用户名: 密码: 验证码:
牛乳加热及乳粉加工中热相关工艺对氧化风味的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于生鲜乳的供应存在地域、季节等因素的限制,乳粉的加工和使用一直受到人们的重视。无论乳粉被直接消费,还是复原后替代生鲜乳作为生产原料应用于食品中,都存在一定的缺陷。其中,乳粉加工及贮藏过程中发生的氧化风味劣变是限制其食用和应用的主要瓶颈。本课题的目的是研究加热处理以及乳粉加工中的热相关工艺,包括预热、浓缩、干燥对牛乳中氧化风味物质(OFC)的影响;分析牛乳体系中脂质氧化环境和风味前体的暴露情况,同时分析乳粉颗粒的形态和表面组成特性受加工工艺的影响情况,研究它们在加工环节和乳粉贮藏环节对氧化风味形成的作用及潜在机理。
     首先,采用固相微萃取-气相色谱-质谱分析加热乳中的挥发性物质,发现OFC随加热强度的增加而增加,与原料乳相比,90℃超过2min加热可明显增加己醛含量(P<0.05),90℃、20min加热时己醛含量增加了2.70倍;在设定的加热强度内,建立了OFC和加热参数之间良好的回归关系:决定系数大于0.86。加热后牛乳体系的氧化环境发生改变,与原料乳相比,90℃、20min加热时,DPPH·清除率降低了23.15%,过氧化值(POV)增加了37.23%。对OFC前体(乳脂肪)受热破坏情况的研究发现:低强度加热不会导致脂肪球分布出现明显变化;同时,随着加热强度的增加乳脂肪球膜中的具有保护作用的XDH/XO和BTN蛋白逐步遭到破坏。
     乳粉加工中热相关工艺对OFC形成的影响研究表明:与原料乳和加热乳相比,浓缩乳和乳粉中OFC显著增加,而浓缩乳中的OFC略高于乳粉。此外,也发现浓缩溜出液中OFC的浓度高于浓缩乳,这表明浓缩过程中发生风味物质损失的同时,也会发生严重的脂质氧化反应。对乳粉加工过程中牛乳氧化环境和风味前体暴露情况的研究表明,与原料乳相比,经过预热、浓缩及干燥处理后,牛乳体系的DPPH·清除率出现不同程度的降低,而POV呈现增加趋势;浓缩后牛乳脂肪球发生了聚集,浓缩乳的脂肪球d3,2显著增加(P<0.05);加热或浓缩均可改变乳脂肪球膜中XDH/XO和BTN蛋白组成。通过分析指出乳粉加工工艺造成的牛乳体系中氧化环境和风味前体暴露情况的显著改变,是OFC显著增加的诱因和起点。
     乳粉的颗粒特性与贮藏后氧化风味的形成密不可分。乳粉颗粒表面特性分析发现:仅干燥工艺显著影响乳粉表面游离脂肪含量(P<0.05);乳粉贮藏后表面游离脂肪中油酸、亚油酸及总不饱和脂肪酸的含量降低不明显;X射线光电子能谱分析表明乳粉颗粒的表面组成与整体组成明显不同,并且显著受热相关工艺影响。另外,乳粉颗粒影像信息的量化统计得到乳粉颗粒大小的范围为33.24-53.60μm,静态等温吸附测定得到乳粉颗粒的孔隙率范围为1.73-17.09mm3/g,发现这些乳粉颗粒的形态特性会受到乳粉工艺的影响,即这些乳粉的表面特性是工艺可控的。
     乳粉OFC浓度在贮藏中呈现增加趋势,同时发现不同乳粉加工工艺及参数对贮藏中OFC的形成产生不同的影响。乳粉贮藏后复原乳的总抗氧化能力基本完全耗尽,而POV出现大幅度增加。乳粉颗粒特性与贮藏中OFC浓度的相关性研究发现:乳粉颗粒的形态而非颗粒的表面组成是造成贮藏中乳粉OFC显著增加的主要影响因素。
     对贮存中乳粉的自由基检测结果表明:在贮藏3月和6月乳粉中均发现自由基存在,该自由基以单峰形式存在,g值为2.0054,随着贮藏时间的延长,自由基强度增加。另外,乳粉氧化风味的控制研究表明,添加抗坏血酸可以有效降低曝光或避光贮藏乳粉中OFC的形成,并发现形成了新的自由基。
     最后,乳粉复原乳在酸奶中的应用研究表明:乳粉复原乳酸奶中醛类、甲基酮类、烯醛类、烯酮类、呋喃、苯并噻唑等化合物均有检出,新生产的乳粉复原乳酸奶中这些化合物含量较低,同时发现加热强度影响酸奶发酵剂的风味物质代谢,这些发现将为乳粉在酸奶中的应用奠定理论基础。
Attention has been paid to the production and application of milk powder dueto geographical, seasonal and other factors that limit raw milk supply. There aresome flaws both in the direct consumption of milk powder and in the alternative ofraw milk used in food after recovery of milk powder. The formation of oxidizedflavor during the production and storage of milk powder was a bottleneck thatrestricted the consumption and application of milk powder. The purpose of thepresent study was to investigate the effect of the heat treatment of bovine milk andthe thermal-related processes, including pre-heat, concentration and spray drying,during the manufacture of milk powder on the oxidized flavor compounds (OFC); toevaluate the environment of lipid oxidation and the exposure of the OFC precursorin process of bovine milk; to analyze the effect of the processes on the morphologyand surface composition of milk powder particle; and to research their effects andpotential mechanism on the formation of OFC both in the process sectors and instorage link of milk powder.
     Firstly, the solid phase microextraction-gas chromatography-mass spectrometrywas used to analyze the volatiles in different heated milk, the content of OFCincreased with increasing the intensity of heat treatment. Compared with the rawmilk, the heat treatment at90℃for more than2min significantly increased thecontent of hexanal (P<0.05), and the heat treatment of90℃for20min increased thecontent of hexanal by2.70times. The regression relationship between OFC andheating parameters were built: the correlation coefficient was greater than0.86. Theheat treatment changed the oxidative environment of bovine milk: the treatment of90℃for20min reduced DPPH· scavenging activity by23.15%and increasedperoxide value (POV) by37.23%compared with the raw milk. The research on thethermal destruction of OFC precursor (milk fat) found that the low intensity of heatdid not cause the significant changes in the distribution of fat globules. Meanwhile,in milk fat globule membrane, the contents of XDH/XO and BTN proteins whichhave protective effect on the milk fat gradually destructed with the increasingintensity of heat treatment.
