用户名: 密码: 验证码:
高强铝合金预拉伸厚板残余应力场分层法建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强铝合金厚板是航空、航天、国防、船舶、轻工等领域的重要结构材料。其作为整体部件材料,不仅可以增强机体强度,还能够减少飞机构件数量和装配工时,因此作为国家”大飞机”项目的主要用材。然而高强铝合金厚板通常需经固溶强化,以提升板材力学性能。强化处理工艺在板内形成高达100~300MPa的残余应力。若应力消减工艺不当,则残存的残余应力将使厚板在加工中发生变形,影响构件的疲劳强度和抗应力腐蚀开裂性能。预拉伸厚板在重大项目中的应用对板内残余应力水平控制提出了严格要求。因而开展高强铝合金厚板残余应力消减机理及数学建模研究,进一步优化工艺并降低板内应力水平具有十分重要的意义。
     本文围绕淬火-预拉伸厚板残余应力的演化机理,针对残余应力实验测试、铝合金应变空间弹塑性本构建模、金属薄板平面变形下厚度建模、铝合金预拉伸厚板残余应力场分层法建模以及残余应力的宏观消减机理等开展研究,主要有以下几个方面:
     1、研究了典型高强铝合金厚板在不同固溶强化工艺和预拉伸条件下的残余应力场分布规律。实验测定了2A12和7075两种铝合金淬火厚板在淬火-预拉伸工艺中的残余应力场。发现在阵列喷淋及水浴淬火方式下厚板内部都形成了“内拉外压”的残余应力场典型分布;喷淋方式的淬火强度相对较低,只在厚板靠近表层的地方形成了较大的残余应力;水浴方式淬火强度更大,在厚板整个厚度上形成了倒U形分布的残余应力;预拉伸使喷淋和水浴两种淬火板内的残余应力都大幅度消减。
     2、针对淬火工艺在厚板内部形成的力学性能不均性开展研究,通过7075厚板的屈服强度和硬度测试结果的相互印证,表明沿板厚方向确实存在明显的强度和硬度不均匀性,强度值从厚板表层到芯部呈现逐渐降低的趋势;研究了7000系铝合金铝合金在淬火-预拉伸过程中的力学性能演化规律,并根据实验情况确定了7075厚板在淬火一预拉伸的多个关键时间节点处的力学性能。研究发现7075合金在淬火结束时屈服强度低于实验测得的残余应力水平,从而发现残余应力在时效过程中出现增长的现象。
     3、从应变空间表述的塑性增量本构模型一般形式出发,根据铝合金等线性强化材料特性建立了应变空间弹塑性本构模型。以应变空间的形式建立材料的屈服准则、流动法则、内变量和塑性模量等准则及参量,建立起适合铝合金等线性强化材料应用的弹塑性增量模型。
     4、研究了铝合金板材在平面应力且平面内变形条件下的厚度变化规律。以各向同性线性强化材料在应力空间的弹塑性本构模型为工具,推导出薄板在平面内变形已知时厚度方向应变的计算模型。建立了加载过程中应力分量间成恒定比例关系时用于求解厚度应变的η-η1线方程;建立了应变增量分量在屈服加载阶段为非线性比例关系时,计算板内应力和厚度的计算模型,通过与应力/应变空间弹塑性理论和MSC.Marc下有限元仿真之间的比较对模型进行了验证。
     5、基于分层法建立了预拉伸厚板残余应力场力学模型,并以7075厚板实验结果进行了验证研究。建立了多层薄板贴合的厚板组合结构;基于应变空间增量本构关系研究了厚板各深度处材料在拉伸关键点处的应变及应力特征,从而建立起厚板整体的应力演化模型;通过导入7075厚板实验数据,研究该模型预测预拉伸厚板残余应力场的准确性;研究了力学性能沿板厚的不均匀分布对预拉伸厚板残余应力场的量化影响。
     6、研究了厚板残余应力场的消减机理,揭示了厚板残余应力演化规律。通过分析厚板预拉伸过程中各深度处自由尺寸的变化情况,揭示了预拉伸消减残余应力的机理是各深度处的自由尺寸差异减小;研究发现在拉伸过程中,厚板内轧制和横向残余应力的消减不同步,导致在拉伸率不同时两者的消减程度不一;研究还揭示了预拉伸导致的厚板不均匀塑性应变分布规律。
     本文研究受到国家重点基础研究发展规划(973)课题:大规格铝材非均匀多相组织和内应力场的产生与演变(课题编号:2005CB623708)和大型薄壁构件塑变与去除成形及其内应力与表面完整性主动控制(课题编号:2010CB731703)资助。
Aluminum alloy thick plate is an important material in the fields of airplane, aerospace, shipbuilding and other industries. Structure made of thick plate is stronger and lighter, and it is then applied in the large military and civil aircraft of our country. However, there is high level residual stress, usually100-300MPa, caused by quenching in the plate. When stress-relief process is not designed well, the residual stresses left are sufficient to cause distortion and weaken the fatigue strength and the stress-corrosion-cracking resistance in aircraft components machined from this material. Meanwhile, lower residual stresses are required for the thick plate used in the large aircraft. Therefore, it is important to study the mechanism and establish the analytical model for pre-stretch in order to improve the process and lower the residual stress in the plate.
