):141-144
    [187]Masaru K, Taichi S, Takeshi M, Kazuhiro B, Akihiko K, Yuji S, Hideo N, Fumiki N, Koutaro O E I, Hideki F. Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent.1999,88(6):627-631
    [188]Adachi S, Kobayashi T. Synthesis of esters by immobilizedlipase-catalyzed condensation reaction of sugars and fatty acids in water-miscible organic solvent. Journal of Bioscience and Bioengineering,2005,99(2):87-94
    [189]Tarahomjoo S, Alemzadeh I. Surfactant production by an enzymatic method. Enzyme and Microbial Technology,2003,33(1):33-37
    [190]Markus E, Xiongwei N, Peter J H. Enzymatic synthesis with mainly undissolved substrates at very high concentrations. Enzyme and Microbial Technology,1998,2(23):141-148
    [191]Rosina L F, Iqbal G, Evgeny N V. Protease-catalyzed synthesis of oligopeptides in heterogenous substrate mixtures. Protease-catalyzed synthesis of oligopeptides in heterogenous substrate mixtures,2004, 11(43):1024-1030
    [192]沈树宝,柴本忠.醇类助溶剂对拟低共熔体系中酶促合成ZAPM反应的影响.化工学报,2001,12:1109-1112
    [193]王越,张苓花.四氢嘧啶提高脂肪酶催化合成油酸乙酯产率的研究.食品工业科技,2010,11:224-227
    [194]Xiao Y W Q C Y. Ultrasound-accelerated enzymatic synthesis of sugar esters in nonaqueous solvents. Carbohydrate Research,2005,340:2097-2103
    [195]Zhang D H, Bai S, Sun Y. Lipase-catalyzed regioselective synthesis of monoester of pyridoxine (vitamin B6) in acetonitrile. Food Chemistry,2007,102(4):1012-1019
    [196]孙平,陈健,杨惠娟,马二霞,王雅琦.酶法合成棕榈酸马铃薯淀粉酯.食品科技,2012,4:249-252
    [197]李鹤.辛酸甘油二酯酶法合成及其纯化工艺的研究.华中科技大学硕士论文,2011:34-46
    [198]Sabeder S, Habulin M, Knez Z. Lipase-catalyzed synthesis of fatty acid fructose esters. Journal of Food Engineering,2006,77(4):880-886
    [199]李琳媛,刘萍,刘莉,孙君社.超声波对酶法制备MLM型结构脂质的影响.中国油脂,2008,33(8):43-46
    [200]李伟.酶法合成单月桂酸丙二醇酯及其性质研究.华南理工大学硕士论文,2011:67-98
    [201]马林,徐迪,古练权.无溶剂体系中固定化脂肪酶催化的酯交换反应研究.中山大学学报(自然科学版),2003,42(5):39-44
    [202]Helen T, Debora O, Marcio A. Mazutti, Marco Di Luccio, J. Vladimir Oliveira. A Review on Microbial Lipases Production. Food Bioprocess Technol,2010,3:182-196
    [203]Gandhi N N, Mukherjee K D. Application of lipase. J.Am.Oil. Chem. Soc,1997,74:621-634.