     The research on effect of the thermal-related processes during the production ofmilk powder on the formation of OFC showed that the contents of OFC in theconcentrated milk or in milk powder were higher than those in raw milk or in heatedmilk and that the concentrated milk had higher contents of OFC compared with the milk powder. Besides, a higher content of OFC in distillate even than that in itscorresponding concentrated milk was found, suggesting that the severe lipidoxidation happened during concentration of milk with the loss of flavor compounds.According to the study on oxidative environment and exposure status of flavorprecursors, bovine milk decreased its DPPH· scavenging activity and increased itsPOV after the pre-heat, concentration or spray drying; compared to unconcentratedmilk, the d3,2of concentrated milk significantly increased (P<0.05) due to theaggregation of milk fat globules; the composition of XDH/XO and BTN proteinschanged by the processes of pre-heat and concentration and thus affected theirprotective effects on milk fat. In conclusion, the changes in the oxidativeenvironment and exposure of flavor precursors caused by the processing of bovinewere the reason and starting point for the formation of OFC.
     The particle characteristics of milk powder have a close effect on the formationof oxidized flavor during the storage. Based on the analysis of composition, only theprocess of drying significantly affected the surface free-fat content in milk powderparticles (P<0.05); the contents of oleic acid, linoleic acid and the total unsaturatedfatty acid in surface free-fat did not change significantly during the storage of milkpowder; the surface composition of particles that was affected by the thermal-relatedprocesses showed a difference from the composition of total milk powder. Inaddition, the sizes of milk powder particles ranged from33.24to53.60μm by thequantitative statistics of images. The porosity of milk powder ranged from1.73to17.09mm3/g by static nitrogen adsorption method. The effects of the thermal-relatedprocesses on these morphological characteristics of milk powder particles weredetermined, that is, the characteristics were under control by these processes.
     Levels of OFC in reconstituted milk had the increased tendency. It was alsofound that the formation of OFC during storage of milk powder could be influencedby the thermal-related processes. Total anti-oxidative activity of reconstituted milkpowder after storage almost depleted and POV substantially increased. Based on thecharacteristics of milk powder particles and concentrations of OFC during storage,the morphology of milk powder particles rather than the surface composition wasthe main influencing factor in the formation of OFC during storage of milk powder.
     A free radical was detected in stored milk powder. The radical was in the formof a single peak with a g value of2.0054. The intensity of free radical increased withincreasing the storage time. In addition, the study on the control of OFC displayedthat the addition of ascorbic acid resulted in milk powder with low contents of OFCwhether in light-exposed or light-protected storage, and with the formation of newfree radical.
     Finally, the reconstituted milk powder was used in the production of yogurt. Inresults, aldehydes, methyl ketones, olefinic aldehydes, ketenes, furan andbenzothiazole were detected in the yogurt produced from reconstituted milk powder.However, the yogurt that was produced with the newly produced milk powder hadthe low contents of these compounds. It was also found that the flavor metabolismof cultures during the fermentation of yogurt could be influenced by heat intensityof bovine milk. These results could expand existing apprehension on the applicationof milk powder in the manufacture of yogurt.
引文
[1] Jens Hamprecht D C, Manfred Noll, Evelyn Meier. Controlling the Sustainability ofFood Supply Chains[J]. Supply Chain Management: An International Journal,2005,10(1):7-10.
    [2] Heck J M L, van Valenberg H J F, Dijkstra J, et al. Seasonal Variation in the DutchBovine Raw Milk Composition[J]. Journal of Dairy Science,2009,92(10):4745-4755.
    [3]张兰威.乳与乳制品工艺学[M].北京:中国农业出版社,2005:30-32;114-120.
    [4] Bendall J G. Aroma Compounds of Fresh Milk from New Zealand Cows FedDifferent Diets[J]. Journal of Agricultural and Food Chemistry,2001,49(10):4825-4832.
    [5] Hough G, Martinez E, Barbieri T. Sensory Thresholds of Flavor Defects inReconstituted Whole Milk Powder[J]. Journal of Dairy Science,1992,75(9):2370-2374.
    [6] Lloyd M A, Drake M A, Gerard P D. Flavor Variability and Flavor Stability ofU.S.-Produced Whole Milk Powder[J]. Journal of Food Science,2009,74(7):334-343.
    [7] Nielsen B R, Stapelfeldt H, Skibsted L H. Early Prediction of the Shelf-life ofMedium-heat Whole Milk Powders Using Stepwise Multiple Regression andPrincipal Component Analysis[J]. International Dairy Journal,1997,7(5):341-348.
    [8] Whetstine M E C, Drake M A. The flavor and flavor stability of skim and wholemilk powders[M]. Cadwallader K R, Drake M A, McGorrin R, Eds. Flavor of dairyproducts. Washington DC, USA: ACS Publishing,2007:217-251.
    [9] Hough G, Sanchez R H, Garbarini de Pablo G, et al. Consumer Acceptability VersusTrained Sensory Panel Scores of Powdered Milk Shelf-life Defects[J]. Journal ofDairy Science,2002,85(9):2075-2080.
    [10] Hedegaard R V, Kristensen D, Nielsen J H, et al. Comparison of DescriptiveSensory Analysis and Chemical Analysis for Oxidative Changes in Milk[J]. Journalof Dairy Science,2006,89(2):495-504.
    [11]赵军.原料奶中挥发性风味物质的分析评价及其保护技术体系的研究[D].内蒙古:内蒙古农业大学学位论文,2009:5-7.
    [12] Nursten H E. The Flavour of Milk and Dairy Products: I. Milk of Different Kinds,Milk Powder, Butter and Cream[J]. International Journal of Dairy Technology,1997,50(2):48-56.
    [13] Turner J A, Linforth R S T, Taylor A J. Real-time Monitoring of Thermal FlavorGeneration in Skim Milk Powder Using Atmospheric Pressure Chemical IonizationMass Spectrometry[J]. Journal of Agricultural and Food Chemistry,2002,50(19):5400-5405.
