用户名: 密码: 验证码:
金属材料微观组织结构演化的相场法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属材料特别是金属结构材料是国民经济的物质基础,在建筑、航空航天等工业领域有广泛应用。随着科学技术的进步,人们对金属材料性能要求越来越高。金属材料的性能与其微观组织结构(简称微结构)密切相关,研究金属材料微结构演化及其影响因素,能够实现精确地控制和设计金属材料微结构以提高金属材料的力学性能。目前,研究材料微结构的方法主要有实验观测与计算机模拟,但仅利用实验手段难以从微观或纳观层次研究材料微结构演化的特征。随着材料科学与计算机技术的飞速发展,借助计算机模拟材料微结构演化及优化材料参数显得尤为重要。在众多研究材料微结构的计算方法中,相场法因具有深刻的物理思想而成为最强有力的计算方法之一。
     本论文应用先进的相场法分别从微观尺度和纳观尺度对金属材料微结构演化进行研究。在如下几个方面做出了创新工作:(1)针对变形合金不同变形区域的特征和体系储存能分布不均匀的特点,分别引入反映不同变形区域的储存能分布的权重因子和变形区域的特征状态因子,构造了多态自由能函数(MSFE),提出了多态相场(MSPF)模型;(2)将MSPF模型应用于AZ31镁合金的再结晶形核与长大过程以及亚晶结构的演化过程,并引入权重概率分布来反映晶粒双尺寸分布,取得明显效果;(3)构建了具有无限大温度梯度且在热区内温度均匀的移动热区相场模型来研究单相多晶材料在定向退火条件下柱状晶的形成过程。(4)研究了外力作用下纳米晶材料中位错与晶界相互作用的细节、运动规律以及纳米级微裂纹的扩展特征。经系统的研究和探索,取得的主要结果与结论如下:
     1.将MSPF模型应用于AZ31镁合金再结晶退火过程,得到的动力学规律符合JMAK理论,所得Avrami曲线可近似看成为直线,Avrami指数随变形量的增加而降低。变形程度大的合金,储存能释放的速率快,完成静态再结晶过程所需的时间就短,所得结果与已有的理论结果和实验结果相符。
     2.对AZ31镁合金中亚晶结构演化过程的研究发现:在储存能较高的区域(如晶界附近),亚晶较细小,分布较密集;在再结晶过程中,亚晶密度高的区域最先出现亚晶合并和吞噬现象,并通过该机制使再结晶晶粒形核和长大;而在变形晶粒内部,亚晶分布较均匀且数量较少,尺度较大,亚晶合并长大的速率较慢。再结晶晶粒尺寸的权重概率分布表明,变形量较大的合金,晶粒尺寸较快地增大,完成再结晶所需时间较短。
     3.对定向退火过程中晶粒长大的研究发现:降低热区移动速率、增加热区宽度、增加热区温度和减小初始晶粒尺寸,都有利于柱状晶结构的形成及其连续向前扩展。第二相颗粒对柱状晶的产生有显著的抑制作用,抑制效果随着第二相颗粒体积分数的增加和第二相颗粒尺寸的减小而增强。
     4.纳米晶变形过程的模拟结果揭示了晶界是位错源,不仅能够产生位错、发射位错,而且能够吸收位错。随着温度的降低,位错的主要运动方式由攀移变成滑移;在攀移受阻时,容易导致应力分布不均匀,位错分离不协调。在研究纳米多晶变形过程中发现晶界迁移、、晶粒旋转、晶界为了释放弹性畸变能而变成锯齿状、位错在晶界处形核并发射等变形行为。温度升高有利于晶粒旋转和晶界迁移,但不利于位错传播。随着晶粒尺寸增加,晶粒旋转和晶界迁移能力均减弱。
     5.对韧性金属材料中纳米级微裂纹的研究发现:对于双轴拉伸,当应变达到临界值后裂纹在扩展过程中会发生分叉现象。裂纹在扩展过程中体系能量不断降低;温度较高时,裂纹扩展更快且分叉较多。在裂纹扩展过程中容易出现若干与主裂纹断开的孤立的微小空洞,这些微小空洞将成为新裂纹的萌生之地。
     本论文所得结论为从微纳观层次对金属材料的改性设计和揭示金属材料变形损伤的微观机制具有重要的参考价值,对抗疲劳断裂、提高金属材料的使用寿命也有科学的指导作用。
Metallic materials, especially structural metallic materials, as the material basis of national economy, have been widely used in construction, aerospace and other industrial fields. With the development of science and technology, people have higher and higher requirements on metallic materials properties which are closely related to their microstructures. The study on microstructure evolution in metallic materials and the corresponding influencing factors can help microstructure design in order to improve the mechanical properties of metallic materials. At present, the major study approaches to the material microstructure are experimental observation and computer simulation. Only by experimental measures it is difficult to study the characteristics of microstructure evolution in materials from the micro or nano level. With the rapid development of material science and computer technology, the aid of computer simulations to predict microstructure evolution in materials and optimize the material parameter is particularly important. In numerous computer simulation methods for the study of material microstructure, the phase field (PF) method becomes one of the most powerful ones due to its profound physical thought.
