用户名: 密码: 验证码:
玻璃纤维增强杨木单板复合层板结构与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构用集成材和单板层积材是制备现代木建筑承载木构件的主要材料。层板是集成材的构成单元,通常由实木板材加工而成,为了满足结构用集成材承载能力的需要,要求层板尤其是最外层板具有优良的物理力学性能,并符合相应的强度等级。由于我国适用于结构用集成材的天然林木材资源匮乏,故以人工林木材为原料,采取复合增强技术开发工程结构材料,对于解决木结构用材的需求,缓解优质木材短缺的矛盾,促进人工林的发展具有重要的现实意义。
     本文以杨木单板为基材,玻璃纤维布为增强材料,按照单板层积材的结构设计,制备玻璃纤维布增强杨木单板复合层板。主要研究内容包括:结构用复合层板的结构设计,试验分析玻璃纤维布在层板中的铺放位置及层数对层板性能的影响,为优化复合材料层板的结构提供依据;玻璃纤维布增强复合层板的制备工艺和性能,分别采取单因子和多因子正交表进行热压胶合制板试验,通过对试验因子的极差与方差分析研究玻璃纤维布增强复合层板制备的优化工艺;以复合材料力学层合板的刚度与强度理论为基础,建立玻璃纤维布增强杨木单板复合层板的刚度预测模型,对复合层板的多种试验结构加以检验,对比实测值考察拟合性能,研究复合材料层板的增强机理。研究结果如下:
     (1)玻璃纤维布在板坯中的铺放位置对复合材料层板的静曲强度(MOR)和弹性模量(MOE)的增强效果影响显著。在最外层单板内各铺放1层玻璃纤维布的层板,其MOR和MOE值比在芯层单板上下各铺放1层玻璃纤维布的复合层板分别增加32.63%和23.67%。玻璃纤维布对MOR的增强效果优于对MOE的增强效果。
     (2)相对于未铺放玻璃纤维布的层板,随着铺放玻璃纤维布层数的增加,复合材料层板的MOR和MOE均呈现上升趋势。在整个层板中从外到内对称各铺放2层、4层、6层和8层玻璃纤维布时,复合层板的MOR分别提高了43.5%、47.4%、51.7%和55.1%,MOE分别分别提高了29.5%、31.0%、33.5%和35.7%。铺放2层玻璃纤维布时复合材料层板的MOR和MOE显著提高,而玻璃纤维布从4层到8层的增加过程中MOR和MOE的增加幅度并不明显。
     (3)硅烷偶联剂用于玻璃纤维的表面处理,可显著改善玻璃纤维和树脂的粘合性能,提高玻璃纤维增强复合层板的强度。随着偶联剂浓度的增加,按照同一热压工艺制备的由15层顺纹单板、上下各铺放玻璃纤维布3层的复合层板,其MOR和MOE也随之逐渐增大。
     (4)采取由15层顺纹单板,上下分别铺放玻璃纤维布3层的组坯结构,按L9(34)正交表进行热压胶合制板试验,利用试验因子的极差与方差方法分析表明:在试验因子水平范围内热压工艺对复合层板的密度、垂直加载下抗弯性能、平行加载下的抗弯性能及水平剪切强度影响的显著性不同,但热压压力的影响均极显著,热压温度除对平行加载下的弹性模量和垂直加载下的水平剪切强度以外,影响均高度显著或极显著。
     (5)综合分析表明,试验制作的玻璃纤维布增强杨木单板复合层板与结构用单板层积材相比,强度性能均超过了GB/T20241-2006结构用单板层积材最高级别180E优等品规定的指标值要求。与结构用集成材层板相比,性能均超过了GB/T26899-2011结构用集成材中目测分等层板强度性能中最高级别SZ1树种群层板等级Id的MOR和MOE要求,甚至达到日本集成材农林标准(2007年9月25日农林水产省告示第1152号)A树种群(阿必东)1等层板强度的指标要求。
     同时,经Ⅰ类浸渍剥离试验,层板各层均未发生剥离现象,表明复合层板具有优良的胶合耐久性。
     (6)以复合材料力学层合板的刚度与强度理论为基础,建立的玻璃纤维增强杨木单板复合层板的刚度预测模型,对6种按玻璃纤维布铺放位置和5种按玻璃纤维布层数及铺放位置分别组成的对称复合层板,按预测模型公式计算的顺纹MOE表明,其预测值与试验制备的玻璃纤维布增强复合层板MOE实测值拟合效果良好,预测精度较高。
     玻璃纤维布铺放位置不同对复合层板MOE贡献率不同。在复合层板中从外到内对称各铺放1层玻璃纤维布时,对复合层板MOE的贡献率依次为A型25.58%、B型14.76%、C型5.99%、D型0.85%。当复合层板中上下同样各铺放2层时,玻璃纤维布对复合层板MOE的贡献率E型为34.02%,F型仅为7.24%。
     在复合层板中未铺放与从外到内对称各铺放1~4层的情况下,玻璃纤维布对复合层板MOE的贡献率依次为G型0.00%、H型25.59%、J型34.02%、 K型36.59%、L型37.09%。当在复合材料层板上下各铺放3和4层时,与铺放2层的相比MOE只提高了2.57%和3.07%。
Structural glulam and laminated veneer lumber are the main materials of modern woodconstructions and other wood building components.In order to meet the needs of structuraltimber’s carrying capacity requirements, especially giving the outermost layer laminate boardwith excellent physical and mechanical properties, laminate is a constituent unit timber whichis usually made of solid wood boards or finger splicing plate. Due to the scarcity of thedomestic natural forest timber, it has important practical significance in using plantation woodas raw material to make composite reinforced structural materials to ease the shortage ofhigh-quality timber, and promote the development of plantation.