    [14] Birchal V S, Passos M L, Wildhagen G R S, et al. Effect of Spray-dryer OperatingVariables on the Whole Milk Powder Quality[J]. Drying Technology,2005,23(3):611-636.
    [15] Schoenfuss T C, Chandan R C. Dairy Ingredients for Food Processing[M]. DairyIngredients for Food Processing. Wiley-Blackwell,2011:421-472.
    [16]顾小卫.紫苏、陈皮和艾叶对奶牛乳风味、乳品质、瘤胃内环境及血液生化指标的影响[D].扬州:扬州大学学位论文,2010:5-7;54.
    [17]杨楠.牛乳加热过程中的主要成分对其风味的影响[J].农产品加工,2007(6):81-83.
    [18] Barrefors P, Granelli K, Appelqvist L A, et al. Chemical Characterization of RawMilk Samples with and without Oxidative Off-flavor[J]. Journal of Dairy Science,1995,78(12):2691-2699.
    [19] Imhof R, Glattli H, Bosset J O. Volatile Organic Aroma Compounds Produced byThermophilic and Mesophilic Mixed Strain Dairy Starter Cultures[J]. LWT-FoodScience and Technology,1994,27(5):442-449.
    [20]马燕芬,赵军,高民等.原料奶中产生的不良风味及其控制技术措施[J].动物营养学报,2012(01):29-34.
    [21] Coppa M, Martin B, Pradel P, et al. Effect of a Hay-based Diet or Different UplandGrazing Systems on Milk Volatile Compounds[J]. Journal of Agricultural and FoodChemistry,2011,59(9):4947-4954.
    [22] Urbach G. Effect of Feed on Flavor in Dairy Foods[J]. Journal of Dairy Science,1990,73(12):3639-3650.
    [23] Kalac P. The Effects of Silage Feeding on Some Sensory and Health Attributes ofCow’s Milk: a Review[J]. Food Chemistry,2011,125(2):307-317.
    [24] Kay J K, Roche J R, Kolver E S, et al. A Comparison between Feeding Systems(Pasture and TMR) and the Effect of Vitamin E Supplementation on Plasma andMilk Fatty Acid Profiles in Dairy Cows[J]. Journal of Dairy Research,2005,72(3):322-332.
    [25] Al-Attabi Z, D'Arcy B R, Deeth H C. Volatile Sulphur Compounds in UHT Milk[J].Critical Reviews in Food Science and Nutrition,2008,49(1):28-47.
    [26] Ferretti A, Flanagan V P. Steam Volatile Constituents of Stale Nonfat Dry Milk.Role of the Maillard Reaction in Staling[J]. Journal of Agricultural and FoodChemistry,1972,20(3):695-698.
    [27] Karagu-Yuceer Y, Cadwallader K R, Drake. Volatile Flavor Components of StoredNonfat Dry Milk[J]. Journal of Agricultural and Food Chemistry,2001,50(2):305-312.
    [28] Careri M, Mangia A, Mori G, et al. A New Multivariate Approach for theOptimisation of the Simultaneous Distillation-extraction Technique for Free FattyAcids Using a Face Centred Cube Experimental Design: Application toParmigiano-Reggiano Cheese[J]. Analytica Chimica Acta,1999,386(1-2):169-180.
    [29] Havemose M S, Justesen P, Bredie W L P, et al. Measurement of Volatile OxidationProducts from Milk Using Solvent-assisted Flavour Evaporation and Solid PhaseMicroextraction[J]. International Dairy Journal,2007,17(7):746-752.
    [30] Ning L, Fu-ping Z, Hai-tao C, et al. Identification of Volatile Components inChinese Sinkiang Fermented Camel Milk Using SAFE, SDE, andHS-SPME-GC/MS[J]. Food Chemistry,2011,129(3):1242-1252.
    [31] Costa R, Dugo P, Mondello L. Sampling and Sample Preparation Techniques forthe Determination of the Volatile Components of Milk and Dairy Products[M].Janusz P Ed. Oxford: Academic Press,2012:43-59.
    [32] Zabbia A, Buys E M, De Kock H L. Undesirable Sulphur and Carbonyl FlavorCompounds in Uht Milk: a Review[J]. Critical Reviews in Food Science andNutrition,2011,52(1):21-30.
    [33] Jelen H H, Majcher M, Dziadas M. Microextraction Techniques in the Analysis ofFood Flavor Compounds: a Review[J]. Analytica Chimica Acta,2012,738:13-26.
    [34] Kraggerud H, Solem S, Abrahamsen R K. Quality Scoring-a Tool for SensoryEvaluation of Cheese?[J]. Food Quality and Preference,2012,26(2):221-230.
    [35] Qian M, Reineccius G A. Quantification of Aroma Compounds in ParmigianoReggiano Cheese by a Dynamic Headspace Gas Chromatography-MassSpectrometry Technique and Calculation of Odor Activity Value[J]. Journal ofDairy Science,2003,86(3):770-776.
    [36] Cole M, Covington J A, Gardner J W. Combined Electronic Nose and Tongue for aFlavour Sensing System[J]. Sensors and Actuators B: Chemical,2011,156(2):832-839.
    [37] de Wit R, Nieuwenhuijse H. Kinetic Modelling of the Formation ofSulphur-containing Flavour Components During Heat-treatment of Milk[J].International Dairy Journal,2008,18(5):539-547.
    [38] Vazquez-Landaverde P A, Velazquez G, Torres J A, et al. QuantitativeDetermination of Thermally Derived Off-flavor Compounds in Milk UsingSolid-phase Microextraction and Gas Chromatography[J]. Journal of Dairy Science,2005,88(11):3764-3772.
    [39]兰欣怡,王加启,卜登攀等.牛奶β-乳球蛋白研究进展[J].中国畜牧兽医,2009(6):109-112.
    [40] Mather I H. A Review and Proposed Nomenclature for Major Proteins of theMilk-fat Globule Membrane[J]. Journal of Dairy Science,2000,83(2):203-247.
    [41] Kuchta A M, Kelly P M, Stanton C, et al. Milk Fat Globule Membrane-a Sourceof Polar Lipids for Colon Health? A Review[J]. International Journal of DairyTechnology,2012,65(3):315-333.
    [42] Ye A, Singh H, Taylor M W, et al. Characterization of Protein Components ofNatural and Heat-treated Milk Fat Globule Membranes[J]. International DairyJournal,2002,12(4):393-402.
