用户名: 密码: 验证码:
纤维板和胶合板热压过程中的传热规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在人造板生产过程中,热压是影响产品质量和产量的重要工序。影响人造板热压传热传质的因素有很多,既包括热压温度、施胶量、板坯目标密度、板坯厚度等热压工艺参数,也包括组坯原料特性、板坯热物理特性、板坯初含水率、板坯结构类型等板坯自身的因素。本课题以杨木和狼尾草为原材料的纤维板,以及脲醛树脂和豆胶杨木胶合板作为研究对象,通过较为先进的在线温度测试技术对胶合板和纤维板的热压传热过程及其影响因素进行了实验研究。重点研究了板子密度、板坯初含水率、施胶量、板坯厚度等工艺参数对热压传热过程的影响,可得出如下结论:
     杨木和狼尾草纤维板在热压过程中,芯层升温曲线可以明显分为四个阶段:热压初期的短暂恒温段、快速升温段、芯层水分蒸发的恒温阶段和水分蒸发完毕后的慢速升温阶段。热压温度、目标密度、板坯初含水率、施胶量等工艺参数对纤维板热压传热过程均存在一定的影响。热压温度对纤维板坯传热过程的影响比较显著。在相同热压温度条件下,杨木纤维板坯的传热性能要略好于狼尾草纤维板坯。在整个热压传热过程中板坯芯层升温速度随着热压温度的提高而明显增加。目标密度对纤维板坯传热过程存在一定的影响,板坯芯层到达水分汽化温度的时间、水分蒸发恒温段的时间随密度的增加有所延长,在慢速升温阶段,板坯芯层的升温速率随密度的增加而有所下降。施胶量对纤维板热压传热过程中的快速升温阶段时间和水分汽化恒温阶段时间存在一定影响。在快速升温阶段,随着施胶量的增加板坯的升温速率呈现下降的趋势;在水分气化恒温段,水分蒸发时间随着施胶量的增加而有所增加。在慢速升温阶段,施胶量对纤维板坯的传热过程影响不明显。板坯含水率主要对纤维板热压传热过程中的快速升温阶段和水分汽化恒温阶段时间存在影响。其中,快速升温阶段时间和水分气化恒温阶段时间均随含水率的提高而有所延长。在慢速升温阶段,板坯初含水率对芯层升温速率影响很小。
     以脲醛树脂作为胶粘剂的杨木胶合板热压传热过程可以分为短暂恒温段、快速升温段和慢速升温段三个阶段。板坯厚度对胶合板热压传热过程的影响非常显著。热压过程中板坯中心胶层升温速率随着板坯厚度的增加而明显下降,加热时间也随之延长。热压温度对杨木胶合板热压传热过程的影响比较显著,板坯中心胶层升温速度随着热压温度的提高而加快。在快速升温阶段,板坯初含水率对板坯的传热有着较为显著的影响,随着含水率的增加板坯胶层平均升温速率明显增加,快速升温段的时间随之减少。在慢速升温阶段,板坯初含水率对芯层升温速率影响很小。施胶量对以脲醛树脂作为胶粘剂的杨木胶合板热压传热影响不明显。
     以大豆基胶粘剂制造的杨木胶合板在热压工艺上与常规胶合板热压工艺存在着一定的区别。大豆胶杨木胶合板在热压前需要进行热预压。热预压传热过程可以分为快速升温段和恒温段。热预压时间受板坯初含水率影响比较显著,随着板坯初含水率的增加,热预压时间明显增加。施胶量对热预压时间也存在一定的影响,热预压时间随着板坯施胶量的增加而有所延长。经过热预压工序后的热压传热过程可以分为快速升温段和慢速升温段。热压温度对大豆胶杨木胶合板热压传热过程影响比较显著,板坯中心胶层升温速率随热压温度的提高而明显加快。在热压阶段,板坯的升温速率随着板坯施胶量的增加而有所下降,到达热压工艺温度的时间有所延长。板坯初含水率对热压阶段的传热过程基本没有影响。
     本文在获取大量实验数据的基础上,通过数值模拟的方法建立了以脲醛树脂作为胶粘剂的杨木胶合板热压传热过程的数学模型,用于模拟和预测不同工艺条件下热压过程胶合板内部的温度变化情况。模型输出结果与实验数据基本吻合,具有较高的可信度,对多层胶合板以至单板层积材的热压生产实践具有一定的指导意义。
     通过化学分析和仪器分析对制板原料的热化学特性进行了研究,结果表明杨木与狼尾草有着较为相似的热化学特性,在加热温度200℃以下,杨木和狼尾草主要化学结构基本保持完好,因而保证了一定的物理力学性能。狼尾草热分解过程主要发生在220℃-500℃的温度区间内,生成的挥发性产物有CO、CO2、烷烃、酸、醛等物质。在500℃以后试样质量基本不再发生变化。杨木热分解过程主要发生在225℃-500℃的温度区间内,热分解过程产生的挥发性产物与狼尾草基本相似。
     采用准稳态法对胶合板坯和纤维板坯的热物理特性及其影响因素进行了研究。结果表明,板坯目标密度对纤维板热物理特性存在着较为明显的影响,在相同目标密度条件下,杨木纤维板坯的导热系数要高于狼尾草纤维板坯。两种原料纤维板坯的导热系数均随目标密度的提高而显著增加。纤维板坯密度与板坯导热系数之间存在较为显著的线性关系。纤维板坯的比热基本不受板坯目标密度的影响,纤维板坯的导温系数随密度的增加而有所降低。板坯初含水率对纤维板坯和胶合板坯的热物理性能存在着明显的影响,随着含水率的提高,板坯的导热系数和比热明显增加,纤维板坯和胶合板坯的导热系数与含水率之间呈明显的线性相关性。含水率对板坯导温系数的影响较小。