     In this paper, glass-fiber fabric reinforced poplar veneer composite laminates were madein accordance with the structure principle of laminated veneer lumber, using poplar veneer asthe base material and glass-fiber fabric as reinforcing material. The main contents of this thesisinclude: structural design of composite laminates; experimental analysis of laying position andnumber of layers of glass-fiber fabric and its infulence to the properties of laminates;providing a basis for optimizing the structure of composite laminates; glass-fiber fabricreinforced composite laminates preparation and performance were to take a single factor andmulti-factor orthogonal hot glue system board tests conducted by the test factor analysis ofvariance poor and glass fiber fabric reinforced composite laminates prepared optimizationprocess; mechanics of composite materials to the laminate stiffness and strength theory,establishing poplar veneer glass fiber fabric reinforced composite laminates stiffness predictionmodel, a variety of tests on the composite laminate structure to be tested, compared to themeasured value to be investigated combined performance of composite laminates enhancementmechanism. The results are as follows:
     (1) The placement position of glass-fiber fabric on slab have significant effects on thebending strength(MOR) and elastic modulus(MOE) of the composite laminates. When glass-fiber fabrics are spread under the surface veneer of the composite laminates, the MORand MOE increased by32.63%and23.67%respectively compared with when they are speadon either side of the core veneer laminated composite materials. In addition, the glass-fiberfabric for static bending intensity enhancement effect is superior to the effect of elasticmodulus.
     (2) As for the unspread veneers, the MOR and MOE both rose with the increase of thelayers numbers of the glass-fiber fabric. Respectively, when adding2layers,4layers,6layersand8layers of glass-fiber fabric from the core to the surface symmetrically, the MOR wasincreased by43.5%,47.4%,51.7%,55.1%and the MOE was increased by29.5%,31.0%,33.5%,35.7%. The MOR and MOE increased remarkablely when laying two layers ofglass-fiber fabric. But the increase were not obvious in the process of laying from4to8layers.
     (3) The adhesive properties and the strength of glass-fiber reinforced composite laminateswere significantly improved by using silane coupling agent in the surface treatment ofglass-fiber. With increasing concentration of the coupling agent, the MOR and MOE ofcomposite laminates on the same hot-pressing process preparation increases gradually.