     The thesis focuses on the mechanism and modeling of stress-evolution of the residual stress during quench-stretch process by stress experiment, strain-based modelling of elasto-plasticity, analysis on in-plane deformation of thin plate and multi-layer method modeling of residual stress in thick plate:
     1. Residual stresses in quenched and pre-stretched thick plates of2A12and7075aluminum alloy were measured by layer removal method. The thick plates were quenched in spray and immersion to get different quenching intensities. The results show that plate was cooled down in shorter term under the immersion-quenching than that of the spray-quenching and residual stress caused under the former circumstance was higher than that of the latter. Spraying process caused high level residual stress close to the surface and nearly zero stress around the midplane, while immersion bringing inverted U-shape of stress in the plate. Besides, pre-stretch process significantly reduced the residual stresses in quenched plates.
     2. The evolution of mechanical properties of7000series aluminum alloy during quench-stretch process and values of properties at key stages were determined according to the test condition. It was found that the yield strength is lower than residual stress of as-quenched plate, indicating that residual stress is increasing during aging process. The through-thickness inhomogeneity was confirmed in the quenched-stretched7075plate by uniaxial tension test and hardness test. Material close to the surface has the higher strength than that near the midplane in the thick plate.
     3. Based on general form of strain-space incremental plasticity relation, a new model for linear hardening materials was proposed. The model, suitable for isotropic hardening materials like aerospace aluminum alloy, was carried out by determining yield criteria, flow rule, hardening function and plastic modulus in strain space.
     4. A calculation model for strain in the thickness-direction of isotropic linear hardening plate was proposed, based on the theory of stress and strain space elastic-plastic constitutive model and analysis of stretching process of aerospace aluminum alloy thick plate. It was found that when ratio of stress fractions is constant during in-plane loading, ratios of strain components under various loading conditions are linearly related and these points of ratios form an η-η line. Under these simple loadings, strains in thickness direction can be easily calculated by the η-η line equation without integral and differential work. When the plate is under more complicated loading conditions, the thickness can be computed by the proposed optimization and piecewise calculation model. The model was then verified against the results of proved theories and FE simulation in MSC.Marc.
     5. A mathematical model is developed to calculate the residual stress in stretched aluminum alloy thick plate. It is based on multi-layer method, balance of stresses, two-dimensional plasticity and a conception of free size. The model was verified against the experiments performed on7075aluminum plate. It was found that the computed residual stress basically express the stress level of the stretched plate under the given stretching ratio and that through-thickness inhomogeneity plays an important role in residual stress.
     6. The mechanism of stress-relief during stretch was studied. The stress was reduced by narrowing of differences of free sizes at various depths of the plate. Study showed that residual stress in the transverse direction is higher than that of the rolling direction when the tension ratio is relatively small and the latter is larger than the former when tension ratio reaches a certain level. Non-uniform plastic deformation caused by stretching was also studied.
     This work was funded by the State Key Fundamental Research Program of China (Grant No.2005CB623708and No.2010CB731703).