    [204]Manfred T. Reetz. Lipases as practical biocatalysts. Current Opinion in Chemical Biology,2002, 6, (2):145-150
    [205]Adelhorst K, Bjokling F, Godtfredsen S E, Kirk O. Enzyme catalysed preparation of 6-O-acylglucopyranosides. Synthesis,1990,2(12):112-115
    [206]Yasuyuki I, Mitsutoshi N, Hiroshi N. Solvent-free esterification of oleic acid and oleyl alcohol using membrane reactor and lipase-surfactant complex. Journal of Fermentation and Bioengineering,1998,86(1):138-140
    [207]Carlos T, Cristina O. Part Ⅰ. Enzymatic synthesis of lactate and glycolate esters of fatty alcohols. Enzyme and Microbial Technology,1999,25(8-9):745-752
    [208]Afife G, Nurcan K, Ulku M. The production of isoamyl acetate using immobilized lipases in a solvent-free system[J]. Process Biochemistry,2002,38(3):379-386
    [209]夏咏梅,方云,章克昌,石贵阳,王征远.非水相酶促合成癸酸偏甘油酯的研究.生物工程学报,2002,18(6):735-740
    [210]夏咏梅.散水体系中酶促合成脂肪酸偏甘袖酯的研究..轻工大学博士论文,2000:67-98
    [211]Dong Z W, Liu Y. Effects of ethylene glycol on the synthesis of ampicillin using immobilized penicillin Gacylase. Journal of Chemical Technology and Biotechnology,78, (4):431-436
    [212]王栋,徐岩,章克昌,倪永全.脂肪酶非水相转化失水山梨醇油酸酯.无锡轻工大学学报1992,2:50-55
    [213]张春鸣,赵文秀,陈峰,徐学明.单辛酸甘油酯的酶法合成.食品科学,200728(11):360-364
    [214]夏木西卡玛尔,吾满江·艾力,孙燕.两种反应体系合成亚麻酸甘油酯的研究.中国油脂:2007,32(10):43-45
    [215]李杰梅,徐娟娟,黄永平,朱龙平,杨得坡.无溶剂体系酶法催化合成共轭亚油酸薄荷酯中国油脂,2011,36(2):13-15
    [216]张凯,李伟,陈华勇,王永华,杨博.无溶剂体系脂肪酶催化合成1,3-丙二醇单酯.油脂化学,2010,35(8):28-30
    [217]Valerie D, Didier C, Alain M. Lipase-catalysed transesterification of high oleic sunflower oil. Enzyme and Microbial Technology,2002,30(1):90-94
    [218]Valerie D, Didier C, Alain M. Efficient lipase catalysed production of a lubricant and surfactani formulation using a continuous solvent-free process. Journal of Biotechnology,2002. 97(2):117-124
    [219]Valerie D Didier C, Alain M. Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor:influence of the glycerol production. Enzyme and Microbial Technology,25(3-5):194-200
    [220]Mohamed M S, Uwe T B. Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme and Microbial Technology,2003,33(1):97-103
    [221]Oznur K, Melek T, Aksoy H A. Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresource Technology,2002,83(2):125-129
    [222]Roxana R, Yugo I, Nobuyoshi S, Nobushige D, Tsuneo Y. Intensification of lipase performance in a transesterification reaction by immobilization on CaCO3 powder. Journal of Biotechnology. 1998,66(1):51-59
    [223]夏咏梅,章克昌.无溶剂体系中脂肪酶催化合成单甘酯的研究.化学通报:2001(5):303-305
    [224]马林,徐迪,阮继武,古练权.脂肪酶酶粉催化的无溶剂酯交换反应.应用化学,2003 9:853-856
    [225]Lin M, Mattias P, Patrick A. Water activity dependence of lipase catalysis in organic media explains successful transesterification reactions. Enzyme and Microbial Technology. 31(7):1024-1029
    [226]吴华昌,邓静,马钦元,石岩昌,徐静.酶催化餐饮业废油脂生产生物柴油的研究.化学与生物工程,2008,25(1):24-26
    [227]高修功,章克昌.温度对单甘酯的合成起关键作用.无锡轻工大学学报,1997,16(3):47-51
    [228]凌庆枝,高莉莉.乙酸乙酯体系脂肪酶催化菜籽油制备生物柴油研究.粮油加工,2008,5:69-73
    [229]李相,刘涛,杨江科.响应面法优化洋葱伯克霍尔德菌固定化脂肪酶催化合成生物柴油工艺.北京化工大学学报(自然科学版),2009,36(5):78-84
    [230]周秀秀,辛嘉英,张颖鑫,陈林林,夏春谷.脂肪酶催化合成α-生育酚阿魏酸酯.中国粮油学报,2011,26(4):63-69
    [231]Brenda H J, Casimir C A. Lipase catalyzed modification of fish oil to incorporate capric acid. Food Chemistry,2001,72(3):273-278
    [232]何川,杨天奎.酶法猪油改性人乳脂替代品的研究.中国油脂,2003,28(1):41-43
    [233]石红旗,沈继红.无溶剂体系酶催化合成富含共轭亚油酸甘油脂的研究.高技术通讯,2002.9:78-82
    [234]孙晓洋,孟宏昌,毕艳兰,杨国龙,张丽芬,王志强Lipozyme TLIM脂肪酶催化茶油酯交换制备类可可脂的研究.中国粮油学报,2009,24(12):72-76
    [235]潘虹,张云,郭道义.固定化脂肪酶转酯化菜籽油合成生物柴油.粮油加工,2008,9:76-78
    [236]黄健花,刘亚轩,宋志华,金青哲,刘元法,王兴国.无溶剂体系脂肪酶催化大豆油水解反应动力学.中国油脂,2009,33(10):32-37
    [237]黄健花,刘亚轩,金青哲,刘元法,王兴国.无溶剂体系中脂肪酶催化大豆油水解反应的研究.中国油脂,2008,33(10):32-37
    [238]刘亚轩,金青哲,刘元法,王兴国.无溶剂体系中脂肪酶催化大豆油水解反应的研究.中国油脂,2008,33(10):32-37
    [239]Bousquet M P, Willemot R M, Monsan P, Boures E. Enzymatic synthesis of alkyl-a-glucoside catalysed by a thermostable a-transglucosidase in solvent-free organic medium. Applied Microbiology and Biotechnology,1998,50(2):167-173
    [240]Yuanyuan X, Wei D, Dehua L, Jing Z. A novel enzymatic route for biodiesel production from renewable oils in a solvent-free medium. Biotechnology Letters,2003,25(15):1239-1241
    [241]刘伟雄,魏东芝.无溶剂体系酶催化酯交换反应的研究.中国油脂,1999,4:29-32.