     In this dissertation, the microstructure evolution in metal materials is studied from microscale and nanoscale by the PF method, and the innovation works are summarized as follows:Firstly, aiming at the characteristics of different deformation regions and inhomogeneous distribution of the stored energy model in deformed alloy, a multi-state free energy (MSFE) function is established by introducing a weight factor for the stored energy and a characteristics state factor for different deformed regions. And a multi-state phase field (MSPF) model is proposed. Secondly, the MSPF model is applied to the recrystallization nucleation and growth process of AZ31magnesium alloy and the evolution process of the subgrain structure. Then the way of using the weighted frequency distribution to reflect the bimodal grain size distribution is introduced, which has an obvious effect. Thirdly, the moving hot zone PF model with an infinite temperature gradient is built to study the forming process of columnar grain in single-phase polycrystalline materials during the directional annealing. Finally, the dislocation-grain boundary (GB) interactions in detail in nanocrystalline under the action of external force, and the law of motion are studied as well as the extension of the nanoscale microcracks. Through systematic study and exploration, the main results and conclusions are summarized as follows:
     (1) The study on the recrystallization process of AZ31magnesium alloy using the MSPF model shows that the dynamic regularity of static recrystallization obtained by simulating is in good accord with the JMAK theory, and the Avrami index decreases with the true strain increasing. The greater the deformation rate for alloy is, the faster the stored energy releases, and the shorter the lasting time of static recrystallization process is. The simulation results here are in agreement with theoretical results and experimental results.
     (2) The study on the evolution process of subgrain structure shows that in the regions with higher stored energy, for example, around grain boundaries, there are very dense finer subgrains. The phenomenon of subgrains merging and swallowing appears earliestly in the higher density regions, and through the mechanism it makes recrystallization grain nucleation and growth during recrystallization. While the distribution of subgrains inside the deformation grain is relative uniform with low number density and relative large size, the subgrains merge and grow slowly. The distribution of recrystallized grains obtained by the weighted frequency shows that the grain grows faster and takes shorter time to complete recrystallization for the larger deformed alloy.
     (3) The study on grain growth during directional annealing shows that the ease of forming a columnar grain structure and its continued propagation increases while decreasing hot zone velocity and initial grain size, increasing hot zone width and temperature. Second-phase particles (SPPs) dramatically inhibit the generation of columnar grain structure and the inhibitory effect increased with increasing volume fraction of SPPs and decreasing size of SPPs.
     (4) In the deformation simulations of nanocrystalline, the simulation results reveal that GBs is the source of dislocation for its production and absorption. The main way of dislocation movement is changed from climb to glide with the decreasing of the temperature. When the climb is blocked, it will readily result in asymmetric stress distribution and discordant dislocation detachment. In the deformation simulations of nano-polycrystalline structure, it confirms the occurrence of various types of deformation behaviors such as GB migration, grain rotation, GB serration due to releasing the elastic strain energy, dislocation nucleation and transmission in the GB. Increasing temperature favors the grain rotation and grain boundary migration while hinders dislocation transmission. It will be difficult for the grain rotation and grain boundary migration when the grain size increases.
     (5) The study on nanoscale microcracks in ductile metallic materials shows that crack branching will start if only the strain reaches a critical value for biaxial tension. In crack propagation the system energy decreases continuously. Faster crack propagation and more crack branches are observed at higher temperatures. During crack propagation, around the main cracks there are some disconnect isolated small cavities, which will become new cracks.
     The conclusions in this dissertation have a certain reference value for improving the toughness of metallic materials and revealing the deformation damage micromechanism of metallic materials. And they can play a scientific guiding role in resistance to fatigue fracture and improvement of the service life of metallic materials.
引文
[1]徐恒钧.材料科学基础[M].北京工业大学出版社,2001.
    [2]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994.
    [3]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [4]龙永强.Cu-Ni-Si合金微结构及相变的计算与模拟[D].上海交通大学博士学位论文,2011.
    [5]Buehler M J, Ackbarow T. Fracture mechanics of protein materials[J]. Materials Today, 2007,10(9):46-58.
    [6]Raabe D.编,项金钟,吴兴惠译.计算材料学[M].北京:化学工业出版社,2002.
    [7]雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006.
    [8]张凌义.ECAP过程中马氏体耐热钢的结构演化和力学性能研究[D].昆明理工大学硕士学位论文,2008.
    [9]张俊善.材料强度学[M].哈尔滨工业大学出版社,2004.
    [10]Callister W D. Materials science and engineering:an introduction(Seventh edition)[M]. Wiley,2007.
    [11]叶恒强等.材料界面结构与特性[M].北京:科学出版社,1999.
    [12]王亚男,陈树江,董希淳.位错理论及其应用[M].北京:冶金工业出版社,2007.
    [13]衣林,陈跃良,徐丽,胡建军,罗浩.金属材料疲劳微裂纹的萌生与扩展研究[J].飞机设计,2012,32(2):63-67.
    [14]Wang H, Nie A, Liu J, Wang P, Yang W, Chen B, Liu H, Fu M. In situ TEM study on crack propagation in nanoscale Au thin films[J]. Scripta Materialia,2011,65(5):377-379.