Hot pressing is an important process in wood-based panel production that affects both thequality and the output of the products. Many factors influence heat and mass transfer during hotpressing, including temperature, resin content, target density, mat thickness and raw materialproperties like thermal physical properties, moisture content and mat structure. In this paper,heat transfer during the hot pressing of Poplar plywood bonded with UF and soybean proteinresin and fiberboard prepared by Poplar and pennisetum was investigated by means ofadvanced online temperature test technology. The research was mainly focused on the effect oftarget density, initial moisture content, resin content and mat thickness on the heat transferprocess, and results as follows were obtained:
     The hot pressing of poplar fiberboard and pennisetum fiberboard can be divided into fourdistinct phases: short constant temperature phase at the beginning of hot pressing, fast heatingphase, constant temperature phase due to core layer water evaporation and slow heating phase.This process was influenced by hot pressing temperature, mat density, panel moisture contentand resin content, among which, the influence of hot pressing temperature was pronounced. Atthe same temperature, the thermal conductivity of poplar fiberboard was a little bit better thanthat of pennisetum fiberboard. The core-layer heating rate increased significantly with the riseof temperature. Panel density had an influence on the heat conduction during the hot pressing.Both the time needed to evaporate the core layer moisture and the time of constant temperaturephase due to core layer water evaporation increased with the increase of panel density. At theslow heating phase, the core layer heating rate was lowered with the increase of the density.The resin content had an influence on fast heating phase and constant temperature phase due tocore layer water evaporation. When the resin content increased, the core layer heating rate atthe fast heating phase was lowered, while the water evaporation time was prolonged. At theslow heating phase, the resin content exerted a limited influence on the heat conduction. Themoisture content had an impact on the time of fast heating phase and constant temperaturephase due to water evaporation. The time increased with the rise of the moisture content. At theslow heating phase, the moisture content had little impact on the core layer heating rate.
