用户名: 密码: 验证码:
新型医用β钛合金的设计、制备及其固溶时效行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金凭借其优良的生物相容性和力学性能,逐渐取代不锈钢和CoCrMo等传统的生物医用金属材料,已被广泛用作人工关节、脊柱矫形内固定系统、牙科植体等医用内植入材料。而相对于纯钛和传统的α+p型医用钛合金,p型医用钛合金具有更低的弹性模量,更加优异的生物相容性以及耐蚀性能,因此受到越来越多的关注,已成为当前研究的热点。
     本文利用第一性原理对Ti-Nb二元合金的能量、电子结构及弹性性质进行了计算,并结合d-电子理论和平均价电子浓度等设计理论与方法,设计了无毒低模量的Ti-25Nb-10Ta-1Zr-0.2Fe(TNTZF, wt.%)新型生物医用p钛合金;采用真空自耗电弧熔炼技术制备了TNTZF合金,利用光学显微镜(OM)、扫描电子显微镜(SEM)、差热分析仪(DSC)、X射线衍射仪(XRD)、透射电镜(TEM)、X射线光电子谱(XPS)等分析手段,对TNTZF合金的时效析出行为、ω相的析出长大动力学、冷变形行为进行了研究,并对合金的拉伸、冲击以及耐蚀性能进行了表征与评价,分析了合金微观结构演变对性能的影响,并对合金的时效析出规律、冷变形机制、断裂及耐蚀机理进行了深入的探讨。主要结论如下:
     (1)利用第一性原理方法对Ti-Nb二元合金的能量、β结构稳定性和弹性性质进行了计算。结果表明随着Nb含量的增加:合金的内聚能不断升高,正方剪切常数C'不断增加,β结构稳定性逐渐增强,体模量B不断上升,剪切模量G和弹性模量E则呈现先上升后降低的趋势。当Nb含量>12.5at.%时,Ti-Nb二元合金能够以p结构稳定存在;当Nb含量为12.5~25at.%时,正方剪切常数C'大于并接近于零,此时价电子浓度e/a处于4.125~4.25范围内,合金的弹性模量E最低约为45~46GPa。对Ti-25at.%Nb合金中β相、α"相和ω相的结构稳定性进行了计算,得到p相、α"相和ω相的内聚能分别为5.7046、5.7305和5.726leV·atom-1,说明α"相的结构稳定性最高,p相的结构稳定性相对最低。同时根据第一性原理的计算结果并结合d-电子理论和平均价电子浓度等理论,设计了无毒低模量的Ti-25Nb-10Ta-1Zr-0.2Fe(TNTZF, wt.%)新型生物医用β钛合金。
     (2)采用真空自耗电弧熔炼技术制备了TNTZF合金,并对TNTZF合金的时效行为进行了研究。合金经过800℃/lh固溶淬火后主要由过冷p、α"马氏体以及少量淬火ωOath组成,在时效初期,亚稳p与α"发生分解并向α相转变,ω相先与α相竞争长大,最后分解转变成α相,合金最终获得p+α平衡组织。时效早期α相优先在ω/β相界处形核,消耗ω相长大,随着时效时间的延长,α相开始在p晶界处形核,并向晶内生长。α相的形核和长大受溶质原子长程扩散控制,长大速度受扩散速率所控制。合金的时效析出序列与温度的关系如下:较低温度(350℃以下)为:p+α"+ωath→β+ωiso→ωiso+α→β+α;中间温度(400-500℃)为:β+α"+ωath→β+ωiso+α→β+α;较高温度(500℃以上)为:p+α"+ωath→β+α.合金在中间温度(400℃和470℃)时效表现出强烈的时效硬化效应,而在较低(350℃)和较高(500℃)温度下时效表现出较弱的时效硬化效果。
     (3)利用DSC和TEM两种手段,对ω相的析出长大动力学行为进行了研究。TNTZF固溶态合金在5-40℃/min的连续升温过程中,随着升温速率的提高,ω相对应的析出峰值温度向高温方向移动;其析出体积分数曲线和析出速率曲线也都表现出向高温方向移动的趋势;利用Kissinger方法计算得到合金在连续升温过程中ω相变激活能为355.1kJ/mol。TNTZF合金在350、400和470℃下等温时效不同时间后,ω相的晶粒生长符合抛物线规律,其生长动力学指数n分别为0.23、0.25和0.26;利用Burke-Turnbull动力学模型,计算得到ω相的晶粒长大激活能为119.7kJ/mol,并建立了ω相的晶粒尺寸D与时效时间t和温度T之间的动力学方程:D4-D04=4.3×1013·t·exp(-119.7/RT)。
     (4)合金经900℃/1h固溶后获得等轴β单相组织,抗拉强度为697MPa,弹性模量为75GPa,伸长率为34%。合金在150-450℃温度范围时效,脆性ω相的析出不但引起弹性模量的大幅提高,还导致强度、塑性和韧性急剧下降,尤其是在400和450℃温度下时效后ω相的体积分数超过50%,此时合金的塑性几乎为零,变成完全脆性的材料。合金在550℃下时效,随着时效时间的延长,α相的体积分数不断增加,合金的屈服强度和抗拉强度都呈现出先升高后降低的趋势,两者均在α相体积分数为21.4%(时效1h)时达到最大值,分别为696MPa和876MPa。弹性模量随着α相体积分数的增加呈逐渐增加的趋势,伸长率则先快速降低,在α相体积分数达到13.6%(时效30min)后缓慢下降。