    [15]刘千千.低碳钢中第二相粒子析出行为的相场法模型及其模拟研究[D].山东大学硕士学位论文,2012.
    [16]王磊.材料的力学性能[M].沈阳:东北大学出版社,2004.
    [17]朱静,叶恒强.材料显微研究新视野[J].金属学报,2010,46(11):1428-1442.
    [18]赵品,谢辅洲,孙振国.材料科学基础教程[M].哈尔滨工业大学出版社,2002.
    [19]胡赓详,蔡殉,戎咏华.材料科学基础(第三版)[M].上海交通大学出版社,2009.
    [20]Nabarro F R N. Fifty-year study of the Peierls-Nabarro stress [J]. Materials Science and Engineering:A,1997,234-236:67-76.
    [21]Hosford W F. Mechanical behavior of materials[M]. Cambridge University Press,2005.
    [22]卢磊,卢柯.纳米孪晶金属材料[J].金属学报,2010,46(011):1422-1427.
    [23]夏爽,李慧,周邦新,陈文觉.金属材料中退火孪晶的控制及利用——晶界工程研究[J].自然杂志,2010,32(2):94-100.
    [24]Chen M W, Ma E, Hemker K J, Sheng, H W, Wang Y M, Cheng X M. Deformation twinning in nanocrystalline aluminum[J]. Science,2003,300:1275-1277.
    [25]A dense pile-up of dislocations along grain boundaries[EB/OL]. http://textbooks.elsevier.com/manualsprotectedtextbooks/9780750663809/Static/dislocati ons/dislocations2c.htm.
    [26]Klesnil M, Lukac P. Fatigue of metallic materials[M]. Amsterdam:Elesevier,1992.
    [27]Ye D, Matsuoka S, Suzuki N, Maeda Y. Further investigation of Neuber's rule and the equivalent strain energy density (ESED) method[J]. International journal of fatigue, 2004,26(5):447-455.
    [28]Aravas N, Kim K, Leckie F. On the calculations of the stored energy of cold work[J]. Journal of Engineering Materials and Technology,1990,112(4):465-470.
    [29]Hull D, Bacon D J. Introduction to dislocations[M]. Amsterdam; Oxford: Butterworth-Heinemann,2011.
    [30]Furukawa M, Horita Z, Nemoto M, Valiev R Z, Langdon T G. Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size[J]. Acta materialia,1996,44(11):4619-4629.
    [31]Miura S, Nishimura Y, Ono N. Sub-grain size and hall-petch relation in pure copper single crystals[J]. Key Engineering Materials,2007,345:29-32.
    [32]杨卫.宏微观断裂力学[M].北京:国防工业出版社,1995.
    [33]张俊善.材料强度学[M].哈尔滨工业大学出版社,2004.
    [34]韩振强.基于Monte Carlo方法的金属动态再结晶组织模拟[D].山东大学硕士学位论文,2007.
    [35]赵宇宏.合金早期沉淀过程的原子尺度计算机模拟[D].西北工业大学博士学位论文,2003.
    [36]魏承炀.再结晶织构的相场模拟与机理研究[D].华南理工大学博士学位论文,2012.
    [37]高英俊,刘慧,钟夏平.计算机模拟技术在材料科学中的应用[J].广西大学学报(自然科学版),2001,26(4):291-294.
    [38]刘建元.烧结过程中微观结构演变行为的Monte Carlo模拟[D].中南大学博士学位论文,2011.
    [39]杜平安,于亚婷,刘建涛.有限元法——原理、建模及应用(第二版)[M].北京:国防 工业出版社,2011.
    [40]肖纳敏.低碳钢形变—相变耦合过程的介观模拟计算[D].中国科学院金属研究所博士学位论文,2008.
    [41]Bang W, Lee C S, Chang Y W. Finite element analysis of hot forging with flow softening by dynamic recrystallization[J]. Journal of materials processing technology, 2003,134(2):153-158.
    [42]方岱宁,周储伟.有限元计算细观力学对复合材料力学行为的数值分析[J].力学进展,1998,28(2):173-188.
    [43]Zhang B, Yang Z, Sun X, Tang Z. A virtual experimental approach to estimate composite mechanical properties:Modeling with an explicit finite element method[J]. Computational Materials Science,2010,49(3):645-651.
    [44]Kad B K, Hazzledine P M. Monte Carlo simulations of grain growth and Zener pinning[J]. Materials Science and Engineering:A,1997,238(1):70-77.
    [45]韩振强.基于Monte Carlo方法的金属动态再结晶组织模拟[D].山东大学材料加工工程,2007.
    [46]Von Neumann J, Burks A W. Theory of self-reproducing automata[M]. University of Illinois, Urbana,1966.
    [47]Hesselbarth H W, Gobel I R. Simulation of recrystallization by Cellular Automata[J]. Acta Metallurgica et Materialia,1991,39(9):2135-2143.
    [48]Davies C H J. Growth of nuclei in a Cellular Automaton simulation of recrystallisation[J]. Scripta Materialia,1997,36(1):35-40.