     The hot pressing of poplar plywood bonded with UF resin can be divided into three phases:short constant temperature phase, fast heating phase and slow heating phase. The thickness ofthe slab has a very significant impact on heat transfer process of the hot pressing. The core layerheating rate was lowered with the increase of the thickness during the hot pressing, while theheating time became longer. The hot pressing temperature has a significant impact on heattransfer process. The core layer heating rate increased with the rise of the temperature. Duringthe fast heating phase the heating rate of the core layer increased with the increase of moisturecontent while the slow heating phase did not show any significant impact of moisture contenton the corresponding heating rate. The impact of resin content on the hot-pressing heat transferprocess was not significant.
     There exists difference between hot-pressing process of the poplar plywood bonded withsoybean protein adhesive and the conventional plywood. For the former plywood, prepressing is needed before hot-pressing. The heat transfer process of prepressing can be divided into fastheating phase and constant temperature phase. The time of prepressing was effectedsignificantly by the moisture content of the mat, which was significantly prolonged with theincrease of the moisture content. The time of prepressing was also affected by the resin content.The heat conduction during the process of hot pressing after prepressing could be divided tofast heating phase and slow heating phase. The heat transfer during hot-pressing of the poplarplywood bonded with soybean protein adhesive was greatly influence by hot-pressingtemperature. The core layer heating rate was lowered with the increase of the resin contentduring the hot pressing, while the heating time increased with the rise of resin content. Themoisture content had no effect on the heat conduction during the process of hot pressing.
     A theoretical model for heat transfer in poplar plywood bonded with UF resin wasdeveloped.It can be used to simulate and predict the temperature change during hot-pressingprocess in different conditions. The simulation results were consistent with experimental data.The model showed a guiding value for the manufacturing practice of plywood and LVL.
     Chemical and instrument analyses were performed to research the thermal chemicalcharacteristics of the material. The results showed that poplar had similar thermal chemicalcharacteristics with pennisetum. The chemical structure was intact if the treatment temperaturewas lower than200℃.No mechanical property change of the material was found in thiscondition. Pyrolysis process of pennisetum mainly occurred at220-500℃.Among the reactionproducts were carbon monoxide, carbon dioxide, paraffin, acid and aldehyde. No more qualitychanged of the samples were found after the temperature climbed to500℃. Pyrolysis processof poplar mainly occurred at225-500℃,and the reaction products were similar with those ofpennisetum.
     In order to investigate the thermal physical properties of plywood and fiberboard, a quasisteady method was applied. The results showed that the panel density had a significant impacton the thermal physical properties of the fiberboard. The thermal conductivity of poplarfiberboard was higher than that of pennisetum fiberboard with the same density. The thermalconductivity of the fiberboard mat increased linearly with the increase of density. Specific heatof fiberboard was not significantly affected by density. The thermal diffusivity of the fiberboardmat decreased with the increase of density. The initial moisture content of panel had asignificant impact on the thermal physical properties of fiberboard and plywood. With the riseof moisture content, the thermal conductivity and specific heat of the fiberboard and plywoodmat increased significantly. Obvious linear relationship was found between the thermalconductivity and the moisture content of the mat. The impact of moisture content on the thermaldiffusivity of the fiberboard and plywood was not significant.
引文
[1]国家林业局.第七次全国森林资源清查结果[DB/OL].http:/www.forestry.gov.cn.2009.
    [2]钱小瑜.我国木材资源可持续发展商榷[J].人造板通讯,2005,10(5):8-11.
    [3]周定国.江苏杨木人造板的研发与展望[J].南京林业大学学报,2006,30(4):1-4.
    [4]曾婷.中国人造板产业的国际竞争力评价[D].南京林业大学,2008.
    [5]徐咏兰主编.中密度纤维板.[M].北京:中国林业出版社,1995.
    [6]FranzfP,Kollmann,EdwardW,Kuenzi,AlfredJ,Stamm著:杨秉国译.木材学与木材工艺学原理(人造板).[M].北京:中国林业出版社,1984:361-372.
    [7]夏灵芝.我国纤维板生产发展概况及产能分布[J].林业经济,2008.6:30-32.