    [242]冯雷刚,张保国,张国政,王文英.无溶剂体系糖酯的酶法合成.中国食品添加剂,2003,4:64-66
    [243]胡芳,韦富香,王志成,刘云,闫云君.基于响应面的酶法酯交换制备乌柏脂油类可可脂.食品研究与开发,2010,31(3):94-98
    [244]孙兆敏,李金章,王玉明,薛长湖.酶法制备n-3多不饱和脂肪酸甘油三酯的工艺.食品工业科技,2010,31(9):262-264
    [245]张蕾,辛嘉英,陈林林,张颖鑫,夏春谷.无溶剂体系脂肪酶催化合成阿魏酸双油酸甘油酯.农产品加工,2008,7:37-41
    [246]辛嘉英,郑妍,吴小梅,刘颖,夏春谷,李树本.无溶剂体系脂肪酶催化制阿魏酸双油酸甘油酯.精细化工,2007,24(2):172-178
    [247]Hasan F, Shah A, Hameed A A. Industrial applications of microbial lipases. Enzyme Microb Technol,2006,39:235-251
    [248]Houde A, Kademi A, Leblanc D. Lipases and their industrial applications. Appl Biochem Biotechnol,2004,118:155-170.
    [249]Fariha H, Aamer A S, Abdul H. Methods for detection and characterization of lipases:A comprehensive review. Biotechnology Advances,2009,27:782-798
    [250]Reis P, Holmberg K, Watzke H, Leser M E, Miller R. Lipases at interfaces:A review. Advances in Colloid and Interface Science,2009, (147-148):237-250
    [251]John V T, Abraham G. Lipase catalysis and its applications. In:Biocatalysts for Industry (Dordick, J. S., Ed.). Plenum Press, New York,1991:193-217
    [252]黄成红,马林.无溶剂体系中蛋白酶催化氨基酸糖酯合成研究.中山大学学报:自然科学版,2006,45(1):24-28
    [253]徐迪,庞朝乐,郭新东,马林.酪氨酸酶催化对位取代苯酚和芳香胺的反应及其意义.有机化学,2003,23(7):724-727
    [254]Neha R S, Virendra K R. Transesterification of used sunflower oil using immobilized enzyme. Journal of Molecular Catalysis B:Enzymatic,2010,66(1-2):142-147
    [255]Ketsara T, Benjamas C, Aran H. Mixed lipases for efficient enzymatic synthesis of biodiesel from used palm oil and ethanol in a solvent-free system. Journal of Molecular Catalysis B: Enzymatic,2010,67(1-2):52-59
    [256]Maria P D, Sinisterra J V. Acyl transfer strategy for the biocatalytical characterization of Candida rugosa lipases in organic solvents. Enzyme and Microbial Technology,2006,38:199-208
    [257]Jike L, Kaili N. Immobilized lipase Candida sp.99-125 catalyzed methanolysis of glycerol trioleate:Solvent effect. Bioresource Technology,2008,99:6070-6074
    [258]Jike L, Yawei C. Effect of water on methanolysis of glycerol trioleate catalyzed by immobilizedlipase Candida sp.99-125 in organic solvent system. Journal of Molecular Catalysis B: Enzymatic,2009,56:122-125
    [259]Christina V, Evangelos T. Feruloyl esterase-catalysed synthesis of glycerol sinapate using ionic liquids mixtures. Journal of Biotechnology,2009,139:124-129
    [260]Atsushi K, Yuki K, Shiori I. Enzymatic synthesis of caffeic acid phenethyl ester analogues in ionic liquid. Journal of Biotechnology,2010,148(2-3):133-138
    [261]Sung H H, Mai N L, Yoon M K. Continuous production and in situ separation of fatty acid ester in ionic liquids. Enzyme and Microbial Technology,2010,47(1-2):6-10
    [262]陆杨,李在均蔡燕.新型温控离子液体绿色介质生物催化合成乙酸辛酯香料.化学试剂,2010.9:793-798
    [263]Giovana C, Patricia C S, Lindomar L. Ultrasound-assisted enzymatic transesterification of methyl benzoate and glycerol to 1-glyceryl benzoate in organic solvent. Enzyme and Microbial Technology,2011,48(2):169-174
    [264]Dahai Y, Li T, Hao W. Ultrasonic irradiation with vibration for biodiesel production from soybean oil by Novozym 435. Process Biochemistry,2010,45(4):519-525