    [49]金文忠,王磊,刘相华,王振范.元胞自动机方法模拟再结晶过程的建模[J].机械工程材料,2005,29(010):10-13.
    [50]郭娟,贺艺,许艺萍,吴迪,赵宪明.静态再结晶过程的元胞自动机模拟(Ⅱ)—晶粒尺寸和边数的变化[J].大型铸锻件,2009(2):4-7.
    [51]Chen L Q. Phase-field models for microstructure evolution[J]. Annual review of materials research,2002,32(1):113-140.
    [52]Chen L Q, Yang W. Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters:The grain-growth kinetics[J]. Physical Review B,1994,50(21):15752-15756.
    [53]Rapaport D C. The art of molecular dynamics simulation(Second Edition)[M]. Cambridge university press,2004.
    [54]Elder K R, Katakowski M, Haataja M, Grant M. Modeling Elasticity in Crystal Growth[J]. Physical Review Letters,2002,88(24):245701.
    [55]Kobayashi R. Modeling and numerical simulations of dendritic crystal growth[J]. Physica D:Nonlinear Phenomena,1993,63(3-4):410-423.
    [56]Wheeler A A, Murray B T, Schaefer R J. Computation of dendrites using a phase field model[J]. Physica D:Nonlinear Phenomena,1993,66(1-2):243-262.
    [57]张玉妥,李东辉,王承志,李依依.用相场方法模拟Fe-C合金枝晶生长[J].材料研究学报,2009,23(3):317-322.
    [58]王锦程,张玉祥,杨玉娟,李俊杰,杨根仓.多元合金枝晶生长形态转变及显微偏析的相场法研究[J].中国科学:E辑,2009,38(11):1921-1929.
    [59]朱昌盛,王军伟,王智平,冯力.受迫流动下的枝晶生长相场法模拟研究[J].物理学报,2010(10):7417-7423.
    [60]杜立飞,张蓉,邢辉,张利民,张洋,刘林.横向限制下凝固微观组织演化的相场法模拟[J].物理学报,2013,62(10):106401.
    [61]徐树杰.金属动态再结晶过程组织演变的多相场模拟[D].天津大学硕士学位论文,2012.
    [62]Kundin J, Raabe D, Emmerich H. A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite[J]. Journal of the Mechanics and Physics of Solids,2011,59(10):2082-2102.
    [63]Hu H L, Chen L Q. Computer Simulation of 90 Degrees Ferroelectric Domain Formation in Two-Dimensions[J]. Materials Science and Engineering A,1997,238(1):182-191.
    [64]Ramanarayan H, Abinandanan T A. Grain boundary effects on spinodal decomposition:: Ⅱ. Discontinuous microstructures[J]. Acta materialia,2004,52(4):921-930.
    [65]Ramanarayan H, Abinandanan T A. Phase field study of grain boundary effects on spinodal decomposition[J]. Acta materialia,2003,51(16):4761-4772.
    [66]高英俊,罗志荣,张少义,黄创高.相场方法研究Al-Ag合金γ相周围溶质析出过程[J].金属学报,2010,46(12):1473-1480.
    [67]满蛟,张骥华,戎咏华.马氏体相变中应变自协调效应的三维相场研究[J].金属学报,2010,46(7):775-780.
    [68]孙巧娜,刘新田.相场模型中弛豫系数对晶粒尺寸影响的研究[J].热加工工艺,2008,37(12):94-97.
    [69]Chen L Q, Fan D. Computer simulation model for coupled grain growth and Ostwald Ripening—application to Al2O3-ZrO2 two-phase systems[J]. Journal of the American Ceramic Society,1996,79(5):1163-1168.
    [70]Kazaryan A, Wang Y, Patton B R. Generalized phase field approach for computer simulation of sintering:incorporation of rigid-body motion[J]. Scripta materialia,1999, 41(5):487-492.
    [71]Krill Ⅲ C E, Chen L Q. Computer simulation of 3-D grain growth using a phase-field model[J]. Acta Materialia,2002,50(12):3059-3075.
    [72]Kazaryan A, Wang Y, Dregia S A, Patton B R. Grain growth in anisotropic systems: comparison of effects of energy and mobility[J]. Acta materialia,2002,50(10):2491-2502.
    [73]Kazaryan A, Patton B R, Dregia S A, Wang Y. On the theory of grain growth in systems with anisotropic boundary mobility[J]. Acta materialia,2002,50(3):499-510.
    [74]Kazaryan A, Wang Y, Dregia S A, Patton B R. Generalized phase-field model for computer simulation of grain growth in anisotropic systems[J]. Physical Review B,2000, 61(21):14275.
    [75]Ma N, Kazaryan A, Dregia S A, Wang Y. Computer simulation of texture evolution during grain growth:effect of boundary properties and initial microstructure[J]. Acta materialia,2004,52(13):3869-3879.
    [76]Suwa Y, Saito Y, Onodera H. Three-dimensional phase field simulation of the effect of anisotropy in grain-boundary mobility on growth kinetics and morphology of grain structure[J]. Computational materials science,2007,40(1):40-50.
    [77]Fan D, Chen L Q, Chen S P P. Numerical Simulation of Zener Pinning with Growing Second-Phase Particles[J]. Journal of the American Ceramic Society,1998,81(3):526-532.