     (5)900℃/1h固溶态合金的冲击韧性为58.7J/cm2。在400℃温度下时效5min-72h后,合金的冲击韧性几乎均为零。在550℃下时效5min-72h,合金的冲击韧性随着时效时间的延长而降低,时效24h后基本稳定在18~20J/cm2。固溶态冲击试样的断口特征为韧窝断裂;400℃时效态试样呈完全脆性断裂,断裂模式为沿晶+解理的混合断裂;合金在550℃下时效后的断裂机理均为韧性断裂,断裂机理随着时效时间的延长发生变化,由韧窝断裂逐渐向韧窝+沿晶混合断裂类型转变。
     (6)TNTZF合金锻造态和900℃/1h固溶态试样的冲击疲劳寿命均为17600次左右。在400℃下时效5min后,冲击疲劳寿命就降低了~70%,之后随着时效时间的延长,冲击疲劳寿命不断降低,时效72h之后仅为~450次。在550℃下时效后的冲击疲劳寿命也大致呈现逐渐下降的趋势,但是要明显高于400℃下时效的合金试样。在550℃下时效24h后合金的冲击疲劳寿命基本保持在3500~3700次的范围内。固溶态试样的冲击疲劳断裂以穿晶方式进行,裂纹扩展区存在许多的准解理小平面以及疲劳条带和二次裂纹,瞬断区存在大量的韧窝。400℃时效态合金的疲劳断裂机制为解理+沿晶脆性断裂混合模式。550℃下早期时效,合金的疲劳断裂机制较固溶态试样没有发生明显变化,经过72h长时间时效后,瞬断区的断裂模式由韧窝+疲劳条带的混合断裂转变为沿晶韧窝断裂。
     (7)与其他热处理状态相比,TNTZF合金经过550℃/30min时效处理之后,获得较好的综合力学性能:屈服强度为615MPa,抗拉强度为804MPa,弹性模量为72GPa,伸长率为9%,冲击韧性为35.8J/cm2,冲击疲劳寿命为13468次,满足生物医用钛合金所需要的高强度、低模量和良好塑韧性的匹配。
     (8)TNTZF合金的主导变形机制随着变形量的增加,逐渐从应力诱发α"马氏体相变、位错滑移向孪晶、剪切带以及结构纳米化转变,同时,合金中{111}<110>织构逐渐转向再结晶织构{111}<112>,当变形量达到80%时,{111}<112>成为主导。随着变形量的增加,合金中的位错密度不断升高,晶粒不断被细化,合金的强度和硬度不断提高;弹性模量则随着变形量的增加不断降低,这主要归因于变形过程中应力诱发马氏体相变以及脆性ω相的消失的共同作用。与30%CR和80%CR合金试样相对比,60%CR合金试样具有较高的强度(屈服强度为787MPa,抗拉强度为1213MPa),较低的弹性模量(68GPa)、适中的伸长率(7.8%)以及最高的强模比(17.8×10-3)。
     (9)与Ti-6A1-4V ELI合金相比,TNTZF合金在Ringer's溶液中表现出更高的腐蚀电位、更低更稳定的钝化电流密度以及更宽的钝化电位区间,并且合金试样表面没有观察到像Ti-6A1-4V ELI合金那样的点蚀现象,表明TNTZF合金具有更加优异的抗腐蚀性能。这归因于TNTZF合金表面形成了一层主要由TiO2、 Nb2O5、NbO2、Ta2O5和Zr02组成的钝化膜,比Ti-6A1-4V ELI合金的钝化膜(主要成分为TiO2、A12O3、V2O3)更加稳定。冷轧变形之后,TNTZF合金内部产生高密度的位错、应变集中区以及应力诱发α"马氏体相变,加快了合金的腐蚀速率,合金的耐蚀性能下降。TNTZF合金经过时效处理后析出第二相粒子降低了合金的抗腐蚀性能,并且随着时效温度的升高,耐蚀性能不断下降。
Comparing with the conventional stainless steels and cobalt-based alloys, titanium and its alloys exhibit more suitable characteristics for biomedical applications due to their excellent biocompatibility and mechanical property. They are widely used as repair and replacement materials for implants such as artificial hip joints, orthopedics and dentistry, etc. β type titanium alloys generally can be processed lower elastic modulus, superior biocompatibility and better corrosion resistance as compared to those of a and a+P types, which attract more and more attentions and become a hot topic in present research.