    [265]Ean T L, Kuan J L. Synthesis of terpinyl acetate by lipase-catalyzed esterification in supercritical carbon dioxide. Bioresource Technology,2010,101(10):3320-3324
    [266]Yan Z. Optimization of Selective Lipase-Catalyzed Feruloylated Monoacylglycerols by Response Surface Methodology. J Am Oil Chem Soc.2008,85:635-639
    [267]Chang S W, Yang C J. Optimized synthesis of lipase-catalyzed 1-ascorbyl laurate by Novozym 435. Journal of Molecular Catalysis B:Enzymatic,2009,56:7-12
    [268]Prafulla D P, Veera G G, Aravind M. Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Bioresource Technology,2011, 102(2):1399-1405
    [269]Wei L, Ren W L, Qiang L. Acyl migration and kinetics study of 1(3)-positional specific lipase of Rhizopus oryzae-catalyzed methanolysis of triglyceride for biodiesel production. Process Biochemistry,2010,45(12):1888-1893
    [270]Pires C P, Fonseca M M R, Ferreira D S. Synthesis of ethyl butyrate in organic media catalyzed by Candida rugosa lipase immobilized in polyurethane foams:A kinetic study. Biochemical Engineering Journal,2009,43(3):327-332
    [271]Jian X, Jianping W. Kinetic study of lipase catalyzed asymmetric transesterification of mandelonitrile in solvent-free system. Chemical Engineering Journal,2008,138:258-263
    [272]Claiton Z B, Eline R, Aline de C. Kinetics of lipase-catalyzed synthesis of soybean fatty acid ethyl esters in pressurized propane. Journal of Biotechnology,2010,147(2) 2:108-115
    [273]Junmin D, Xianglin H, Dong W, Cuiping F. Rapid and efficient gas chromatographic method for measuring the kinetics of lipase-catalyzed transesterification of phosphatidylcholine. Journal of Molecular Catalysis B:Enzymatic,2011,69(3-4):103-106
    [274]Houssam E R, Alain P. Application of lipase encapsulated in silica aerogels to a transesterification reaction in hydrophobic and hydrophilic solvents:Bi-Bi Ping-Pong kinetics. Journal of Molecular Catalysis B:Enzymatic,2004,30:137-150
    [275]罗文,袁振宏.酶促合成生物柴油反应动力学.石油化工,2007,36(12):7721-7726
    [276]Benjamas C, Aran H K. Impact of transesterification mechanisms on the kinetic modeling of biodiesel production by immobilized lipase. Biochemical Engineering Journal,2008,42:261-269
    [277]Wiphum K, Sarote S. Continuous production of monoacylglycerols by glycerolysis of palm olein with immobilized lipase. Process Biochemistry,2005,40:1525-1530
    [278]Siti F, Abdul H, Azlina H K. Continuous biosynthesis of biodiesel from waste cooking palm oilin a packed bed reactor:Optimization using response surface methodology (RSM) and mass transfer studies. Bioresource Technology,2009,100:710-716
    [279]吴华昌,宗敏华,邓静,王菊芳.无溶剂系统脂肪酶促POMF酯交换生产CBE的动力学研究.中国油脂,2003,8:50-53
    [280]夏咏梅,方云,章克昌,石贵阳,王征远.无溶剂酶促合成癸酸偏甘油酯的热力学和动力学.2002,16(6):449-454
    [281]Janssen A E M, Albert V, Klaas V. Solvent Effect son Lipase-cata ly zed Est erification of Glycerol and Fatty Acids. Biotechnol Bioeng,1993,42:953-962
    [282]Lortie R K. Study of the Lipase-catalyzed Synthesis of Triolein. Biotechnol Bioeng,1993, 41:1021-1026