    [78]Moelans N, Blanpain B, Wollants P. Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles[J]. Acta materialia,2006,54(4):1175-1184.
    [79]Moelans N, Blanpain B, Wollants P. A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles[J]. Acta Materialia,2005,53(6):1771-1781.
    [80]Vedantam S, Mallick A. Phase-field theory of grain growth in the presence of mobile second-phase particles[J]. Acta materialia,2010,58(1):272-281.
    [81]Vedantam S, Patnaik B S V. Efficient numerical algorithm for multiphase field simulations[J]. Physical Review E,2006,73(1):16703.
    [82]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].冶金工业出版社,1994.
    [83]Suwa Y, Saito Y, Onodera H. Phase-field simulation of recrystallization based on the unified subgrain growth theory[J]. Computational Materials Science,2008,44(2):286-295.
    [84]Wang M T, Zong B Y, Wang G. Grain growth in AZ31 Mg alloy during recrystallization at different temperatures by phase field simulation[J]. Computational Materials Science, 2009,45(2):217-222.
    [85]Takaki T, Hisakuni Y, Hirouchi T, Yamanaka A, Tomita Y. Multi-phase-field simulations for dynamic recrystallization[J]. Computational Materials Science,2009,45(4): 881-888.
    [86]徐树杰,赵乃勤,师春生,刘恩佐.热加工过程中动态再结晶现象的多相场研究[J].物理学报,2012,61(11):116101.
    [87]Hu S Y, Chen L Q. Solute segregation and coherent nucleation and growth near a dislocation—a phase-field model integrating defect and phase microstructures[J]. Acta materialia,2001,49(3):463-472.
    [88]Wang Y U, Jin Y M, Cuitino A M, Khachaturyan A G. Nanoscale phase field microelasticity theory of dislocations:model and 3D simulations[J]. Acta Materialia, 2001,49(10):1847-1857.
    [89]Rodney D, Le Bouar Y, Finel A. Phase field methods and dislocations[J]. Acta materialia, 2003,51(1):17-30.
    [90]Jin Y M, Wang Y U, Khachaturyan A G. Three-dimensional phase field microelasticity theory and modeling of multiple cracks and voids[J]. Applied Physics Letters,2001,79(19): 3071-3073.
    [91]Spatschek R, Hartmann M, Brener E, Muller-Krumbhaar H. Phase field modeling of fast crack propagation[J]. Physical review letters,2006,96(1):15502.
    [92]Gao Y J, Mo Q F, Luo Z R, Zhang L N, Huang C G. Atomic Bonding and Properties of Al-Cu Alloy with θ(A12Cu)[J]. Journal of Electronic Materials,2006,35(10):1801-1805.
    [93]Gao Y J, Mo Q F, Chen H N, Huang C G, Zhang L N. Atomic bonding and mechanical properties of Al-Li-Zr alloy[J]. Materials Science and Engineering:A,2009,499(1-2): 299-303.
    [94]高英俊,张海林,金星,黄创高,罗志荣.相场方法研究硬质颗粒钉扎的两相晶粒长大过程[J].金属学报,2009,45(10):1190-1198.
    [95]高英俊,罗志荣,黄创高,卢强华,林葵.晶体相场方法研究二维六角相向正方相结构转变[J].物理学报,2013,62(5):50507.
    [96]秦晓冰.相场方法模拟合金无序—有序相转变和晶粒长大[D].广西大学硕士学位论文,2008.
    [97]李建勋.相场方法模拟多晶材料微观结构演化[D].广西大学硕士学位论文,2009.
    [98]张海林.相场方法模拟含硬质颗粒的晶粒长大过程[D].广西大学硕士学位论文,2010.
    [99]胡项英.相场方法研究合金再结晶组织的演化过程[D].广西大学硕士学位论文,2011.
    [100]张少义.晶体相场方法研究晶体外延生长界面结构与位错的迁移[D].广西大学硕士学位论文,2012.
    [101]冯端.金属物理第二卷(相变)[M].北京:科学技术出版社,2000.
    [102]van der Waals. Phys. Chem.,1894,13:657.
    [103]Cahn J W, Hilliard J E. Free energy of a nonuniform system:1. Interfacial energy[J]. J. Chem. Phys,1958,28:258.
    [104]Hohenberg P C, Halperin B I. Theory of dynamic critical phenomena[J]. Reviews of Modern Physics,1977,49(3):435.
    [105]Grant M, Gunton J D. Temperature dependence of the dynamics of random interfaces[J]. Physical Review B,1983,28(10):5496.
    [106]Moelans N, Blanpain B, Wollants P. An introduction to phase-field modeling of microstructure evolution[J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2008,32(2):268-294.
    [107]Wang Z J, Li J J, Wang J C, Zhou Y H. Phase field modeling the selection mechanism of primary dendritic spacing in directional solidification[J]. Acta Materialia,2012,60(5): 1957-1964.
    [108]陈大钦.弹性场对(半)共格沉淀析出过程影响的模拟研究[D].中南大学硕士学位论文,2004.
    [109]Allen S M, Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J]. Acta Metallurgica,1979,27(6):1085-1095.