    [8]陆仁书主编.胶合板制造学[M].北京:中国林业出版社,1993:1-3.
    [9]杨世铭、陶文铨.传热学[M].北京:高等教育出版社,2004:1-2.
    [10]Incropera F P.著,葛新石,叶宏译.传热和传质的基本原理[M].北京:化学工业出版社,2007:2-3.
    [11]章熙民,任泽霈.传热学[M].北京:中国建筑工业出版社,2007:12-13.
    [12]Corey A.Mechanics of Immiscible Fluids in Porous Media(3re ed.)[M].Water ResourcesPublications,1994.
    [13]Peter Bastian,Numerical Computation of Multiphase Flows in Media[M].Porous,Habilitationsschrift,1999.
    [14] Prandtl L, Tietjens O G.Fundamentals of Hydro-and Aeromechanics[M].New York:Mcgraw-Hill,1934.
    [15]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社,2006.1214-15.
    [16]Luikov A V.Heat and Mass Transfer [M].Moscow:Mir Publishers,1980.
    [17]Bear J.Bechmat.Introduction to Modeling of Transport Phenomena in Porous Media[M].Kluwer Academic Publishers,1991.
    [18]Devries D A.Simultaneous transfer of Heat and Moisture in Porous Media[C].Trans.Am.Geophys.Union,1958,39:909-916,.
    [19]Farouki O T.Thermal Properties of Soils[C].Crrel Monograph81-1,U.S.Army Cold RegionsResearsh and Engineering Laboratory,Hanover,1981.
    [20]SIAU J F.Transport processes in wood[M].Berlin:Springer-Verlag,1984.
    [21][美]约翰·F·肖著,肖亦华,滕通廉,郭焰明译.木材传热传质过程[M].北京:中国林业出版社,1989.170-180.
    [22]Kollmann F P et al.Principles of wood science and Technology.vol.1.Solid[M]. Berlin:Springe rverlarg,1968:247-250.
    [23]杨庆贤.木材热学参数的理论表达式[J].福建林学院学报.2001,21(4):329-331.
    [24]邢新婷,张志毅,张文杰.三倍体毛白杨无性系木材热学性质变异初探[J].北京林业大学学报.22(6)2000,11:21-23.
    [25]Maxwell J C. Treatise on electricity and magnetism[M].New York:Dover PublicationsInc,1954.
    [26]俞昌铭.多孔材料传热传质及其数值分析[M].北京:清华大学出版社,2011,166-171.
    [27].施明恒,李小川,陈永平.利用分形方法确定聚氨酯泡沫塑料的有效导热系数[J].中国科学,2006,36(5):560-568.
    [28]郁伯铭.分形介质的传热与传质分析[J].工程热物理学报,2003,24(3):481-483.
    [29]徐旭.木材导热系数非线性拟合的神经网络模型[J].浙江大学学报,2007,41(7):1201-1204.
    [30]Katz A J,Thompson A H.Fractal sandstone pores:inplicttions for conductivityane poreformation[J].Physical Review Letters,1985,54(2):1325-1328.
    [31]B M Yu.and P.Cheng.Fracatal models for the effective thermal conductivity of bi-dispersedporous media[J].Thermophysics and Heat Transfer2002,16:22-29.
    [32]施明恒,樊荟.多孔介质导热的分形模型[J].热科学与技术,2002,1(1):28-31.
    [33]俞自涛,胡亚才,田甜.木材横纹导热系数的分形模型[J].浙江大学学报,2007,41(2):351-355.
    [34]Kamke F A, Wolcott M P.Blacksburg.VA.USA.Fundamentals of flake board manufacture:wood-moisture relationships[J].Wood Science andTechnology,1991,25:57-71.
    [35]Bolton A J, Humphrey P E. The hot-pressing of dry-formed wood-based composite.Part1.Areview of the literature,identifying the primary physical process and the nature of theirinteraction[J].Holzforshung,1988,42(6):403-406.