    [283]甘争艳,吾满江·艾力,夏木西卡马尔.无溶剂及微乳液体系中脂肪酶催化红花油水解的动力学.催化学报,2006,27(9):810-814
    [284]徐岩,赵成明,章克昌.固定化脂肪酶有机相中催化己酸乙酯反应动力学研究.生物工程学报,1999,4:533-536
    [285]施炜,陈日方,全文海,章克昌.庚烷中微生物脂肪酶催化酯化反应动力学的研究.无锡轻工大学学报,1998,3:50-53
    [286]Sunil S, Erik H. Control of water activity in lipase catalysed esterification of chiral alkanoic acids. Journal of Molecular Catalysis B:Enzymatic,2009,58(1):6-9
    [287]Dalla R C, Morandim M B, Ninow J L. Lipase-catalyzed production of fatty acid ethyl esters from soybean oil in compressed propane. Journal of Supercritical Fluids,2008,47:49-53
    [288]Kwon S J, Song K M. Removal of water produced from lipase-catalyzed esterification in organic solvent by pervaporation. Biotechnol. Bioeng,1995,46:393-395
    [289]Ergan F, Trani M. Production of glycerides from glycerol and fatty acid by immobilized lipase in non-aqueous media. Biotechnol. Bioeng,1990,35:195-200
    [290]Halling P J. Salt hydrates for water activity control with biocatalysts in organic media. Biotechnol. Tech,1992,6:271-276
    [291]Marek A, Uwe T B. Improving ascorbyl oleate synthesis catalyzed by Candida antarctica lipase B in ionic liquids and water activity control by salt hydrates. Process Biochemistry,2009, 44:257-261
    [292]Li W, Wei D, Dehua L. Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. Journal of Molecular Catalysis B: Enzymatic,2006,43:29-32
    [293]Kosugi Y, Azuma N. Continuous and consecutive conversion of free fatty acid in rice bran oil to triacylglycerol using immobilized lipase[J]. Appl. Microbiol. Biotechnol,1994,41:407-412.
    [294]Keehoon W, Jung K H, Kwang J K, Sang J M. Lipase-catalyzed enantioselective esterification of racemic ibuprofen coupled with pervaporation. Process Biochemistry,2006,41(2):264-269
    [295]Joon S R, Seok J K, Jeong J H. Water Activity Control for Lipase-Catalyzed Reactions in Nonaqueous Media. Methods in Biotechnology,2001,15(3):135-150
    [296]Sunil S, Erik H. Control of water activity in lipase catalysed esterification of chiral alkanoic acids. Journal of Molecular Catalysis B:Enzymatic,2009,58(1-4):6-9
    [297]Marek A, Uwe T. Bornscheuer. Improving ascorbyl oleate synthesis catalyzed by Candida antarctica lipase B in ionic liquids and water activity control by salt hydrates. Process Biochemistry, 2009,44(3):257-261
    [298]Borg P, Binet C. Enzymatic synthesis of trieicosapentaenoylglycerol in a solvent-free medium. Journal of Molecular Catalysis B:Enzymatic,2001,11:835-840
    [299]Li W, Wei D, Dehua L. Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. Journal of Molecular Catalysis B: Enzymatic,2006,43(1-4):29-32
    [300]Nan W L, Min H Z, Hong W. Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum. Process Biochemistry,2009,44(6):685-688
    [301]Wim T, Mohamed N B, Alain D. Starch Nanocrystals with Large Chain Surface Modifications. Langmuir,2006,22:4804-4810
    [302]Deborah L, Julien B, Alain D. Influence of native starch's properties on starch nanocrystals thermal properties. Carbohydrate Polymers,2012,87:658-666
    [303]朱仁宏,姚卫蓉,吴振华.玉米多孔淀粉制备工艺研究.食品工业科技,2005,(3):102-104.