     The energetic, electronic structure and elastic property of Ti-Nb binary alloys were calculated by the first-principles method. Based on the calculated results and combined with other design theories, such as d-electronic theory and the average valence electron concentration method, a new β titanium alloy with non-toxic and low modulus for biomedical applications------Ti-25Nb-10Ta-1Zr-0.2Fe (TNTZF, wt.%) was designed. TNTZF alloy was prepared by vacuum self consumable arc melting techniques. By means of optical microscope (OM), X-ray diffraction(XRD), scanning calorimetry (DSC), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and tensile tester, impact toughness machine, impact fatigue tester and electrochemical workstation, the ageing precipitation behavior, precipitation and grain growth kinetics of ω phase and cold deformation behavior of TNTZF alloy were studied, and the tensile, impact and corrosion resistant performances were evaluated. The rule of ageing precipitation and the mechanisms of cold deformation, fracture and corrosion resistant were discussed deeply. The main results are summarized as follows.
     (1) The energetic, electronic structure and elastic property of Ti-Nb binary alloys were calculated by the first-principle method. With increasing Nb content, the cohesive energy, tetragonal shear constant C',β phase stability and bulk modulus of Ti-Nb alloys increase, shear modulus and elastic modulus increase firstly followed by decreasing. When the Nb content is more than12.5at.%, the alloy achieves the lowest β phase stability. When the Nb content in the range of12.5-25at.%, the value of C' reaches nearly zero from positive, meanwhile the average valence electron concentration e/a lies in the range of4.125-4.25, the alloy achieves the minimum elastic modulus of about45-46GPa. The phase stability of β,α" and co phases in the Ti-25at.%Nb alloy was calculated. The cohesive energies of β,α" and co phases are 5.7046,5.7305and5.7261eV-atom-1showing that among β,α and ω phases, the phase stability of a" phase is the highest and that of β phase the lowest. Based on these calculated results and combined with other design theories, such as d-electronic theory and the average valence electron concentration method, a new β titanium alloy------Ti-25Nb-10Ta-1Zr-0.2Fe (TNTZF, wt.%) for biomedical applications was designed.