    [43] Ye A, Singh H, James Oldfield D, et al. Kinetics of Heat-induced Association ofβ-Lactoglobulin and α-Lactalbumin with Milk Fat Globule Membrane in WholeMilk[J]. International Dairy Journal,2004,14(5):389-398.
    [44] Lee S J E, Sherbin J W. Chemical Changes in Bovine Milk Fat Globule MembraneCaused by Heat Treatment and Homogenization of Whole Milk[J]. Journal ofDairy Research,2002,69(4):555-567.
    [45] Kim H H Y, Jimenez-Flores R. Heat-induced Interactions between the Proteins ofMilk Fat Globule Membrane and Skim Milk[J]. Journal of Dairy Science,1995,78(1):24-35.
    [46] van Boekel M A J S. Effect of Heating on Maillard Reactions in Milk[J]. FoodChemistry,1998,62(4):403-414.
    [47] Calvo M M, de la Hoz L. Flavour of Heated Milks. A Review[J]. InternationalDairy Journal,1992,2(2):69-81.
    [48] Butler G, Stergiadis S, Seal C, et al. Fat Composition of Organic and ConventionalRetail Milk in Northeast England[J]. Journal of Dairy Science,2011,94(1):24-36.
    [49] Glover K E, Budge S, Rose M, et al. Effect of Feeding Fresh Forage and MarineAlgae on the Fatty Acid Composition and Oxidation of Milk and Butter[J]. Journalof Dairy Science,2012,95(6):2797-2809.
    [50] Grummer R R. Effect of Feed on the Composition of Milk Fat[J]. Journal of DairyScience,1991,74(9):3244-3257.
    [51] O’Donnell J A. Milk Fat Technologies and Markets: A Summary of the WisconsinMilk Marketing Board1988Milk Fat Roundtable[J]. Journal of Dairy Science,1989,72(11):3109-3115.
    [52] van Boekel M A J S. Formation of Flavour Compounds in the Maillard Reaction[J].Biotechnology Advances,2006,24(2):230-233.
    [53] Shimamura T, Kurogi Y, Katsuno S, et al. Demonstration of the Presence ofAminoreductone Formed During the Maillard Reaction in Milk[J]. Food Chemistry,2011,129(3):1088-1092.
    [54] Contarini G, Povolo M, Leardi R, et al. Influence of Heat Treatment on the VolatileCompounds of Milk[J]. Journal of Agricultural and Food Chemistry,1997,45(8):3171-3177.
    [55] Vazquez-Landaverde P A, Torres J A, Qian M C. Quantification of Trace VolatileSulfur Compounds in Milk by Solid-phase Microextraction and GasChromatography–pulsed Flame Photometric Detection[J]. Journal of Dairy Science,2006,89(8):2919-2927.
    [56] Shimoda M, Yoshimura Y, Yoshimura T, et al. Volatile Flavor Compounds ofSweetened Condensed Milk[J]. Journal of Food Science,2001,66(6):804-807.
    [57] Patel T D, Calbert H E, Morgan D G, et al. Changes in the Volatile FlavorComponents of Sterilized Concentrated Milk During Storage[J]. Journal of DairyScience,1962,45(5):601-606.
    [58] Arnold R G, Lindsay R C. Quantitative Determination of N-Methyl Ketones andO-Aminoacetophenone in Sterilized Concentrated Milk[J]. Journal of DairyScience,1969,52(7):1097-1100.
    [59] Kim E H J, Chen X D, Pearce D. Surface Composition of Industrial Spray-driedMilk Powders.2. Effects of Spray Drying Conditions on the SurfaceComposition[J]. Journal of Food Engineering,2009,94(2):169-181.
    [60] Birchal V S, Huang L, Mujumdar A S, et al. Spray Dryers: Modeling andSimulation[J]. Drying Technology,2006,24(3):359-371.
    [61] Schwambach S L, Peterson D G. Reduction of Stale Flavor Development inLow-heat Skim Milk Powder Via Epicatechin Addition[J]. Journal of Agriculturaland Food Chemistry,2005,54(2):502-508.
    [62] Morales F J, Jimenez-Perez S. Hydroxymethylfurfural Determination in InfantMilk-based Formulas by Micellar Electrokinetic Capillary Chromatography[J].Food Chemistry,2001,72(4):525-531.
    [63] Shiratsuchi H, Shimoda M, Imayoshi K, et al. Volatile Flavor Compounds inSpray-dried Skim Milk Powder[J]. Journal of Agricultural and Food Chemistry,1994,42(4):984-988.
    [64] Shiratsuchi H, Shimoda M, Imayoshi K, et al. Off-flavor Compounds inSpray-dried Skim Milk Powder[J]. Journal of Agricultural and Food Chemistry,1994,42(6):1323-1327.
    [65]刘梅森,何唯平,赖敬财等.奶粉脂肪酸与乳制品风味关系研究[J].中国乳品工业,2008(2):13-15.
    [66] Lloyd M A, Hess S J, Drake M A. Effect of Nitrogen Flushing and StorageTemperature on Flavor and Shelf-life of Whole Milk Powder[J]. Journal of DairyScience,2009,92(6):2409-2422.
    [67]赵小伟,王加启,卜登攀等.影响乳脂自发性氧化反应的主要因素[J].动物营养学报,2011(12):2071-2076.
    [68] Hall G, Andersson J. Flavor Changes in Whole Milk Powder During Storage. Ⅲ.Relationships between Flavor Properties and Volatile Compounds[J]. Journal ofFood Quality,1985,7(4):237-253.
    [69] Hall G, Andersson J, Lingnert H, et al. Flavor Changes in Whole Milk PowderDuring Storage. Ⅱ. The Kinetics of the Formation of Volatile Fat OxidationProducts and Other Volatile Compounds[J]. Journal of Food Quality,1985,7(3):153-190.
    [70] Friedrich J E, Acree T E. Gas Chromatography Olfactometry (GC/O) of DairyProducts[J]. International Dairy Journal,1998,8(3):235-241.
    [71] Molimard P, Spinnler H E. Review: Compounds Involved in the Flavor of SurfaceMold-ripened Cheeses: Origins and Properties[J]. Journal of Dairy Science,1996,79(2):169-184.