     (4) Hot-pressing experiments were carried on using the laminates taken from15arrangegrain veneer and3layers of fiber-glass fabric up and down. According to single factor and L9(34) orthogonal table, the results show that within the experimental factor levels, the effects ofhot-pressing process on layer board density and flexural performance under vertical load, thebending capacity of the parallel loading and horizontal shear strength were different. But theinfluence of thermal stress were extremely significant. Hot-pressing temperature havesignificant influence, in addition to the parallel loading of modulus of elasticity and horizontalshear strength under the vertical load.
     (5) Comprehensive analysis shows that when comparaed with the结构用单层板积材(是不是structural glulam?), the poplar fiber-glass fabric reinforced composite laminates excelthe the requirements of GB/T20241-2006structural laminated veneer lumber highest level180E superior product requirements in their elastic modulus and other properties. When compared with the timber laminates, its structural performance exceed GB/T26899-2011Table2Structural Glulam visual grading laminate strength performance indicators at the highestlevel SZ1species group laminates Level Id elastic modulus and bending strength requirements.Even to the Japanese Agricultural Standards timber (September25,2007MAFF NotificationNo.1152) laminate strength performance standards, A species group layer (Abi Dong) anindicator of such requirements.
     Meanwhile, no peel appeared among different layers in the class I immersion peel test,which indicates the poplar glass-fiber fabric reinforced composite laminates have excellentdurability gluing.
     (6) Based on the composite laminates mechanical stiffness and strength theory, aglass-fiber reinforced poplar composite laminates stiffness model was established. The six andfive kinds of glass-fiber fabric by laying position by numbers and placement locationcomposite a orthogonal symmetric laminates. The calculation results by predictive modelformula of elasticity parallel to grain showed that the predictive value and the experiment valueof the glass fiber fabric reinforced composite laminates are basically the same. Although thereare different deviations between the two values, but the prediction accuracy are higher.Description stiffness model of a composite material of glass-fiber fabric for different groupsbillet placement position the elastic modulus of composite laminates with high reliabilityprediction.
     The different placement positions of the layers contribute differently to the MOE ofcomposite laminates.The higher of the elastic modulus, the farther of placement position fromthe central layer, the contribution rate is higher. In the composite laminates laying down onelayer of the same case, the glass fiber fabric elastic modulus of the composite laminates inorder contribution of type A25.58%, B type14.76%, C-type5.99%, D-type0.85%. Up anddown in the same when the composite laminates laying two layers of glass fiber fabric elasticmodulus of the composite laminates contribution E type is34.02%, F7.24%type only. As thelayers of rectangular cross-section composite laminates bending stiffness coefficients and their contribution to the cube of the distance is proportional to the surface, with a weighting factorincreases rapidly away from the surface.
     As for the composite laminates without glass-fiber and with glass-fiber laying above andin the bottom from1to4lays, the glass fiber fabric laminated on the composite elasticmodulus G type contribution rates were0.00%, H type25.59%, J type34.02%, K,36.59%,L-type37.09%. When the upper and lower layers of the composite lay-2to4layers, the glassfiber fabric elastic modulus of the composite laminates increase the contribution rate is notobvious, and the composite upper and lower layers2layers of laying increased only2.57%ascompared and3.07%. Therefore, when designing the glass-fiber fabric reinforced compositelaminate structure, the layer numbers of glass-fiber fabric should be properly controlled.