     (2) TNTZF alloy was prepared by vacuum self consumable arc melting techniques, and the ageing behavior was studied. The results showed that martensite a" and a small amount of athermal ω phase were observed in the β matrix after solution treatment at800℃for1h. At the early stage of aging, metastable β and a" decomposed, ωiso firstly competed to grow with a phase, and then dissolved and transformed into a phase, a stable β+α microstructure was obtained finally, a precipitates nucleated at ω/β interfaces preferentially at the early stage and growed up by consuming co phase. Along with the aging time increase, a started to nucleate from β grain boundary, and growed inside to β grain. The nucleation and growth of a phase were controlled by long-range diffusion of solute atoms, the growth seep was diffusion rate-controlled. The relationship between aging precipitation sequence and aging temperature is as follows:P+a"+ωath→P+ωiso→βP+ωiso+α→β+α at350℃; β+α"+ωath→β+ωiso+α→β+α at400-500℃; β+α"+ωath→β+α above500℃. The alloy showed stronger age-hardening response at intermediate temperatures of400℃and470℃, while exhibited weaker age-hardening response at lower temperature of35O℃and higher temperature of500℃.
     (3) By means of DSC and TEM methods, the kinetic behavior of co precipitation and growth was studied. During continuous heating at the speed in the range of5-40"C/min, the peak of co precipitation temperature of solution treated TNTZF alloy shifted to high temperature, the curve of ω precipitation volume fraction and rate shifted to high temperature. The activation energy for co phase transformation during continuous heating was calculated to be355.1kJ/mol by Kissinger method. The grain growth of ωiso obeys an asymptotic law, the grain-growth exponents, n, were computed to be0.23,0.25and0.26for350,400and470℃, respectively. According to Burke-Turnbull model, the activation energy for coiso grain growth,Qg was calculated to be119.7kJ/mol, and a kinetic equation describing the relationship between grain size of co phase and aging time and temperature was constructed as follows:D4-D4=4.3×1013·f·exp(-119.7/RT).
     (4) TNTZF alloy after solution treatment at900℃for1h and quenching has a microstructure of typical equiaxed β grains, tensile strength of697MPa, elastic modulus of75GPa and elongation-34%. After aging at the temperature in the range of150-450℃, the elastic modulus of the alloy increased greatly, the strength, plasticity and toughness dropped sharply due to the precipitation of brittle ω phase. The volume fraction of ω precipitate to be above50%after aging at400℃and450℃lea to the plasticity nearly zero, the alloy became completely brittle. When aged at550℃, with increasing aging time, the volume fractions of a phase increased gradually, the yield and tensile strengths increased firstly and achieved the maximum after24h aging of696MPa and876MPa, respectively. The elastic modulus showed a increasing tend with aging time, the elongation first dropped sharply and followed by a slowly decrease after aging for30min.
     (5) TNTZF alloy after solution treatment at900℃for1h has the highest impact toughness of58.7J/cm2. After aging at400℃for5min-72h, the impact toughness dropped sharply and nearly zero. When aging at400℃for5min-72h, impact toughness of the alloy decreased gradually with increasing aging time, after24h aging, impact toughness nearly stable approximately18-20J/cm. The fracture analysis shows that a ductile fracture surface morphology with lots of dimples was observed in the solution treated sample. A completely brittle fracture morphology was seen in the alloy aged at400℃with a intergranular and cleavage mixed failure mode. The fracture mechanism for the alloy aged at550℃are ductile type, but it changed form dimple type to dimple and intergranular mixed failure mode along with aging time.
     (6) As-forged and ST samples have the impact fatigue life for about17600times. When aging at400℃only for5min, the impact fatigue life decreased by-70%. After that, it fell down furtherly with aging time and to only450times after72h aging. The impact fatigue lifes of the samples aged at550℃are higher than that of400℃, although it also decreased with increasing aging time. It remains about3500to3700times after24h aging. Considerable quasi-cleavage facets and fatigue strips as well as secondary cracks were observed on the crack propagation zone, and equiaxed dimples are observed on the fast fracture surface of ST alloy. The fatigue surface of the alloy aged at400℃showed a brittle fracture morphology with a mixed mode of cleavage and intergranular. The fracture mechanism of the alloy aged at550℃for1h was similar to that of ST alloy. After72h long time aging, the characteristics of fast fracture surface tend to transform from dimples and fatigue strips mixed mode to intergranular dimple type.