    [72] Badings H T. Cold-storage Defects in Butter and Their Relation to the Autoxidationof Unsaturated Fatty Acids[J]. Netherlands Milk and Dairy Journal,1970,24:147-257.
    [73] Im S, Hayakawa F, Kurata T. Identification and Sensory Evaluation of VolatileCompounds in Oxidized Porcine Liver[J]. Journal of Agricultural and FoodChemistry,2003,52(2):300-305.
    [74] Singh T K, Drake M A, Cadwallader K R. Flavor of Cheddar Cheese: A Chemicaland Sensory Perspective[J]. Comprehensive Reviews in Food Science and FoodSafety,2003,2(4):166-189.
    [75] Juhlin J, Fikse W F, Pickova J, et al. Association of DGAT1Genotype, Fatty AcidComposition, and Concentration of Copper in Milk with Spontaneous OxidizedFlavor[J]. Journal of Dairy Science,2012,95(8):4610-4617.
    [76] Romeu-Nadal M, Chavez-Servin J L, Castellote A I, et al. Oxidation Stability of theLipid Fraction in Milk Powder Formulas[J]. Food Chemistry,2007,100(2):756-763.
    [77] Cesa S, Casadei M A, Cerreto F, et al. Influence of Fat Extraction Methods on thePeroxide Value in Infant Formulas[J]. Food Research International,2012,48(2):584-591.
    [78] Chen J, Lindmark-Mansson H, Gorton L, et al. Antioxidant Capacity of BovineMilk as Assayed by Spectrophotometric and Amperometric Methods[J].International Dairy Journal,2003,13(12):927-935.
    [79] Lindmark-Mansson H, Akesson B. Antioxidative Factors in Milk[J]. British Journalof Nutrition,2000,84(Suppl.1):103-110.
    [80] Granda-Restrepo D M, Soto-Valdez H, Peralta E, et al. Migration of α-Tocopherolfrom an Active Multilayer Film into Whole Milk Powder[J]. Food ResearchInternational,2009,42(10):1396-1402.
    [81] Zivkovic J, Sunaric S, Trutic N, et al. Total Antioxidant Capacity of Milk withNutraceutical Addition[J]. European Journal of Pharmacology,2011,668,(Suppl.1):24.
    [82] John M P, Eun Jung P. Autoxidation and Antioxidants[M]. Encyclopedia ofPharmaceutical Technology. Third Edition. Informa Healthcare,2006:139-154.
    [83] Krukovsky V N. The Origin of Oxidized Flavors and Factors Responsible for TheirDevelopment in Milk and Milk Products[J]. Journal of Dairy Science,1952,35(1):21-29.
    [84] Jena S, Das H. Shelf Life Prediction of Aluminum Foil Laminated PolyethylenePacked Vacuum Dried Coconut Milk Powder[J]. Journal of Food Engineering,2012,108(1):135-142.
    [85]李江飞,于景华,生庆海等.自动充氮包装前后奶粉物理性状变化分析[J].中国乳品工业,2009(5):12-15.
    [86]李金影.硫酸亚铁微胶囊的制备及其应用研究[D].哈尔滨:东北农业大学学位论文,2008:10-12.
    [87] Kim E H J, Chen X D, Pearce D. Surface Composition of Industrial Spray-driedMilk Powders.1. Development of Surface Composition During Manufacture[J].Journal of Food Engineering,2009,94(2):163-168.
    [88] Stapelfeldt H, Nielsen B R, Skibsted L H. Effect of Heat Treatment, Water Activityand Storage Temperature on the Oxidative Stability of Whole Milk Powder[J].International Dairy Journal,1997,7(5):331-339.
    [89] Cluskey S M, Connolly J F, Devery R, et al. Lipid and Cholesterol Oxidation inWhole Milk Powder During Processing and Storage[J]. Journal of Food Science,1997,62(2):331-337.
    [90] Zhang X Y, Guo H Y, Zhao L, et al. Sensory Profile and Beijing Youth Preferenceof Seven Cheese Varieties[J]. Food Quality and Preference,2011,22(1):101-109.
    [91]莫蓓红,孙克杰,何楚莹.复原乳在酸奶生产中的应用研究[J].乳业科学与技术,2002(2):10-15.
    [92]刘星,李小燕.乳粉制作酸乳的关键技术[J].咸宁师专学报,2001(3):87-88.
    [93]韩向敏,柏家林.奶粉还原乳制作酸奶试验[J].青海畜牧兽医杂志,1992,22(6):18-19.
    [94]冀永东.乳粉加工Feta干酪工艺及成熟期研究[D].内蒙古:内蒙古农业大学学位论文,2011:3.
    [95] Freeman T R, Bucy J L, Hassan Z. Use of Nonfat Dry Milk in the Production ofCheddar Cheese[J]. Journal of Dairy Science,1970,53(6):727-733.
    [96] Ashour M M, Abdel Baky A A, El Neshawy A A, et al. Improving the Quality ofDomiati Cheese Made from Recombined Milk[J]. Food Chemistry,1986,20(2):85-96.
    [97] Lynch J M, Barbano D M, Fleming J R. Determination of the Total NitrogenContent of Hard, Semihard, and Processed Cheese by the Kjeldahl MethodCollaborative Study[J]. Journal of AOAC International,2002,85(2):445-455.
    [98] Guinee T P, Auty M A E, Fenelon M A. The Effect of Fat Content on the Rheology,Microstructure and Heat-induced Functional Characteristics of Cheddar Cheese[J].International Dairy Journal,2000,10(4):277-288.
    [99] Almeida K E, Tamime A Y, Oliveira M N. Influence of Total Solids Contents ofMilk Whey on the Acidifying Profile Andviability of Various Lactic AcidBacteria[J]. LWT-Food Science and Technology,2009,42(2):672-678.
    [100] Li W, Hosseinian F S, Tsopmo A, et al. Evaluation of Antioxidant Capacity andAroma Quality of Breast Milk[J]. Nutrition,2009,25(1):105-114.
    [101]张莎,杨瑞金,赵伟等.高压脉冲电场对牛乳抗氧化能力的影响[J].食品与发酵工业,2010(3):187-191.
    [102]王云.国际乳品联合会标准IDF74:1974无水奶油—过氧化值的测定[J].中国乳品工业,1990(3):125-126.