    [36]Humphrey P E,Bolton A J.The hot pressing of dry-formed wood-based composites.PartIII.Predicted Vapour Pressure and Temperature Variation with Time,Compared withExperimental Data for Laboratory Boards[J]. Holzforschung,198943:265-274.
    [37]Humphrey,P E, Thoemen H.The continuous pressing of wood-based panel:an analyticalsimulation model[C].proc.5th annual pacific rim bio-based composites symposium,canberra.austrilia.2000.
    [38]Carvalho.Modeling and simulation of the hot pressing process in the production ofmedium density fiberboard[D] Chen.Eng.Comm.1998,1701-1721.
    [39]Dai c,Yu C.Modeling vertical density profile in wood composit during hot-pressing[C].proc.5th annual pacific rim biobased composites symposium, canberra,australia.2000.
    [40]Zombori B G, Kamke F A.Simulation of the internal condition during the hot-pressingprocess[J].wood and fiber science,2003,35(1):2-23.
    [41]Dai C,Yu C.Heat and mass transfer in wood composite panels during hot-pressing:part1.Aphysical-mathematical model[J].Wood Fiber Sci,2004,36(34):585-597.
    [42]Faessel M,Delise’e.Modeling of random cellulosic fibrous networks based on x-raytomography and image analysis[J].compos.sci technol.,2004,65:1931-1940.
    [43]Walther T,Theomen H.Synchrotron x-ray microtomography and3d image analysis ofmedium density fiberboard[J].holzforschung,2009,63:581-587.
    [44]Christiansen AW,Follensbee RA,Geimer RL,Koutsky JA,Myersge. Phenol-formaldehyderesin curing and bonding in steam-injection pressing [J].holzforshung,1993,47:76-82.
    [45]Yin S,Deglise X,Masson D.Thermomechanical analysis of wood/aminoplastic adhesivesjoints cross-linking-uf,muf,pmuf[J].holzforshung.1995,49:575-580.
    [46]Kamoun C,Pizzi A,Garcia R.The effect of humidity on crosslinked and entanglementnetworking of formaldehyde-based wood adhesive[J].sholz roh-werkst,1998,56:235-243.
    [47]靖威,俞昌铭.木材热压过程热量与含湿量数学模型初探[J].木材加工机械,1993(3):5-9.
    [48]吴娟,于志明,陈天全.大片刨花板热压的传热过程[J].北京林业大学学报,2005,3:92-95.
    [49]谢力生,喻云水,曹建文.常规热压无胶干法纤维板热压传热研究[J].林产工业,2003,30(1)26-28.
    [50]谢力生,赵仁杰,张齐生.胶粘剂对纤维板热压传热的影响[J].木材工业,2003,17(2):15-16.
    [51]谢力生,赵仁杰,张齐生.常规热压法干法纤维板热压传热的研究1理想条件下板坯中心层达到胶粘剂固化温度所需时间的数学模型[J].中南林学院学报,2002,22(2):92-103.
    [52]谢力生,赵仁杰,张齐生.常规热压法干法纤维板热压传热的研究1理想条件下板坯中心层达到胶粘剂固化温度所需时间的实用数学模型[J].中南林学院学报,2003,23(2):66-70.
    [53]王逢瑚,李鹏,陶毓博.木材单板热压导热数学模型和可视化数值解的研究[J].材料热处理学报,2008,28(1):90-93.
    [54]林利民,由昌久,杨玲.单板人造板热压过程传热速度的研究[J].林业科技,2004,29(4):32-35.
    [55]余养伦,于文吉,江泽慧,王天佑.单板层积材热压升温曲线数值模拟的研究[J].材料热处理学报,2007,28(1):130-133.
    [56]刘焕荣,柴宇博,刘君良浸胶法杨木单板层积材的热压传热分析[J].木材工业,2000,22(1):26-28.
    [57]姜志宏MDF热压过程中传热与传质的研究[D].博士学位论文.南京林业大学,2012.