引文
[1]国家林业局.人民网.2009年11月17日
    [2]姚昌恬.中国人造板应用现状及前景[M].北京:中国林业出版社,2002.10
    [3]陆从进.利用兴安落叶松小径原木高频胶合制造单板层积材的研究[J].林业科学,1988,24(4):422-427
    [4]杜国兴.意杨单板层积材热压工艺研究[J].南京林业大学学报(自然科学版),1991,15(1):58-63
    [5]林利民,刘兴杰.落叶松单板层积材生产工艺技术[J].建筑人造板,2000(1):28-29
    [6]陈雷,徐咏兰.人工林杉木单板层积材制造工艺的研究[J].木材工业,2000,14(6):3-5
    [7]吕斌,付跃进,吴盛富,唐召群.几种人工林树种单板层积材的生产试验及力学性能研究[J]林产工业,2004,31(3):12-15
    [8]赵丹,李晓秀,顾玉成等.单板厚度对杨木单板层积材强度性能的影响[J].林业科技,2001,26(2):40-42
    [9]鹿振友,刘艳,王淑娟等.斜纹理对单板层积材力学性能的影响[J].中国木材,2003,(8):24-25
    [10]南京林业大学.一种竹材增强单板层积材[P].中国专利:ZL03112794.0,2005-3-23
    [11]王卫东,王志强等.金属网增强型杨木单板层积材的研究[J].南京林业大学学报,2003,27(6):9-13
    [12]张占宽,刘君良.密实性杨木单板层积材的制造工艺及应用前景分析[J].林业机械与木工设备,2005,(7):15-17
    [13]王小青,刘君良.竹木复合LVL制备工艺[J].木材工业,2005,19(5):7-9
    [14]赵俊石,许正东等.集成材及玻璃纤维增强复合材料的发展动态研究[J].西部林业科学,2012,41(2):106-109
    [15]张晓平,何琳,周炜.凯夫拉纤维增强弧形体挠性接管平衡性研究[J].振动与冲击,2012,31(8):35-38
    [16] Yong Hong. Fatigue and Fracture of the FRP-Wood Interface: Experimental CharacerizationandPerformance Limits [D]. Maine:B.S.University of Maine,2003
    [17] David P. Landau, Kurt Binder. A Guide to Monte Carlo Simulation in statistical physics.CambridgeUniversity Press.2000
    [18]李龙,申世杰,刘亚兰等.集成材/FRP复合材料胶合性能研究进展[J].林业机械与木工设备,2010,38(7):7-9
    [19]时兴洋,蔡家斌.集成材的生产工艺[J].适用技术市场,2001,(12):31-32
    [20]胡育辉,我国集成材现状和发展南方速生杉木集成材的探讨[J],木材加工机械,2002(2)29-30
    [21]任晓峰.落叶松结构用集成材胶合工艺技术的研究.[硕士论文].北京.北京林业大学.2008
    [22]张彦娟,俞友明,马灵飞.人工林杉木结构集成材胶合工艺的研究[J].木材工业.2008,22(4):7-12
    [23]江泽慧,常亮,等.结构用竹集成材物理力学性能研究[J].木材工业,2005(19)4:22-26
    [24]申士杰,张鹏翼,张莉.玄武岩纤维落叶松集成材胶合工艺[J].科技导报,2012,30(26):67-70
    [25]危良才.玻璃纤维是复合材料的最佳增强材料[J].纤维复合材料,2009,(3):53-56
    [26]程丽美,黄慧抽,朱一辛.玻璃纤维增强杨木单板层积材弯曲性能的初步研究[J].江西林业科技,2008年第6期(54-60)
    [27]梅长彤,周定国.玻璃纤维增强杨木混凝土模板用胶合板研究[J].林业科技开发,2009,23(6):79-82
    [28]翁永华,马满珍.玻纤表面处理对于玻纤增强PET复合材料断裂韧性的影响[J].玻璃钢/复合材料,1998,(6):9-12
    [29]危良才.电子级玻璃纤维布表面处理技术[J].印制电路信息,2004,(12):21-23
    [30]高红云,张招贵.硅烷偶联剂的偶联机理及研究现状[J].江西化工,2003,(2):30-32
    [31]田甜,彭勃,余鲜桃.硅烷偶联剂对环氧胶粘剂力学性能的影响[J].建筑胶粘剂,2011(6):122-125
    [32]修玉英,王功海等.硅烷偶联剂改性聚氨酯的研究[J].化工新型材料,2007(1):67-69