引文
[1]王洪,付高峰,孙继红,等.超高强铝合金研究进展.材料导报,2006,20(2):58-60.
    [2]Hatch J E. Aluminum:Properties and Physical Metallurgy. Metals Park, OH:ASM Press,1983.63-102.
    [3]宁爱林,曾苏民,莫亚武,等.超高强铝合金的回顾与展望.邵阳学院学报,2003,2(5):90-92.
    [4]Driver J H, Dubost B, Durand F, et al. Development and Application of High-Strength Al-Zn-Mg-Cu Alloys. Materials Science Forum,1996,217-222: 1813-1818.
    [5]刘兵,彭超群,王日初,等.大飞机用铝合金的研究现状及展望.中国有色金属学报,2010,20(9):1705-1715.
    [6]Filatov Y A, Yelagin V I, Zakharov V V. New Al-Mg-Sc alloy. Materials Science and Engineering A,2000,280:97-101.
    [7]Rusinek A, Rodriguez-Martinez J A. Thermo-viscoplastic constitutive relation for aluminium alloys,modeling of negative strain rate sensitivity and viscous drag effects. Materials and Design,2009,30:4377-4390.
    [8]庾莉萍,阮鹏跃.高性能铝合金厚板的生产技术及应用.中国材料进展,2011,30(3):54-59.
    [9]庾莉萍,阮鹏跃.高性能铝合金厚板的生产技术及应用(续).有色金属加工,2011,40(2):19-22.
    [10]江志邦,宋殿臣,关云华.世界先进的航空用铝合金厚板生产技术.轻合金加工技术,2005,33(4):1-8.
    [11]Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications. Materials Science and Engineering A,2000, (280):102-107.
    [12]米谷茂.残余应力的产生和对策(朱荆璞,邵会孟).北京:机械工业出版社,1983.19-74.
    [13]刘静安,谢水生.铝合金材料的应用与技术开发.北京:冶金工业出版社,2004.28-64.
    [14]林高用,郑小燕,冯迪,等.铝合金厚板残余应力的研究进展.材料导报,2006,22(6):70-74.
    [15]Walker C A, Waddell A J, Johnston D J. Vibratory stress relief-an investigation of the underlying processes. Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering,1995,209:51-58.
    [16]马振宇,芦亚萍,贾叔仕.振动时效微观机理研究.机械工程师,2003,(2):30-32.
    [17]周鸿章.铝合金预拉伸板.铝加工,1999,22(3):16-19.
    [18]李利.铝合金板淬火残余应力的拉伸消除方法.轻合金加工技术.1999,27(05):16-18.
    [19]孟显利.振动时效技术在工程机械结构件上的应用.装备制造技术,2011,(6):136-138.
    [20]谢列卫,刘勇.振动时效消除铝合金试件残余应力的研究.强度与环境,1994,(4):45-50.
    [21]熊卫民.铝合金厚板的振动时效装置及试验研究:[硕士学位论文].长沙:中南大学,2008.
    [22]沈华龙,吴运新,郭俊康.高强度铝合金厚板振动时效工艺的研究.振动与冲击,2009,28(8):191-208.
    [23]赵晓慈,张以都,张洪伟,等.基于有限元的铝合金预拉伸板振动时效仿真分析.辽宁工程技术大学学报(自然科学版),2008,27(6):924-926.
    [24]沈华龙,吴运新,熊卫民.振动时效应用于铝合金时动应力的选择.材料工程,2009,(4):18-22.
    [25]胡永会,吴运新,郭俊康.7075铝合金残余应力与机械载荷交互作用的试验研究.轻金属,2011,(2):53-60.
    [26]郭俊康.铝合金厚板振动时效的微屈服机理探讨与试验研究:[硕士学位论文].长沙:中南大学,2010.
    [27]刘赫,唐兄彬.振动时效在消除铸铝合金框架变形中的应用.火箭推进,2011,37(5):57-62.
    [28]张晓,杜战峰.振动时效在铝合金零件加工中的应用.新技术新工艺,2008,(7):56-58.
    [29]李云,陈东高,尚福军.消除铝合金结构件焊接残余应力的工艺研究.兵器材料科学与工程,2003,26(1):62-64.