    [304]肖苏尧.淀粉纳米颗粒的制备及其作为抗癌药物基因载体的研究.湖南大学博士学位论文,2007:45-67
    [305]滕凤恩,王煜明.X-射线分析原理与晶体衍射实验,长春:吉林大学出版社,2002:338-339
    [306]Zhou J P, Zhang L N. Solubility of cellulose in NaOH/urea aqueous solution. Polymer Journal, 2000,32(10):866-870
    [307]Hornig S, Heinze T. Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters. Biomacromolecules,2008,9(5):1487-1492
    [308]Kiyoshi K, Setsuko T, Tomoko S, Kazuhito K. Complex formation, thermal properties, and in-vitro digestibility of gelatinized potato starch fatty acid mixtures. Food Hydrocolloid,2012, 27:228-234
    [309]Zhao W X, Zheng W W, Li J H, Lin H H. Synthesis and characterization of starch fatty acid esters. Modern Chemical Industry,2007,27:281-283
    [310]Hosney R C. Principle of Cereal Science andTechnology. Second Edition, American Association of Cereal Chemists, Inc,1994:29-60
    [311]Van S J J G, Hulleman S H D, Wit D. Crystallinity in Starch Bioplastics. Ind Crops Prod,1996, 5(1):1122
    [312]梁勇.非晶颗粒态淀粉及其生物与化学反应活性研究.华南理工大学博士学位论文,2002:98-123
    [313]刘延奇.酸酶催化水解对淀粉结晶结构与性质的影响研究.天津大学博士学位论文,2003:78-123
    [314]Huang M F, Yu J G, Ma X F. Studies on the properties of montmorillonite-reinforced thermoplastic starch composites. Polymer,2004,45:7017-7023
    [315]梅洁,陈家杨,欧义芳.醋酸纤维素的现状与发展趋势.纤维素科学与技术,1999,7(4):57-62
    [316]Miladinow V D, Hanna M A. Physical and molecular properties of starch acetates extruded with water and ethanol. Ind Eng Chem Res.1999,10:3892-3897
    [317]Kshirsagar A C, Singhal R S. Optimization of starch oleate derivatives from native corn and hydrolyzed corn starch by response surface methodology. Carbohydr. Polym.2007,69:455-461
    [318]辛嘉英,梁宏野,陈林林,张颖鑫,夏春谷.均匀设计法优化α-生育酚阿魏酸酯薄层色谱展开剂系统.食品工业科技,2009,12(7):45-51
    [319]Pawinee K, Suree P. Simple assay method for lipase activity and analysis of its catalytic hydrolysis product in water-poor media, Indian. J. Chem,1993,32:88-89
    [320]Oliveira D, Feihrmann A C, Rubira A F, Kunita M H, Dariva C, Vladimir O J. Assessment of two immobilized lipases activity treated in compressed fluids. The Journal of Supercritical Fluids,2006, 38(3):373-382
    [321]Wehtje E, Costes D, Adlercreutz P. Enantioselectivity of lipases:Effects of water activity. J. Mol. Catal. B-Enzym.1997,3:221-230
    [322]戴红旗,徐文娟.双醛淀粉的性质及其提高纸湿强度的效果.纸和造纸,2002(6):42-44
    [323]张秀清.淀粉与碘反应的显色原理和条件.实验教学与仪器,2006,23(12):1-2
    [324]Elomaa M, Asplund T, Soininen P, Laatikainen R, Peltonen S, Hyvarinen S. Determination of the degree of substitution of acetylated starch by hydrolysis,1H-NMR and TGA/IR. Carbohydrate Polymers,2004,57:261-267
    [325]Junistia L, Sugih A K, Manurung R, Picchioni F, Janssen L, Heeres H J. Synthesis of higher fatty acid starch esters using vinyl laurate and stearate as reactants. Starch-Starke,2008,60:667-675
    [326]Junistia L, Sugih A K, Manurung R, Picchioni F, Janssen L, Heeres H J. Experimental and modeling studies on the synthesis and properties of higher fatty esters of corn starch. Starch-Starke, 2009,61:69-80
    [327]Dejan B, Dusan M, Slavica S M. The effect of substrate polarity on the lipase-catalyzed synthesis of aroma esters in solvent-free systems. Journal of Molecular Catalysis B:Enzymatic, 2007,45(4):97-101