    [33]张美忠.三维整体编织C/C复合材料预制体结构仿真与弹性性能预测[博士学位论文].西安:西北工业大学,2006
    [34]沈观林.复合材料力学[M].北京:清华大学出版社,2006
    [35]杨庆生.复合材料细观结构力学与设计[M].北京:中国铁道出版社,2000
    [36]曾庆敦.复合材料的细观破坏机制与强度[M].北京:科学出版社,2002
    [37] Goldberg Robert K,Hopkins Dale A Composite micromechanical modeling using the boundary elementmethod[A].NASA Technical Memorandum,106127,1993
    [38]杨振宇,卢子兴.三维四项编织复合材料弹性性能的理论预测[J].复合材料学报,2004,21(2):134-141
    [39]朱光前.发展木结构建筑促进木材产业升级[J].中国人造板,2011(3):106-110
    [40]周海宾,费本华,任海青.中国木结构建筑的发展历程[J].山西建筑,2005,31(21):10-11
    [41]宋维明,程宝栋.未来中国木材资源获取途径探究[J].北京林业大学学报,2006,5(S2):3-8
    [42]贺微粒,焦健,彭立民等.玻璃纤维布强化杨木胶合板模板研究[J].木材工业,2007,21(2):13-15
    [43]王艇.玻璃纤维增强聚酰胺性能的研究[J].化工技术与开发,2010,39(2):19-20
    [44] Mukherjee A, Varughese B. Design guidelines for ply drop-off in laminated composite structures [J],Composites Part B:engineer-ing,2001,(32):153-164
    [45]于淼,张华婷,郑世平.玻璃纤维表面偶联剂处理方法对树脂基复合材料性能的影响[J].宇航材料工艺,2006(6):29-32
    [46]牛光良,王同,徐恒昌.硅烷偶联剂的浓度对钡玻璃与树脂基质间粘接强度的影响[J].中国生物医学工程学报,1999,18(2):211-215
    [47] Mohsen NM,Craig RG.Effect of silanation of fillers on their dispersability by monomer systems.J OralRehabil,1995,22:183~189
    [48]朱一辛,程丽美,关明杰.竹木复合板水平剪切强度的研究[J].西北林学院学报,2006,21(6):180-182
    [49]郭伟峰,孙正军.竹木层积材层间剪切强度的研究[J].木材加工机械,2012,(2):1-2
    [50]刘新东,刘伟.复合材料力学基础[M].西北工业大学出版社,2010.8
    [51]范赋群,王震鸣.关于复合材料力学几个基本问题的研究[J].力学与实践,1995(1):4-9
    [52]刘玉强,赵志曼.塑木复合材料及其发展[J].化工新型材料,2005,33(3):59-61
    [53]朱晓群,周亨近等.竹粉/HDPE复合材料的力学性能与流动性能[J].北京化工大学学报,2001,28(1):56-58
    [54] PRITCHARD G.Two technologiesmerge:wood plastic composites[J].Plast.Addit Comp2004,6(4):18
    [55]张齐生,孙丰文.竹木复合集装箱底板的研究[J].林业科学,1997,6(33):546-554
    [56]蒋身学,朱一辛,张齐生.竹木复合层积材结构及其性能[J].南京林业大学学报(自然科学版),2002(6):10-12
    [57]那斌,王志鹏等.两种方法提高速生杨木尺寸稳定性的研究[J].中南林业科技大学学报,2011,31(8):183-186
    [58]张晓冬,李君,王泉中,朱一辛.木竹复合层合板力学性能预测与分析[J].南京林业大学学报(自然科学版),2005(6):150-154
    [59]卢晓宁,王志强等.速生杨木单板面内剪切模量预测模型[J].南京林业大学学报(自然科学版),2006,30(1):93-94
    [60]刘新东,刘伟.复合材料力学基础[M].西北工业大学出版社,2010.8
    [61]邱棣华.材料力学[M].北京:高等教育出版社,2004
    [62]范钦珊,唐静静.工程力学(静力学和材料力学)第二版[M].北京.高等教育出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700