     (7) Compared with the ST samples and the aged samples which aging treated among150-550℃for different times, the sample aged at550℃for30min showed better comprehensive mechanical properties. Since it with a yield strength of615MPa, a tensile strength of804MPa, elastic modulus of72GPa, elongation of9%, impact toughness of35.8J/cm2, and impact fatigue life about13468times. It can meet matching of high strength, low modulus, appropriate plasticity and toughness for biomedical applications.
     (8) The results showed that the dominant deformation mechanisms changed from stress-induced a" martensitic transformation and dislocation tangles to twinning, shear bands and nanostructuring with the increase of cold reduction. Meanwhile, the transition from{111}<110> to{111}<112> orientation took place during CR and a dominant{111}<112> texture was obtained after80%cold deformation. The hardness and strength increased with the increase of cold reduction owing to the effects of the increase of dislocation density and the grain refinement caused by cold deformation. The decrease in Young's modulus after CR was mainly attributed to the stress-induced a" martensitic transformation accompanying with the disappearance of co phase. Compared with30%CR and80%CR samples, the60%CR sample possesses higher strengths (yield strength:787MPa, tensile strength:1213MPa), appropriate plasticity (7.8%) and the highest strength-to-modulus ratio (17.8×10'3).
     (9) TNTZF alloy has higher corrosion potential, lower corrosion current density, more stable passive current densities and wider passive region compared with Ti-6A1-4V ELI, which indicates that TNTZF alloy possesses much better corrosion resistance. In addition, pitting corrosion is observed on the surface passive film of Ti-6A1-4V ELI alloy but is not found on that of TNTZF alloy. XPS analysis results reveal that the passive film formed on TNTZF alloy is composed of Nb2O5, NbO2, Ta2O5, ZrO2, TiO and Ti2O3oxides in the matrix of TiO2, it makes the passive film more stable and protective than that of Ti-6A1-4V ELI which consisted of TiO Al2O3、V2O3. The alloy after cold rolling shows inferior corrosion resistance due to its high density of dislocation and strain concentration and stress-induced a" martensitic transformation. Precipitation of ω or a phase in the alloy after aging led to decrease of corrosion resistance compared with the ST alloy.
引文
[1]C.M. Agrawal. Reconstructing the human body using biomaterials[J]. JOM Journal of the Minerals, Metals and Materials Society,1998,50:31-35.
    [2]M. Geetha, A.K. Singh, R. Asokamani, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Progress in Materials Science, 2009,54:397-425.
    [3]黄伯云,李成功,等.中国材料工程大典第4卷有色金属材料工程(上)[M].北京:化学工业出版社,2005,p503.
    [4]王金友,葛志明,周彦邦.航空用钛合金[M].上海:上海科学技术出版社,1985.
    [5]C.莱茵斯,M.皮特尔斯.陈振华等译.钛与钛合金[M].北京:化学工业出版社,2005.
    [6]M. Ninomi, D. Kuroda, K. Fukunaga, et al. Corrosion wear fracture of new β type biomedical titanium alloys [J]. Materials Science and Engineering A,1999, 263:193-199.
    [7]M. Semlitsch. Titanium alloys for hip joint replacements [J]. Clinical Materials, 1987,2:1-13.
    [8]GS. Leventhal. Titanium, a metal for surgery [J]. The Journal of Bone and Joint Surgery,1951,33A:473-474.
    [9]K. Wang. The use of titanium for medical application in the USA [J]. Materials Science and Engineering A,1996,213:134-137.
    [10]M. Long, H.J. Rack. Titanium alloys in total joint replacement------a materials science perspective [J]. Biomaterials,1998,19:1621-1639.
    [11]P. Laing, A. Fergosun, E. Hodge. Tissue reaction in rabbit muscle exposed to matellic implants [J]. Journal of Biomedical Materials Research,1967(1): 135-149.