    [328]Takashi K, Shuj A, Ryuichi M. Lipase-catalyzed condensation of p-methoxy-phenethyl alcohol and carboxylic acids with different steric and electrical properties in acetonitrile. Biotechnology Letters,2003,25(1):3-7
    [329]Degn P, Zimmermann W. Optimization of Carbohydrate Fatty Acid Ester Synthesis in Organic Media by a Lipase from Candida Antarctica. Biotechnol Bioeng,2001,74(6):483-491
    [330]Kanasawud P, Bloomer S P S, Adlercreutz P. Triglyceride Interesterification by Lipases-Ⅲ. Alcoholysis of Pure Triglycerides. Enzyme Microb.Technol,1992,14:959-965
    [331]Stamatis H, Xenakis A, Menge U. Kinetic Study of Lipase Catalyzed Esterification Reactions in Water-in-oil Microemulsions. Biotechnol Bioeng,1993,42(8):931-937
    [332]胡亚楠,张燕萍.棕榈油淀粉酯的乳化性和黏度的研究.粮食与饲料工业,2011,12:40-43
    [333]Kurakake M, Noguchi M. Effects on Maize Starch Properties of heat-treatmet with Water-Ethanol Mixtures. Cereal Science,1997,25(2):253-260
    [334]Leach H W. Structure of the starch granule.1.Swelling and solubility paterns of various starches. Cereal chemical,1959,35(6):534-539.
    [335]李兆丰,顾正彪.酸解氧化淀粉的制备及其性质的研究.食品与发酵工业,2005,31(2):14-17
    [336]徐忠.马铃薯梭甲基淀粉糊化特性研究.食品科学,2001,22(2):25-28
    [337]黄强,杨连生,罗兴发.高粘度十二烯基唬拍酸淀粉钠理化性质的研.华南理工大学学报(自然科学版),2001,29(12):42-45
    [338]Yasumatsu K S. Whipping and emulsifying properties of soy bean Products. Agri.Biol.Chem, 1972, (36):719-721
    [339]Pearce K N, Kinsella J E. Emulsifying properties of proteins:evaluation of a turbidimetric technique. Journal of agriculture food chemical,1978,26(3):716-723
    [340]Einhorn S U, Weiss M, Kunzek H. Influence of the emulsion components and preparation method on the laboratory-scale preparation of o/w emulsions containing different types of dispersed phases and/or emulsifiers. Nahrung/Food,2002,46(4):294-301
    [341]朱瑶,顾惕人.表面化学.北京:科学出版社,2001:76-79
    [342]Paraskevopoulou D, Boskou D, Paraskevopoulou A. Oxidative stability of olive oil-lemon juice salad dressings stabilized with polysaccharides. Food Chemistry,2007, (101):1197-1204
    [343]Lin J H, Lee S Y. Chang Y H. Effect of acid-alcohol treatment on the molecular structure and physicochemical properties of maize and potato starches. Carbohydrate Polymers,2003,53(4): 475-482
    [344]钱建亚,顾林.三种常用淀粉糊化测定方法的比较.西部粮油科技,1999,24(4):42-46
    [345]杜先锋,许时婴,王璋.淀粉糊的透明度及其影响因素的研究.农业工程学报,2002,18(1):129-131
    [346]Funami T, Kataoka Y, Thshio O. Effect of non-ionic polysaccharides on the gelatinization and retrogradation of wheat starch. Food Hydroeolloid,2005,9:1-13
    [347]Chang S, Liu L. Retrogadation of rice starches studied by differential seauning calorimetry and influence of sugars, NaCl and lipids. Journal of Food Science,1991,56(2):564-570
    [348]卞希良,乌日应龙,夏风清.淀粉糊凝沉特性的研究.粮油食品科技,2005,13(6):46-48
    [349]Dickson E. Protein stabilized emulsion. Journal of Food Engineering,1985,22:59-74
    [350]焦学瞬,贺明波.乳状液与乳化技术新应用-专用乳液化学品的制备及应用.北京:化学工业出版社,2006:50-55
    [351]Salikia E, Pegiadoub S, Doxastakis G. Evaluation of the emulsifying properties of cotton seed protein isolates. Food Hydrocolloids,2004, (18):631-637

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700