    [110]Cahn J W, Hilliard J E. Free energy of a nonuniform system:1. Interfacial energy[J]. The Journal of Chemical Physics,1958,28:258.
    [111]Fan D. Computer simulation of microstructural evolution in multiphase materials using a diffuse-interface field model[D]. Pennsylvania State University,1996.
    [112]王明涛.相场法对AZ31镁合金再结晶过程实现真实时空模拟的研究[D].东北大学博士学位论文,2009.
    [113]马文淦.计算物理学[M].北京:科学出版社,2005.
    [114]Oono Y, Puri S. Computationally efficient modeling of ordering of quenched phases[J]. Physical review letters,1987,58(8):836-839.
    [115]魏承炀,李赛毅.温度梯度对晶粒生长行为影响的相场模拟[J].物理学报,2011,60(10):100701.
    [116]Chen L Q, Shen J. Applications of semi-implicit Fourier-spectral method to phase field equations[J]. Computer Physics Communications,1998,108(2):147-158.
    [117]王超,刘国权.基于Hillert速率方程的准稳态三维晶粒尺寸分布的再讨论[J].中国科学E辑,2004,34(1):34-41.
    [118]罗志荣,高英俊,邱鸿广,张海林.相场法模拟多个空间取向的棒状第二相粒子对晶粒长大的影响[J].中国有色金属学报,2010,20(12):2406-2411.
    [119]李俊杰,王锦程,杨根仓.含第二相颗粒的晶粒长大过程相场法[J].稀有金属材料与工程,2008,37(10):1746-1750.
    [120]Longworth H P, Thompson C V. Abnormal grain growth in aluminum alloy thin films[J]. Journal of Applied Physics,1991,69(7):3929-3940.
    [121]Moelans N. Phase-field simulations of grain growth in materials containing second-phase particles[D]. PhD thesis, Katholieke Universiteit Leuven,2006.
    [122]Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena(Second Edition)[M]. Oxford:Elsevier Science Ltd,2004.
    [123]许泉.晶粒长大过程及其生长动力学的相场法研究[D].西北工业大学硕士学位论文,2007.
    [124]Fan D, Chen L Q. Computer simulation of grain growth using a continuum field model[J]. Acta materialia,1997,45(2):611-622.
    [125]魏承炀,高英俊,张丽娜.晶粒长大的Monte Carlo模拟方法——递归统计法测定晶粒度[J].中国有色金属学报,2008,18(1):132-137.
    [126]Mullins W W. Two-Dimensional Motion of Idealized Grain Boundaries[J]. Journal of Applied Physics,1956,27(8):900-904.
    [127]关小军,周家娟,陈晓闽,李阳,马景.不同冷轧状态的ELC-BH钢板连续退火再结晶规律[J].金属热处理,2003,28(2):31-33.
    [128]Song K, Aindow M. Grain growth and particle pinning in a model Ni-based superalloy[J]. Materials Science and Engineering A,2008,479 (1-2):365-372.
    [129]Ringer S P, Li W B, Easterling K E. On the interaction and pinning of grain boundaries by bubic shaped precipitate particles[J]. Acta Metallurgica,1989,37 (3):831-841.
    [130]麻晓飞.二相粒子材料再结晶退火的元胞自动机模型及其模拟研究[D].山东大学博士学位论文,2008.
    [131]Zener C. Private communication to CS Smith Trans[J]. AIME,1948,175:15.
    [132]Manohar P A, Ferry M, Chandra T. Five decades of the Zener equation[J]. ISIJ International,1998,38(9):913-924.
    [133]Kugler G, Turk R. Study of the influence of initial microstructure topology on the kinetics of static recrystallization using a cellular automata model[J]. Computational materials science,2006,37(3):284-291.
    [134]Takaki T, Yamanaka A, Higa Y, Tomita Y. Phase-field model during static recrystallization based on crystal-plasticity theory[J]. Journal of Computer-Aided Materials Design,2007,14:75-84.
    [135]张宪刚,宗亚平,吴艳.相场再结晶储能释放模型与显微组织演变的模拟研究[J].物理学报,2012,61(8):88104.
    [136]Zheng C W, Xiao N M, Li D Z, Li Y Y. Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling:A cellular automaton modeling[J]. Computational Materials Science,2008,44(2):507-514.
    [137]杨觉先.金属塑性变形物理基础[M].北京:冶金工业出版社,1988.
    [138]郭娟,王艳敏,李卫,吴迪,赵宪明.静态再结晶过程的元胞自动机模拟(Ⅰ)—微观组织演化和动力学研究[J].大型铸锻件,2009(1):20-24.
    [139]申孝民.有限元与蒙特卡罗方法耦合的退火过程模拟模型及关键技术研究[D].山东大学博士学位论文,2008.
    [140]Burke J, Turnbull D. Recrystallization and grain growth[J]. Progress in Metal Physics, 1952,7(3):220-292.
    [141]R W卡恩主编.材料科学与技术丛书(第15卷)金属与合金工艺[M].北京:科学出版社,1999.