    [30]Denis S, Archambault P, Gautier E, et al. Prediction of residual stress and distortion of ferrous and non-ferrous metals:Current status and future developments. Journal of Materials Engineering and Performance,2002,11(1):92-102.
    [31]Archambault P, Azim A. Inverse Resolution of the Heat-Transfer Equation: Application to Steel and Aluminum Alloy Quenching. Journal of Materials Engineering and Performance,1995,4(6):730-736.
    [32]Withers P J, Bhadeshia H K D H. Overview Residual stress Part 1-Measurement techniques. Materials Science and Technology,2001,17:355-365.
    [33]陈会丽,钟毅,王华昆,等.残余应力测试方法的研究进展.云南冶金,2005,34(3):52-54.
    [34]Pina J, Dias A, Lebrun J L. Study by X-ray diffraction and mechanical analysis of the residual stress generation during thermal spraying. Materials Science and Engineering A,2003,347:21-31.
    [35]Greving D J, Rybicki E F, Shadley J R. Through-thickness residual stress evaluations for several industrial thermal spray coatings using a modified layer-removal method. Journal of Thermal Spray Technology,1994,3(4):379-388.
    [36]Cheng W, Finnie I. Examination of the Computational Model for the Layer-Removal Method for Residual.Stress Measurement. Experimental Mechanics,1986,26(2): 150-153.
    [37]Prime M B. Residual Stress Measurement by Successive Extension of a Slot:The Crack Compliance Method. Appl. Mech. Rev.,1999,52(2):75-96.
    [38]Cheng W, Finnie I. Residual Stress Measurement and the Slitting Method. New York: Springer,2006.9-18.
    [39]Pratihar S, Stelmukh V, Hutchings M, et al. Measurement of the residual stress field in MIG-welded Al-2024 and Al-7150 aluminium alloy compact tension specimens. Materials Science and Engineering:A,2006,437(1):46-53.
    [40]Farhoudi Y. Measurement and computation of thermal stresses in injection molding of amorphous and crystalline polymers.1998, McGill Univercity:Montreal,Canada.
    [41]Greving D J. Residual stress and thermal spray coating performance:[Doctorate Dissertation]. Oklahoma:The Univercity of Tulsa,1995.
    [42]http://www.lanl.gov/residual/standard.shtml.
    [43]Wang S H, Zuo D W, Wang M, et al. Modified layer removal method for measurement of residual stress distribution in thick pre-stretched aluminum plate. Transactions of Nanjing University of Aeronautics & Astronautics,2004,21(4): 286-290.
    [44]王树宏,左敦稳,润长生,等.LY12,B95п.ч和7050铝合金预拉伸厚板内部残余应力分布特征评估与分析.材料工程,2004,(10):32-35.
    [45]王树宏,马康民,马俊.预拉伸铝合金板7075T7351内部残余应力分布测试.空军工程大学学报(自然科学版),2004,5(3):19-21.
    [46]王树宏.航空铝合金厚板初始残余应力及其对铣削变形影响的基础研究:[博士学位论文].南京:南京航空航天大学,2005.
    [47]王树宏,左敦稳,黎向锋,等.预拉伸铝合金厚板7050T7451内部残余应力分布测试理论及试验研究.应用科学学报,2005,23(2):192-195.
    [48]郭魂,左敦稳,王树宏,等.铝合金预拉伸厚板内残余应力分布的测量.华南理工大学学报(自然科学版),2006,34(2):33-36.
    [49]吴运新,廖凯.铝合金厚板拉伸过程横向残余应力消减分析.材料工程,2009,(10):45-48.
    [50]廖凯,吴运新,龚海,等.积分法在铝合金厚板残余应力计算中的应用.中国有色金属学报,2009,19(6):1006-1011.
    [51]龚海,吴运新,廖凯.预拉伸对7075铝合金厚板残余应力分布的影响.材料热处理学报,2009,30(6):201-205.
    [52]廖凯,吴运新,龚海.基于积分法的铝合金厚板深度残余应力分析.中南大学学报(自然科学版),2010,41(1):179-183.