    [58]杜春贵,张齐生,刘志坤.杉木积成材的热压传热特性[J].东北林业大学学报,2009,37(2):25-27.
    [59]华毓坤.人造板生产工艺学[M].北京:中国林业出版社,2002.
    [60]陈绪和.人造板工业发展态势[J].木材工业,2005,19(1):7-10.
    [61]陆仁书.纤维板制造学[M].北京:中国林业出版社,1991.
    [62]Wang J,Liu Z,Cui W.Comparison between steam-injection pressing and conventional hotpressing in producing poplar particleboards[J].Journal of Beiing Forestry University(English Ed),1997,6(1):72-78.
    [63]徐咏兰,周梅剑,华毓坤.喷蒸热压刨花板断面密度分布的研究[J].林产工业,1998,25(2):9-11.
    [64]徐长妍,华毓坤.喷蒸真空热压技术[J].林产工业,1999,26(2):20-22.
    [65]唐星华.木材用胶粘剂[M].北京:化学工业出版社,2002.
    [66]季佳.木材胶粘剂生产技术[M].北京:化学工业出版社,2000.
    [67]于夺福.装饰板制造与应用[M].北京:中国林业出版社,1983.
    [68]查朝生.营林措施对人工林杨树木材性质的影响[C].杨树工业用材林加工利用与栽培论文集,2003.
    [69]张勤丽.我国意杨加工利用概况[J].林产工业,2000,27(5):3-6.
    [70]刘君良.酚醛树脂处理杨树木材物理力学性能测试[J].林业科学,2002,38(4):176-180.
    [71]刘焕荣,刘君良.单板层积材的应用与发展[J].中国人造板,2007(2):5-7.
    [72]白淑娟,杨运生.象草与象草-美洲狼尾草种间杂种比较[J].江苏农业科学,2002,(1):57-58.
    [73]周定国,张晓伟,徐咏兰.杨木/狼尾草复合中密度纤维板工艺研究[J].林业科技开发,2007,21(5):58-60.
    [74]张德荣,母军,徐咏兰.杂交狼尾草制造刨花板工艺研究[J].北京林业大学学报,2008,30(3):136-139.
    [75]赵安珍,周定国.狼尾草中密度纤维板的原料特性[J].南京林业大学学报,2010,34(4):149-152.
    [76]沈韫元.建筑材料热物理性能.[M].北京:建筑工业出版社,1981.
    [77]杨庆贤.木材热学性质的理论研究-木材导热系数与导温系数[J].福建林学院学报,1992,12(2):182-188.
    [78]Bradbury A W, Sakai Y,Shafizadeh F.A kinetic model for pyrolysis of cellulose [J].Journalof Applied PolymerScience,1979,23(11):3271-3280.
    [79] Fisher T, Hajaligol M, Waymack B, et al.Pyrolysis behavior and kinetics of biomassderived materials [J].Journal of Analytical and Applied Pyrolysis,2002,62(2):331-349.
    [80] De Jong W, Pirone A, Wojtowicz M A. Pyrolysis of Miscanthus Giganteus and woodpellets: TG-FT-IR analysis and reaction kinetics [J].Fuel,2003,82(9):1139-1147.
    [81]王树荣,郑赟,文丽华,施正伦,骆仲泱,岑可法.半纤维素模化物热裂解动力学研究[J].燃烧科学与技术,2006,(2):105-109.
    [82]傅旭峰,仲兆平,肖刚,李睿.几种生物质热解特性及动力学的对比[J].农业工程学报,2009,25(1):199-202.
    [83] Ddemirbas A.An overview of biomass pyrolysis.[J].EnergySources2002,(24):471-482.
    [84]MaschioG,Koufopanos C,Lucchesi A.a promising route for biomassutilization[J].Bioresource Technology,1992(42):219-231.
    [85]南京林产工业学院.木材热解工艺学[M].北京:中国林业出版社,1983,8-12.