    [103] Smet K, de Block J, de Campeneere S, et al. Oxidative Stability of UHT Milk asInfluenced by Fatty Acid Composition and Packaging[J]. International DairyJournal,2009,19(6-7):372-379.
    [104] Le T T, Van Camp J, Rombaut R, et al. Effect of Washing Conditions on theRecovery of Milk Fat Globule Membrane Proteins During the Isolation of Milk FatGlobule Membrane from Milk[J]. Journal of Dairy Science,2009,92(8):3592-3603.
    [105] Rosmaninho R, Melo L F. The Effect of Citrate on Calcium Phosphate Depositionfrom Simulated Milk Ultrafiltrate (SMUF) Solution[J]. Journal of FoodEngineering,2006,73(4):379-387.
    [106] Laemmli U K. Cleavage of Structural Properties During the Assembly ofBacteriophage T4[J]. Nature,1970,227:680-685.
    [107] Drohan D D, Tziboula A, McNulty D, et al. Milk Protein-carrageenanInteractions[J]. Food Hydrocolloids,1997,11(1):101-107.
    [108] Kim J E H, Chen X D, Pearce D. Melting Characteristics of Fat Present on theSurface of Industrial Spray-dried Dairy Powders[J]. Colloids and Surfaces B:Biointerfaces,2005,42(1):1-8.
    [109] Luo M-F, Song Y-P, Wang X-Y, et al. Preparation and Characterization ofNanostructured Ce0.9Cu0.1O2δ Solid Solution with High Surface Area and ItsApplication for Low Temperature CO Oxidation[J]. Catalysis Communications,2007,8(5):834-838.
    [110] Thomsen M K, Lauridsen L, Skibsted L H, et al. Two Types of Radicals in WholeMilk Powder. Effect of Lactose Crystallization, Lipid Oxidation, and BrowningReactions[J]. Journal of Agricultural and Food Chemistry,2005,53(5):1805-1811.
    [111] Thomsen M K, Lauridsen L, Skibsted L H, et al. Temperature Effect on LactoseCrystallization, Maillard Reactions, and Lipid Oxidation in Whole Milk Powder[J].Journal of Agricultural and Food Chemistry,2005,53(18):7082-7090.
    [112] Marshall V M, Rawson H L. Effects of Exopolysaccharide-producing Strains ofThermophilic Lactic Acid Bacteria on the Texture of Stirred Yoghurt[J].International Journal of Food Science and Technology,1999,34(2):137-143.
    [113] Hettinga K A, van Valenberg H J F, van Hooijdonk A C M. Quality Control ofRaw Cows' Milk by Headspace Analysis[J]. International Dairy Journal,2008,18(5):506-513.
    [114] Cheng H. Volatile Flavor Compounds in Yogurt: a Review[J]. Critical Reviews inFood Science and Nutrition,2010,50(10):938-950.
    [115] Erkaya T, Sengul M. Comparison of Volatile Compounds in Yoghurts Made fromCows’, Buffaloes’, Ewes’ and Goats’ Milks[J]. International Journal of DairyTechnology,2011,64(2):240-246.
    [116] Contarini G, Povolo M. Volatile Fraction of Milk: Comparison between Purge andTrap and Solid Phase Microextraction Techniques[J]. Journal of Agricultural andFood Chemistry,2002,50(25):7350-7355.
    [117]王艳芳,杨瑞金,赵伟等.高压脉冲电场对牛奶中风味物质的影响[J].食品科学,2009(11):43-46.
    [118] Hougaard A B, Vestergaard J S, Varming C, et al. Composition of VolatileCompounds in Bovine Milk Heat Treated by Instant Infusion Pasteurisation andTheir Correlation to Sensory Analysis[J]. International Journal of DairyTechnology,2011,64(1):34-44.
    [119] Garde S, Avila M, Medina M, et al. Influence of a Bacteriocin-producing LacticCulture on the Volatile Compounds, Odour and Aroma of Hispanico Cheese[J].International Dairy Journal,2005,15(10):1034-1043.
    [120] Wilkes J G, Conte E D, Kim Y, et al. Sample Preparation for the Analysis ofFlavors and Off-flavors in Foods[J]. Journal of Chromatography A,2000,880(1-2):3-33.
    [121] Pereda J, Jaramillo D P, Quevedo J M, et al. Characterization of VolatileCompounds in Ultra-high-pressure Homogenized Milk[J]. International DairyJournal,2008,18(8):826-834.
    [122] Soberon M A, Liu R H, Cherney D J R. Short Communication: AntioxidantActivity of Calf Milk Replacers[J]. Journal of Dairy Science,2012,95(5):2703-2706.
    [123] Smet K, Raes K, De Block J, et al. A Change in Antioxidative Capacity as aMeasure of Onset to Oxidation in Pasteurized Milk[J]. International Dairy Journal,2008,18(5):520-530.
    [124] Eldeghaidy S, Hollowood T, Marciani L, et al. Does Fat Alter the CorticalResponse to Flavor?[J]. Chemosensory Perception,2012:1-16.
    [125] Bilic N. Assay for Both Ascorbic and Dehydroascorbic Acid in Dairy Foods byHigh-performance Chromatography Using Precolumn Derivatization withMethoxy-and Ethoxy-1,2-Phenylenediamine[J]. Journal of Chromatography A,1991,543:367-374.
    [126] Liu J-R, Chen M-J, Lin C-W. Antimutagenic and Antioxidant Properties ofMilk-kefir and Soymilk-kefir[J]. Journal of Agricultural and Food Chemistry,2005,53(7):2467-2474.
    [127] Raikos V, Kapolos J, Farmakis L, et al. The Use of Sedimentation Field-flowFractionation in the Size Characterization of Bovine Milk Fat Globules as Affectedby Heat Treatment[J]. Food Research International,2009,42(5-6):659-665.
    [128] van Boekel M A J S, Folkerts, T. Effect of Heat Treatment on the Stability of MilkFat Globules[J]. Milchwissenschaft,1991,46(12):758-765.
    [129] Lopez C. Milk Fat Globules Enveloped by Their Biological Membrane: UniqueColloidal Assemblies with a Specific Composition and Structure[J]. CurrentOpinion in Colloid and Interface Science,2011,16(5):391-404.