    [53]廖凯,吴运新,龚海,等.铝合金厚板淬火-预拉伸应力预测与测试.中国有色金属学报,2010,20(10):1901-1906.
    [54]王光宇,吴运新,闫鹏飞,等.试样尺寸对淬火铝合金厚板残余应力的影响.材料热处理学报,2011,32(4):149-153.
    [55]张延成,巩亚东,孙维堂.预拉伸铝合金厚板内部残余应力分布测试研究.组合机床与自动化加工技术,2007,(4):18-21.
    [56]朱伟,彭大暑,张辉,等.7075铝合金厚板淬火残余应力消除工艺的研究.湘潭大学自然科学学报,2002,24(1):75-78.
    [57]Prime M B, Hill M R. Residual stress,stress relief,and inhomogeneity in aluminum plate. Scripta Materialia,2002,46:77-82.
    [58]Xiao B W, Li K Y, Wang Q G, et al. Numerical simulation and experimental validation of residual stresses in water-quenched aluminum alloy castings. Journal of Materials Engineering and Performance,2011,20(9):1648-1657.
    [59]Xiao B W, Rong Y M, Li K Y. Experimental investigation of residual stresses in water and air quenched aluminum alloy castings. In:Proulx T., eds. Indianapolis, Indiana:the SEM Annual Conference. Society for Experimental Mechanics,2011. 193-199.
    [60]Fink W L, Willey LA. Quenching of 75 S aluminum alloy. Transactions of the American Institute of Mining and Metallurgical Engineers,1948,175:414-427.
    [61]Evancho J W, J. T. Staley. Kinetics of Precipitation in Aluminum Alloys During Continuous Cooling. Metallurgical and Materials Transactions B,1974,5(1):43-47.
    [62]Dolan G P, Robinson J S. Residual stress reduction in 7175-T73,6061-T6 and 2017A-T4 aluminium alloys using quench factor analysis. Journal of Materials Processing Technology,2004,153-154:346-351.
    [63]Rasouli Y S, Retraint D, Lu J. Study of through-thick-ness residual stress by numerical and experimental tech-niques. J Strain Analysis,1998,33(6):449-458.
    [64]Tanner D A, Robinson J S. Modelling stress reduction techniques of cold compression and stretching in wrought aluminium alloy products. Finite Elements in Analysis and Design,2003,39(5/6):369-386.
    [65]毛翔.铝合金预拉伸板残余应力的有限元数值模拟计算.轻金属,1999,(5):50-52.
    [66]辜蕾钢.铝合金厚板预拉伸及淬透性研究:[博士学位论文].重庆:重庆大学,2004,
    [67]辜蕾钢,汪凌云,刘饶川.铝合金厚板预拉伸过程分析.轻合金加工技术,2004,32(4):27-29.
    [68]赵丽丽,张以都.预拉伸板轧制-拉伸残余应力的计算机仿真.北京航空航天大学学报,2004,30(7):606-609.
    [69]董辉跃,柯映林,孙杰,等.铝合金厚板淬火残余应力的有限元模拟及其对加工变形的影响.航空学报,2004,25(04):429-432.
    [70]柯映林,董辉跃.7075铝合金厚板预拉伸模拟分析及其在淬火残余应力消除中的应用.中国有色金属学报,2004,14(4):639-645.
    [71]张园园,吴运新,李丽敏,等.7075铝合金预拉伸板淬火后残余应力的有限元模拟.材料热处理技术,2008,37(14):88-91.
    [72]Koc M, Culp J, Altan T. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes. Journal of Materials Processing Technology,2006,174:342-354.
    [73]闰鹏飞,吴运新,廖凯.切割对铝合金厚板残余应力分布影响的仿真与分析.中南大学学报(自然科学版),2010,41(6):2213-2217.
    [74]廖凯,吴运新,龚海.淬火铝合金厚板预拉伸变形区域仿真与分析.材料热处理学报,2009,30(2):198-202.
    [75]龚海.铝合金厚板内应力演变规律及残余应力场评估模型研究:[博士学位论文].长沙:中南大学,2011.
    [76]Gong H, Wu Y X, Liao K. Prediction model of residual stress field in aluminum alloy plate. J. Cent. South Univ. Technol.,2011,18:285-289.