    [142]Suwa Y, Saito Y, Onodera H. Phase field simulation of stored energy driven interface migration at a recrystallization front[J]. Materials Science and Engineering:A,2007, 457(1-2):132-138.
    [143]Radhakrishnan B, Sarma G B, Zacharia T. Modeling the kinetics and micro structural evolution during static recrystallization—Monte Carlo simulation of recrystallization[J]. Acta materialia,1998,46(12):4415-4433.
    [144]Ye W, Le Gall R, Saindrenan G. A study of the recrystallization of an IF steel by kinetics models[J]. Materials Science and Engineering:A,2002,332(l):41-46.
    [145]Zheng C W, Xiao N M, Li D Z, Li Y Y. Mesoscopic modeling of austenite static recrystallization in a low carbon steel using a coupled simulation method[J]. Computational Materials Science,2009,45(2):568-575.
    [146]刘饶川,汪凌云,辜蕾钢,黄光胜.AZ31B镁合金板材退火工艺及晶粒尺寸模型的研究[J].轻合金加工技术,2004,32(2):22-25.
    [147]Choi S H, Cho J H. Primary recrystallization modelling for interstitial free steels[J]. Materials Science and Engineering:A,2005,405(1):86-101.
    [148]Takaki T, Tomita Y. Static recrystallization simulations starting from predicted deformation microstructure by coupling multi-phase-field method and finite element method based on crystal plasticity[J]. International Journal of Mechanical Sciences,2010, 52(2):320-328.
    [149]SS葛列里克著,仝健民译.金属和合金的再结晶[M].北京:机械工程出版社,1985.
    [150]Sitdikov O, Sakai T, Avtokratova E, Kaibyshev R, Tsuzaki K, WatanabeY. Microstructure behavior of Al-Mg-Sc alloy processed by ECAP at elevated temperature[J]. Acta Materialia,2008,56(4):821-834.
    [151]徐世伟.ECAP强塑变超细晶Mg-Zn-Y-Zr合金的变形行为[D].哈尔滨工业大学硕士学位论文,2006.
    [152]张中武.定向再结晶及其动力学研究[D].南京理工大学博士学位论文,2008.
    [153]Cairns R L, Curwick L R, Benjamin J S. Grain growth in dispersion strengthened superalloys by moving zone heat treatments[J]. Metallurgical Transactions A, 1975,6(1):179-188.
    [154]Zhang Z W, Chen G L, Chen G. Microstructural evolution of commercial pure iron during directional annealing[J]. Materials Science and Engineering:A,2006,422(1-2): 241-251.
    [155]Baker I, Li J. Directional annealing of cold-rolled copper single crystals[J]. Acta materialia,2002,50(4):805-813.
    [156]Zhang Z W, Chen G, Chen G L. Dynamics and mechanism of columnar grain growth of pure iron under directional annealing[J]. Acta Materialia,2007,55(17):5988-5998.
    [157]Holm E A, Zacharopoulos N, Srolovitz D J. Nonuniform and directional grain growth caused by grain boundary mobility variations[J]. Acta materialia,1998,46(3):953-964.
    [158]Badmos A Y, Frost H J, Baker I. Simulation of microstructural evolution during directional annealing with variable boundary energy and mobility[J]. Acta materialia, 2003,51(10):2755-2764.
    [159]Badmos A Y, Frost H J, Baker I. Microstructural evolution during directional annealing[J], Acta materialia,2002,50(13):3347-3359.
    [160]Chen L Q. A novel computer simulation technique for modeling grain growth[J]. Scripta Metallurgica et Materialia,1995,32(1):115-120.
    [161]倪海涛,张喜燕,朱玉涛.纳米结构金属位错的研究进展[J].材料导报,2010,24(11):112-115.
    [162]王银凤.2010:《Nature》的中国声音[J].科学巾国人,2011(3):16-27.
    [163]Li X Y, Wei Y J, Lu L, Lu K, Gao, H J. Dislocation nucleation governed softening and maximum strength in nano-twinned metals[J]. Nature,2010,464(7290):877-880.
    [164]赵雪川.位错非均匀形核及与晶界作用研究[D].清华大学博士学位论文,2011.
    [165]Shao Y, Yang X, Zhao X, Wang S Q. Investigation of activities of grain boundaries in nanocrystalline Al under an indenter by a multiscale method[J]. Chinese Physics B, 2012,8(21):83101.
    [166]Mompiou F, Legros M, Boe A, Coulombier M, Raskin J P, Pardoen T. Inter-and intragranular plasticity mechanisms in ultrafine-grained Al thin films:An in situ TEM study[J]. Acta Materialia,2013,61(1):205-216.
    [167]Marks R A, Taylor S T, Mammana E, Gronsky R, Glaeser A M. Directed assembly of controlled-misorientation bicrystals[J]. Nature Materials,2004,3(10):682-686.
    [168]Van Swygenhoven H. Polycrystalline materials Grain boundaries and dislocations[J]. Science,2002,296(5565):66-67.
    [169]Grain Boundary in Gold[EB/OL]. http://www.fei.com/resources/image-gallery/grain-boundary-gold-1234.aspx.