    [130] Raikos V, Kapolos J, Farmakis L, et al. The Use of Sedimentation Field-flowFractionation in the Size Characterization of Bovine Milk Fat Globules as Affectedby Heat Treatment[J]. Food Research International,2009,42(5-6):659-665.
    [131] Singh H. The Milk Fat Globule Membrane-a Biophysical System for FoodApplications[J]. Current Opinion in Colloid and Interface Science,2006,11(2-3):154-163.
    [132] O’Brien N M, O’Connor T P. Milk Lipids/Lipid Oxidation[M]. John, W F Ed.Encyclopedia of Dairy Sciences. San Diego: Academic Press,2011:716-720.
    [133] Ullrich F, Grosch W. Identification of the Most Intense Volatile FlavourCompounds Formed During Autoxidation of Linoleic Acid[J]. Zeitschrift furLebensmitteluntersuchung und Forschung,1987,184(4):277-282.
    [134] Day E A, Lillard D A. Autoxidation of Milk Lipids. I. Identification of VolatileMonocarbonyl Compounds from Autoxidized Milk Fat[J]. Journal of DairyScience,1960,43(5):585-597.
    [135] Hassan H M, Mumford C J. Mechanisms of Drying of Skin-forming Materials.Ⅲ.Droplets of Natural Products[J]. Drying Technology,1993,11(7):1765-1782.
    [136] Murrieta-Pazos I, Gaiani C, Galet L, et al. Food Powders: Surface and FormCharacterization Revisited[J]. Journal of Food Engineering,2012,112(1-2):1-21.
    [137] Murrieta-Pazos I, Gaiani C, Galet L, et al. Comparative Study of ParticleStructure Evolution During Water Sorption: Skim and Whole Milk Powders[J].Colloids and Surfaces B: Biointerfaces,2011,87(1):1-10.
    [138] Fitzpatrick J J, Iqbal T, Delaney C, et al. Effect of Powder Properties and StorageConditions on the Flowability of Milk Powders with Different Fat Contents[J].Journal of Food Engineering,2004,64(4):435-444.
    [139] Kim E H J, Chen X D, Pearce D. Effect of Surface Composition on theFlowability of Industrial Spray-dried Dairy Powders[J]. Colloids and Surfaces B:Biointerfaces,2005,46(3):182-187.
    [140] Granelli K, Faldt P, Appelqvist L A, et al. Influence of Surface Structure onCholesterol Oxidation in Model Food Powders[J]. Journal of the Science of Foodand Agriculture,1996,71(1):75-82.
    [141] Hardas N, Danviriyakul S, Foley J L, et al. Accelerated Stability Studies ofMicroencapsulated Anhydrous Milk Fat[J]. LWT-Food Science and Technology,2000,33(7):506-513.
    [142] Kelly J, Kelly P, M., Harrington D. Influence of Processing Variables on thePhysicochemical Properties of Spray Dried Fat-based Milk Powders[J]. Lait,2002,82(4):401-412.
    [143] Vignolles M-L, Lopez C, Le Floch-Fouere C, et al. Fat Supramolecular Structurein Fat-filled Dairy Powders: a Tool to Adjust Spray-drying Temperatures[J]. DairyScience and Technology,2010,90(2-3):287-300.
    [144] Kim E H J, Chen X D, Pearce D. Surface Characterization of Four IndustrialSpray-dried Dairy Powders in Relation to Chemical Composition, Structure andWetting Property[J]. Colloids and Surfaces B: Biointerfaces,2002,26(3):197-212.
    [145] Gaiani C, Morand M, Sanchez C, et al. How Surface Composition of High MilkProteins Powders Is Influenced by Spray-drying Temperature[J]. Colloids andSurfaces B: Biointerfaces,2010,75(1):377-384.
    [146] Vignolles M-L, Jeantet R, Lopez C, et al. Free Fat, Surface Fat and Dairy Powders:Interactions between Process and Product. A Review[J]. Lait,2007,87(3):187-236.
    [147] Samaroo H D, Opsahl A C, Schreiber J, et al. High Throughput Object-basedImage Analysis of α-Amyloid Plaques in Human and Transgenic Mouse Brain[J].Journal of Neuroscience Methods,2012,204(1):179-188.
    [148] Ferreira A A, Krause C I, Costa M H, et al. An Image Processing SoftwareApplied to Oral Pathology[J]. Pathology-Research and Practice,2011,207(4):232-235.
    [149] Rogers S, Wu W D, Lin S X Q, et al. Particle Shrinkage and Morphology of MilkPowder Made with a Monodisperse Spray Dryer[J]. Biochemical EngineeringJournal,2012,62(3):92-100.
    [150] Sawhney I K, Sarkar B C, Patil G R. Moisture Sorption Characteristics of DriedAcid Casein from Buffalo Skim Milk[J]. LWT-Food Science and Technology,2011,44(2):502-510.
    [151]孟旭,顾小红,汤坚.速溶豆粉微结构的研究[J].中国乳品工业,2006,34(4):11-15.
    [152] Murrieta-Pazos I, Gaiani C, Galet L, et al. Composition Gradient from Surface toCore in Dairy Powders: Agglomeration Effect[J]. Food Hydrocolloids,2012,26(1):149-158.
    [153] Kristensen D, Kroger-Ohlsen M V, Skibsted L H. Radical Formation in DairyProducts: Prediction of Oxidative Stability Based on Electron Spin ResonanceSpectroscopy[M]. Washington DC, USA: ACS Publishing,2002:114-125.
    [154] Rosenthal I, B. Rosen, and S. Bernstein. Effects of Milk Fortification withAscorbic Acid and Iron[J]. Milchwissenschaft,1993,48:676-679.
    [155] Charmley E, Nicholson J W G. Injectable α-Tocopherol for Control of OxidizedFlavour in Milk from Dairy Cows[J]. Canadian Journal of Animal Science,1993,73(2):381-392.
    [156] Jensen S K, Nielsen K N. Tocopherols, Retinol, β-Carotene and Fatty Acids in FatGlobule Membrane and Fat Globule Core in Cows' Milk[J]. Journal of DairyResearch,1996,63(4):565-574.
    [157] Kanno C, Hayashi M, Yamauchi K, Tsugo T et al. Antioxidant Effect ofTocopherols on Autoxidation of Milk Fat[J]. Agricultural Biology and Chemistry,1970,34(6):878-885.