    [77]Robinson J S, Cudd R L, Tanner D A, et al. Quench sensitivity and tensile property inhomogeneity in 7010 forgings. Journal of Materials Processing Technology,2001, 119:261-267.
    [78]张新明,韩念梅,刘胜胆,等.7050铝合金厚板织构、拉伸性能及断裂韧性的不均匀性.中国有色金属学报,2010,20(2):202-208.
    [79]廖凯.铝合金厚板淬火-预拉伸内应力形成机理及其测试方法研究:[博士学位论文].长沙:中南大学,2010.
    [80]Dejong H. Thickness direction inhomogeneity of mechanical properties and fracture toughness as observed in aluminium 7075-T651 plate material. Engineering Fracture Mechanics,1980,13:175.
    [81]肖代红,王健农,丁冬雁.预拉伸处理对Al-5.3Cu-0.8Mg-0.3Ag合金性能和时效过程影响.热加工工艺,2003,(4):1-5.
    [82]Drucker D C. Some Implications of Work Hardening and Ideal Plasticity. Quarterly Journal of Applied Mathematics,1950,7(4):411-418.
    [83]Casey J, Naghdi P M. On the characterization of strain-hardening in plasticity. ASME Journal of Applied Mechanics,1981,48:285-296.
    [84]Casey J, Naghdi P M. On the nonequivalence of the stress space and strain space formulations of plasticity theory. ASME Journal of Applied Mechanics,1983,50(2): 350-354.
    [85]Naghdi P M, Trapp J A. The significance of formulating plasticity theory with reference to loading surfaces in strain space. International Journal of Engineering Science,1975,13(9-10):785-797.
    [86]Yoder P J, Iwan W D. On the formulations of strain space plasticity with multiple loading surfaces. ASME Journal of Applied Mechanics,1981,48(4):773-778.
    [87]Lu P F, Vaziri R. The equivalence of stress-and strain-based plasticity theories. Computer Methods in Applied Mechanics and Engineering,1997,147(1-2): 125-138.
    [88]夏旺民,郭金晓,郭增玉.应变空间Q1黄土的弹塑性本构模型.岩石力学与工程学报,2004,23(24):4147-4150.
    [89]梁立孚,周平,冯晓九.应变空间中一般加载规律的弹塑性本构关系.哈尔滨工业大学学报,2009,141(12):187-189.
    [90]Farahat A M, Kawakami M, Ohtsus M. Strain-space plasticity model for the compressive hardening-softening behaviour of concrete. Construction and Building Materials,1995,9(1):45-59.
    [91]Han D J, Chen W F. Strain-space plasticity formulation for hardening-softening materials with elastoplastic coupling. International Journal of Solids and Structures, 1986,22(8):935-950.
    [92]陈惠发,萨里普A F.混凝土和土的本构方程,余天庆,王勋文,刘西拉,韩大建.北京:中国建筑工业出版社,2004.247.
    [93]钟祖良.Q_2原状黄土本构模型及其在隧道工程中的应用研究:[博士学位论文].重庆:重庆大学,2008.
    [94]Lee H T, Shaue G H. The thermomechanical behavior for aluminum alloy under uniaxial tensile loading. Materials Science and Engineering A,1999,268:154-164.
    [95]Abotula S, Chalivendra V B. An experimental and numerical investigation of the static and dynamic constitutive behaviour of aluminium alloys. J. Strain Analysis, 2010,45:555-565.
    [96]Zhu H X. Large deformation pure bending of an elastic plastic power-law-hardening wide plate:Analysis and application. Int. J. Mech. Sci.,2007,49:500-514.
    [97]Collie G J, Higgins R J, Black I. Modelling and predicting the deformed geometry of thick-walled pipes subjected to induction bending. Proc. IMechE, Part L:J. Materials:Design and Applications,2010,224:177-189.
    [98]罗文波.宽板塑性弯曲成形过程中的板厚变化规律.力学与实践,2004,26(3):46-47.
    [99]贺广零,罗文波,卢晋福,等.宽板弯曲成形过程中的板厚变化规律.北京联合大学学报(自然科学版),2006,20(63):27-29.