    [86]索娅,张建民,屈星星,等.能源作物与传统生物质热重实验的对比研究[J].转化利用,2007,13(2):55-59.
    [87] Qian Liu, Shurong Wang, Yun Zheng, Zhongyang Luo, Kefa Cen. Mechanism study ofwood lignin pyrolysis by using TG–FTIR analysis[J]. Journal of Analytical and AppliedPyrolysis (2008)82:170-177.
    [88]Weiland J J, Guyonnet R. Study of chemical modifications and fungi degradation ofthermally modified wood using DRIFT spectroscopy[J]. Holz als Roh-und Werkstoff61(2003)216–220.
    [89]Boonstra M J, Tjeerdsma B. Chemical analysis of heat treated softwoods[J]. Holz als Roh-und Werkstoff (2006)64:204–211.
    [90] Robinson J W, Skelly E M,Frame, G M. Frame II. Undergraduate Instrument Analysis[M].Marcel Dekker, New York, NY: Marcel Dekker (2005).
    [91]王树荣,刘倩,骆仲泱,文丽华,岑可法.基于热重红外联用分析的纤维素热裂解机理研究[J].浙江大学学报,2006,(7):1157-1158.
    [92]彭云云,武书彬. TG-FTIR联用研究半纤维素的热裂解特性[J].化工进展,2009,28:1478-1484.
    [93] Cai Z, James H M, Jerrold E W.Effects of panel density and mat moisture on processingmedium density fiberboard[J].Forest Products Journal,2006,56(10):20-26.
    [94]华毓坤.人造板生产工艺学[M].北京:中国林业出版社,2004.
    [95]李坚.木材科学[M].哈尔滨:东北林业大学,1994,186.
    [96]张洋,华毓坤.麦秸与胶粘剂之间的热反应研究[J].福建林学院学报,2002,22(1)56-60.
    [97]陶文铨.数值传热学[M].西安:西安交通大学出版社,2005:14-15.
    [98]潘阳,许国良等.计算传热学理论及其在多孔介质中的应用[M].北京:科学出版社,2011:58-59.
    [99]Hettiarachchy N S, Kalapathy U,et al.Alkali-Modified Soy Protein with ImprovedAdhesive and Hydrophobic Properties[J].Oil Chem.Soc,1995,72:1461-1464.
    [100]张亚慧,于文吉.大豆蛋白胶粘剂在木材工业中的研究与应用[J].高分子材料科学与工程,2008,24(5):20-23.
    [101]高强,李建章,等.木材工业用大豆蛋白胶粘剂研究与应用现状[J].大豆科学,2008,27(4):679-683.
    [102]降低复合木质品甲醛排放有毒物质空气传播控制措施[S].加州规则法典,17:93120-93120.12,2008.
    [103]Pizz A.Recent developments in eco-efficient bio-based adhesives forwood bonding:opportunities and issues [J].Adhesive Science Technology,2006,20:820-846.
    [104]Huang W N, X Z Sun.Adhesive Properties of Soy Proteins Modified by Sodium DodecylSurfate and Sodium Dodecylbenzene Sulfonate [J]. JAOCS,2000,77(2):705-708.
    [105]X Z Sun,Ke Bian.Shear and Water Resistance of Modified Soy Protein Adhesives[J].JAOCS,1999,76(8):977-980.
    [106]Zhong Z, X Z Sun,et al.Adhesion properties of soy protein with fibre cardboardAd[J].Am.Oil Chem.Soc.2001,78:37-41.
    [107]张洋,周定国等.豆胶制造速生杨木类胶合板的工艺研究[J].中国人造板,2007,5:7-9.
    [108] Cheng E Z, X Z Sun.Adhesive Properties of Modified Soybean Flour in Wheat StrawParticleboard [J].Composites:Part A:Applied Science and Manufacturing,2004,35(3):297-302.
    [109]李文定.酚胶和豆胶杨木胶合板及单板层积材工艺研究[D].硕士学位论文.南京林业大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700