    [158] Hall N K, Chapman T M, Kim H J, et al. Antioxidant Mechanisms of Trolox andAscorbic Acid on the Oxidation of Riboflavin in Milk under Light[J]. FoodChemistry,2010,118(3):534-539.
    [159]文志勇,孙保国,梁梦兰等.脂质氧化产生香味物质[J].中国油脂,2004(9):41-44.
    [160]赵保路. ESR自旋捕集技术的发展和在生物医学研究中的应用[J].波谱学杂志,2011(1):18-41.
    [161] Frankel E N. Antioxidants in Lipid Foods and Their Impact on Food Quality[J].Food Chemistry,1996,57(1):51-55.
    [162] Asghar Z, Fatemeh T, Morteza V, et al. Evaluation of the Effect of Vitamin C andE Supplementation on Human Breast Milk Antioxidant Capacity[J]. ClinicalBiochemistry,2011,44(13):237.
    [163] van Aardt M, Duncan S E, Marcy J E, et al. Effect of Antioxidant (α-Tocopheroland Ascorbic Acid) Fortification on Light-induced Flavor of Milk[J]. Journal ofDairy Science,2005,88(3):872-880.
    [164] van Aardt M, Duncan S E, Marcy J E, et al. Aroma Analysis of Light-exposedMilk Stored with and without Natural and Synthetic Antioxidants[J]. Journal ofDairy Science,2005,88(3):881-890.
    [165] Lourens-Hattingh A, Viljoen B C. Yogurt as Probiotic Carrier Food[J].International Dairy Journal,2001,11(1-2):1-17.
    [166]李春园.酸奶新产品开发的趋势[J].中国食品工业,2006(03):50-51.
    [167] Wilkins D W, Schmidt R H, Shireman R B, et al. Evaluating AcetaldehydeSynthesis from L-[14c(U)] Threonine by Streptococcus Thermophilus andLactobacillus Bulgaricus[J]. Journal of Dairy Science,1986,69(5):1219-1224.
    [168] Marafon A P, Sumi A, Granato D, et al. Effects of Partially Replacing SkimmedMilk Powder with Dairy Ingredients on Rheology, Sensory Profiling, andMicrostructure of Probiotic Stirred-type Yogurt During Cold Storage[J]. Journal ofDairy Science,2011,94(11):5330-5340.
    [169] Guzel-Seydim Z B, Sezgin E, Seydim A C. Influences of ExopolysaccharideProducing Cultures on the Quality of Plain Set Type Yogurt[J]. Food Control,2005,16(3):205-209.
    [170] Soukoulis C, Panagiotidis P, Koureli R, et al. Industrial Yogurt Manufacture:Monitoring of Fermentation Process and Improvement of Final Product Quality[J].Journal of Dairy Science,2007,90(6):2641-2654.
    [171] Routray W, Mishra H N. Scientific and Technical Aspects of Yogurt Aroma andTaste: a Review[J]. Comprehensive Reviews in Food Science and Food Safety,2011,10(4):208-220.
    [172] Ng E W, Yeung M, Tong P S. Effects of Yogurt Starter Cultures on the Survival ofLactobacillus Acidophilus[J]. International Journal of Food Microbiology,2011,145(1):169-175.
    [173] Augustin M A, Cheng L J, Clarke P T. Effects of Preheat Treatment of MilkPowder on the Properties of Reconstituted Set Skim Yogurts[J]. International DairyJournal,1999,9(3-6):415-416.
    [174] Xu Z M, Emmanouelidou D G, Raphaelides S N, et al. Effects of HeatingTemperature and Fat Content on the Structure Development of Set Yogurt[J].Journal of Food Engineering,2008,85(4):590-597.
    [175] Haque A, Richardson R K, Morris E R. Effect of Fermentation Temperature onthe Rheology of Set and Stirred Yogurt[J]. Food Hydrocolloids,2001,15(4-6):593-602.
    [176] Ott A, Fay L B, Chaintreau A. Determination and Origin of the Aroma ImpactCompounds of Yogurt Flavor[J]. Journal of Agricultural and Food Chemistry,1997,45(3):850-858.
    [177] Perreault V, Britten M, Turgeon S L, et al. Effects of Heat Treatment andAcid-induced Gelation on Aroma Release from Flavoured Skim Milk[J]. FoodChemistry,2010,118(1):90-95.
    [178] Brennan E M, Setser C, Schmidt K A. Yogurt Thickness: Effects on FlavorPerception and Liking[J]. Journal of Food Science,2002,67(7):2785-2789.
    [179] Donato L, Guyomarc’h F, Amiot S, et al. Formation of Whey Protein/κ-CaseinComplexes in Heated Milk: Preferential Reaction of Whey Protein with κ-Caseinin the Casein Micelles[J]. International Dairy Journal,2007,17(10):1161-1167.
    [180] Donato L, Guyomarc’h F. Formation and Properties of the Whey Protein/κ-CaseinComplexes in Heated Skim Milk-a Review[J]. Dairy Science and Technology,2009,89(1):3-29.
    [181] Wang W, Zhang L, Li Y, et al. Heat-induced Protein Aggregates and Difference inthe Textural Properties of Whole Milk Gel[J]. Journal of Food Quality,2012,35(4):247-254.
    [182] Ott A, Germond J-E, Baumgartner M, et al. Aroma Comparisons of Traditionaland Mild Yogurts: Headspace Gas Chromatography Quantification of Volatiles andOrigin of α-Diketones[J]. Journal of Agricultural and Food Chemistry,1999,47(6):2379-2385.
    [183] Labropoulos A E, Palmer J K, Tao P. Flavor Evaluation and Characterization ofYogurt as Affected by Ultra-high Temperature and Vat Processes[J]. Journal ofDairy Science,1982,65(2):191-196.
    [184] Velez M A, Perotti M C, Wolf I V, et al. Influence of Milk Pretreatment onProduction of Free Fatty Acids and Volatile Compounds in Hard Cheeses: HeatTreatment and Mechanical Agitation[J]. Journal of Dairy Science,2010,93(10):4545-4554.
    [185] Martin F, Cachon R, Pernin K, et al. Effect of Oxidoreduction Potential on AromaBiosynthesis by Lactic Acid Bacteria in Nonfat Yogurt[J]. Journal of Dairy Science,2011,94(2):614-622.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700