    [100]海朝智.LY12合金预拉伸厚板残余应力的研究.轻合金加工技术,1995,23(1):15-18.
    [101]刘春燕,邱义伦,王斌.2A12铝合金热处理工艺研究.热处理,2008,23(5):59-61.
    [102]李小强,李东升,周贤宾,等.预变形对LY12铝合金板热处理后晶粒度的影响.材料科学与工艺,2010,18(2):238-241.
    [103]刘君城,张永安,刘红伟,等.基于末端淬火试验2124铝合金的淬透性.中国有色金属学报,2010,20(11):2118-2123.
    [104]Clausen B, Prime M B, Kabra S, et al. Residual Stress and Plastic Anisotropy in Indented 2024-T351 Aluminum Disks. In:Proceedings of the SEM Annual Conference June 1-4. Albuquerque, New Mexico:Society for Experimental Mechanics,2009.
    [105]Liljedahl C D M, Brouard J, Zanellato O, et al. Weld residual stress effects on fatigue crack growth behaviour of aluminium alloy 2024-T351. International Journal of Fatigue,2009,31(6):1081-1088.
    [106]Zaroog O S, Ali A, Sahari B B, et al. Modeling of residual stress relaxation of fatigue in 2024-T351 aluminium alloy. International Journal of Fatigue,2011,33(2): 279-285.
    [107]Brown K R. Factors influencing the fracture toughness of high strength aluminum alloys. In:Gifkins R C, eds. Proceedings of the 6th International Conference: Strength of Metals and Alloys (ICSMA 6).Melbourne, Australia:Pergamon Press, 1983.
    [108]Chakrabarti D J, Murray J L. Eutectic Melting in Al-Cu-Mg-Si Alloys. Material Science Forum,1996,217-222:177-182.
    [109]Chakrabarti D J, Weiland H, Cheney B A, et al. Through Thickness Property Variations in 7050 Plate. Materials Science Forum,1996,217-222:1085-1090.
    [110]王国军,熊柏青,张永安,等.2D70铝合金淬透性研究.稀有金属,2009,33(3):304-308.
    [111]Jr R C, Coughran B, Traina I, et al. On the correlation of mechanical and physical properties of 7075-T6 Al alloy. Engineering Failure Analysis,2005,12:520-526.
    [112]Salazar-Guapuriche M A, Zhao Y Y, Pitman A, et al. Correlation of Strength with Hardness and Electrical Conductivity for Aluminium Alloy 7010. Materials Science Forum,2006,519-521:853-858.
    [113]Oppenheim T, Tewfic S, Scheck T, et al. On the correlation of mechanical and physical properties of 6061-T6 and 7249-T76 aluminum alloys. Engineering Failure Analysis,2007,14:218-225.
    [114]Chen W F, Saleeb A F, Elasticity and Plasticity. Beijing:China Architecture & Building Press,2005.346.
    [115]陈惠发,萨里普A F.弹性与塑性力学,余天庆,王勋文,刘再华.北京:中国建筑工业出版社,2003.216-269.
    [116]陈明祥.弹塑性力学.北京:科学出版社,2007.204-278.
    [117]毋玲,孙秦,郭英男.含点蚀损伤70752T6铝合金拉伸性能数值模拟.机械强度,2008,30(5):794-797.
    [118]杨勇,柯映林,董辉跃.7050航空铝合金“单因素”本构模型参数与温度相关性研究.航空材料学报,2007,127(14):19-24.
    [119]黄文彬,曾国平.弹塑性力学难题解析.北京:高等教育出版社,1998:70.
    [120]Lorimer G W. Precipitation in Al alloys. In:Russel K C and Aaronson H I, eds. AIME Conference Proceedings. Warrandle.1981.87.
    [121]Polmear I J. Aluminium Alloys-A Century of Age Hardening. In:Nie J F, Morton A J and Muddle B C, eds. Australasia:MATERIALS FORUM, Institute of Materials Engineering Australasia Ltd.,2004.1-14.
    [122]Mitchell I. Residual Stress Reduction During Quenching of Wrought 7075 Aluminum Alloy:[Master's Thesis]. Worcester:Worcester Polytechnic Institute, 2004
    [123]吴瑞豪,冯敏.B-757飞机铝合金零件聚合物淬火.金属热处理,2001,(1):48-50.