    [170]Velasco M, Van Swygenhoven H, Brandl C. Coupled grain boundary motion in a nanocrystalline grain boundary network[J]. Scripta Materialia,2011,65(2):151-154.
    [171]Van Swygenhoven H, Derlet P M, Froseth A G. Stacking fault energies and slip in nanocrystalline metals[J]. Nature Materials,2004,3(6):399-403.
    [172]Schi(?)tz J, Di Tolla F D, Jacobsen K W. Softening of nanocrystalline metals at very small grain size[J]. Nature,1998,391:561-563.
    [173]Tschopp M A, McDowell D L. Grain boundary dislocation sources in nanocrystalline copper[J]. Scripta Materialia,2008,58(4):299-302.
    [174]Stefanovic P, Haataja M, Provatas N. Phase field crystal study of deformation and plasticity in nanocrystalline materials[J]. Physical Review E,2009,80(4):46107.
    [175]Elder K R, Grant M. Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals[J]. Physical Review E,2004,70(5):51605.
    [176]Hirouchi T, Takaki T, Tomita Y. Development of numerical scheme for phase field crystal deformation simulation[J]. Computational Materials Science,2009,44(4): 1192-1197.
    [177]任秀,王锦程,杨玉娟,杨根仓.纯物质晶界结构及运动的晶体相场法模拟[J].物理学报,2010,59(5):3595-3600.
    [178]杨涛,陈铮,董卫平.应力诱发双位错组亚晶界湮没的晶体相场模拟[J].金属学报,2011,47(10):1301-1306.
    [179]Berry J, Grant M, Elder K R. Diffusive atomistic dynamics of edge dislocations in two dimensions[J]. Physical Review E,2006,73(3):31609.
    [180]Yang T, Chen Z, Zhang J, Dong W P, Wu L. Effect of Grain Boundary on Spinodal Decomposition Using the Phase Field Crystal Method[J]. Chinese Physics Letters, 2012,29(7):78103.
    [181]Greenwood M, Provatas N, Rottler J. Free energy functionals for efficient phase field crystal modeling of structural phase transformations[J]. Physical review letters, 2010,105(4):45702.
    [182]Elder K R, Rossi G, Kanerva P, Sanches F, Ying S C, Granato E, Achim C V, Ala-Nissila T. Patterning of heteroepitaxial overlayers from Nano to Micron scales[J]. Physical Review Letters,2012,108(22):226102.
    [183]Tang S, Wang Z J, Guo Y L, Wang J C, Yu Y M, Zhou Y H. Orientation selection process during the early stage of cubic dendrite growth:A phase-field crystal study[J]. Acta Materialia,2012,60(15):5501-5507.
    [184]Mills M J, Daw M S, Foiles S M. High-resolution transmission electron microscopy studies of dislocation cores in metals and intermetallic compounds[J]. Ultramicroscopy, 1994,56(1):79-93.
    [185]Capolungo L, Spearot D E, Cherkaoui M, McDowell D L, Qu J, Jacob K I. Dislocation nucleation from bicrystal interfaces and grain boundary ledges:relationship to nanocrystalline deformation[J]. Journal of the Mechanics and Physics of Solids, 2007,55(11):2300-2327.
    [186]Haslam A J, Phillpot S R, Wolf D, Moldovan D, Gleiter H. Mechanisms of grain growth in nanocrystalline fcc metals by molecular-dynamics simulation[J]. Materials Science and Engineering A,2001,318(1-2):293-312.
    [187]Zheng C, Zhang Y W. Atomistic simulations of mechanical deformation of high-angle and low-angle nanocrystalline copper at room temperature[J]. Materials Science and Engineering:A,2006,423(1):97-101.
    [188]Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale[J]. Science,2009:349-352.
    [189]范镜泓.材料变形与破坏的多尺度分析[M].科学出版社,2008.
    [190]Gleiter H. Nanocrystalline materials[J]. Progress in Materials Science,1989,33(4): 223-315.
    [191]陆怀宝,黎军顽,倪玉山,梅继法,王洪生.体心立方金属钽Ⅱ型裂纹尖端缺陷萌生的多尺度分析[J].物理学报,2011,60(10):488-494.
    [192]Goldman T, Harpaz R, Bouchbinder E, Fineberg J. An intrinsic nonlinear scale governs oscillations in rapid fracture[J]. Physical Review Letters,2012,108:104303.
    [193]Pons A J, Karma A. Helical crack-front instability in mixed-mode fracture[J]. Nature, 2010,464(7285):85-89.
    [194]Imbeni V, Kruzic J J, Marshall G W, Marshall S J, Ritchie R O. The dentin-enamel junction and the fracture of human teeth[J]. Nature materials,2005,4(3):229-232.
    [195]Buehler M J, Abraham F F, Gao H J. Hyperelasticity governs dynamic fracture at a critical length scale[J]. Nature,2003,426(6963):141-146.
    [196]Dauchot O, Karmakar S, Procaccia I, Zylberg J. Athermal brittle-to-ductile transition in amorphous solids[J]. Physical Review E,2011,84(4):46105.
    [197]Zhu T, Li J, Yip S. Atomistic study of dislocation loop emission from a crack tip[J]. Physical review letters,2004,93(2):25503.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700