    [124]Evancho J W, Staley J T. Kinetics of precipitation in aluminum alloys during continuous cooling. Metallurgical and Materials Transactions B,1974,5:43-47.
    [125]宋旼,肖代红,陈康华.铝合金时效硬化模型的研究进展.粉末冶金材料科学与工程,2007,12(5):259-263.
    [126]Shercliff H R, Ashby M F. A process model for age hardening of aluminum alloys.1. The model. Acta Metall Mater,1990,38(10):1789-1902.
    [127]Shercliff H R, Ashby M F. A process model for age hardening of aluminum alloys.2. Application of the model. Acta Metall Mater,1990,38(10):1803-1812.
    [128]Deschamps A, Brechet Y. Influence of predeformation and aging of an Al-Zn-Mg alloy.1. Microstructure evolution and mechanical properties. Acta Mater,1999, 47(1):281-292.
    [129]Deschamps A, Brechet Y. Influence of predeformation and aging of an Al-Zn-Mg alloy.2. Modeling of precipitation kinetics and yield strength. Acta Mater,1999, 47(1):293-305.
    [130]Liu G, Zhang G J, Ding X D, et al. Modeling the strengthening response to aging process of heat-treatable aluminum alloy containing plate/disc- or rod/needle-shaped precipitates. Mater Sci Eng A,2003,344(1):113-124.
    [131]Senkov O N, Senkova S V, Shagiev M R. Effect of Sc on aging kinetics in a direct chill cast Al-Zn-Mg-Cu alloy. Metallurgical and Materials Transactions A,2008,39: 1034-1053.
    [132]Panigrahi S K, Jayaganthan R. Effect of ageing on microstructure and mechanical properties of bulk, cryorolled, and room temperature rolled Al7075 alloy. Journal of Alloys and Compounds,2011,509:9609-9616.
    [133]Ringer S P, Sakurai T, Polmear I J. Origins of hardening in Al-Cu-Mg-(Ag) alloys. Acta Mate,1997,45(9):3731-3744.
    [134]李志辉,熊柏青,张永安,等.7B04铝合金的时效沉淀析出及强化行为.中国 有色金属学报,2007,17(2):248-253.
    [135]Wei B C, Chen C Q, Huang Z, et al. Aging behavior of Li containing Al-Zn-Mg-Cu alloys. Materials Science and Engineering A,2000,280:161-167.
    [136]吴海宏,邓鹏辉,张世兴,等.铝合金时效强化的实验研究及屈服强度计算.材料热处理学报,2009,30(4):85-88.
    [137]李志辉,熊柏青,张永安,等.热处理对7B04铝合金厚板组织与力学性能的影响.特种铸造及有色合金,2007,27(6):427-430.
    [138]Deschamps A, Brechet Y. Influence of quench and heating rates on the ageing response of an Al-Zn-Mg-(Zr) alloy. Materials Science and Engineering A,1998, 251:200-207.
    [139]Thevenet D, Mliha-Touati M, Zeghloul A. The effect of precipitation on the Portevin-Le Chatelier effect in an Al-Zn-Mg-Cu alloy. Materials Science and Engineering A,1999,266:175-182.
    [140]Srivatsan T S, Jr E J C. Effect of ageing on the elastic modulus of an Al-Li-Mn alloy. Journal of Materials Science Letters,1987,6:453-455.
    [141]Becker E, Heyroth W. Behaviour of young's modulus of AlZnMg alloys during homogeneous decomposition. Physica Status Solidi (A),1987,100:485-492.
    [142]胡永会,吴运新,陈磊,等.X射线法测量淬火铝合金厚板表面残余应力.中国材料进展,2011,30(2):51-55.
    [143]郭俊康,吴运新,胡永会.X射线衍射法在测量铝合金厚板表面残余应力中的应用.轻合金加工技术,2010,38(4):31-55.
    [144]袁望姣,吴运新.基于预拉伸工艺的铝合金厚板残余应力消除机理.中南大学学报(自然科学版),2011,42(8):2303-2308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700