    [12]R. Zwicker, K. Buehler, R. Mueller, et al. Mechanical properties and tissue reactions of a titanium alloy for implant material[C]. Titanium'80:Science and Technology, Proc.4th Int. Conf. on Titanium, Kyoto,1980, p.505-514.
    [13]M. Semlitsch, H. Weber, R. Steicher, et al. Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy [J]. Biomaterials,1992, 13(11):781-788.
    [14]M. Semlitsch, F. Staub, H. Webber. Titanium-aluminmn-niobium alloy, development for biocompatible, high strength surgical implants [J]. Biomedizinische Technik, 1985,30:334-339.
    [15]E. Cheal, M. Spector, W. Hayes. Role of loads and prostheses material properties on the mechanics of the proximal femur after total hip arthroplasty[J]. Journal of Orthopaedic Research,1992,10:405-422.
    [16]R. Huiskes, H. Weinans, B. Riebergen. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials[J]. Clinical Orthopaedics & Related Research,1992,274:124-134.
    [17]D. Sumner, L. Gustavson, J. Dumbleton. The characterization of Ti-12Mo-6Zr-2Fe------a new alloy developed for surgical impants[C]. Beta titanium alloys in the 1990'. Warrendale, PA:TMS-AIME,1993, p.49-60.
    [18]M. Morinaga, M. Kato, T. Kamimura, et al. Theoretical design of β-type titanium alloys[C]. Titanium 1992', Science and Technology, Proc.7th Int. Conf. on Titanium, San Diego,CA,USA,1992, p.276-283.
    [19]A.K. Mishra, J.A. Davidson, P. Kovacs, et al. Ti13Nb13Zr:A new low modulus, high strength, corrosion resistant, near beta alloy for orthopaedic implants[C]. Beta titanium in the 1990s. Warrendale, Pennsylvania:The Mineral, Metals and Materials Society,1993, p.61-66.
    [20]K. Wang, L. Gustavson, J. Dumbleton. The characterization of Ti-12Mo-6Zr-2Fe. A new biocompatible titanium alloy developed for surgical implants[C]. Beta titanium in the 1990s. Warrendale, Pennsylvania:The Mineral, Metals and Materials Society,1993, p.2697-2704.
    [21]L.D. Zardiackas, D.W. Mitchell, J.A. Disegi. Characterization of Ti-15Mo beta titanium alloy for orthopaedic implant applications [M]. Medical Applications of Titanium and Its Alloys:the material and biological issues,1994, p.15-16.
    [22]J.C. Fanning. Properties and processing of a new metastable beta titanium alloy for surgical implant applications:TIMETALTM 21SRx[C]. Titanium 95':Science and Technology,1996, p.1800-1807.
    [23]T. Ahmed, M. Long, J. Silvestri, et al. A new low modulus, biocompatible titanium alloy[C]. Titanium 95':Science and Technology, London, UK:IoM, 1995. p.1760-1767.
    [24]M. Niinomi. Mechanical properties of biomedical titanium alloys[J]. Materials Science and Engineering A,1998,243:231-236.
    [25]M. Niinomi, H. Fukui, T. Hattori, et al. Development of high biocompatible titanium alloy[J]. Materia Japan,2002,41(3):221-223.
    [26]N. Sakaguchi, M. Niinomi, T. Akahori, et al. Relationships between tensile deformation behaviors and microstructures of Ti-Nb-Ta-Zr system alloys[J]. Materials Science and Engineering C,2005,25:363-369.
    [27]M. Niinomi. Fatigue performance and cyto-toxicity of lowrigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr[J]. Biomaterials,2003,24:2673-2683.
    [28]Y.L. Hao, M. Niinomi, D. Kuroda, et al. Young's modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to a " martensite[J]. Metallurgical and Materials Transactions A,2002,33:3137-3144.
    [29]Y. Okazaki. Dental casting properties of Ti-15Zr-4Nb-4Ta alloy[J]. Materials Transactions,2002,43:3134-3141.
    [30]T. Saito, T. Furuta, J.H. Hwang, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism [J]. Science,2003,300: 464-467.
    [31]张小明,田锋,殷为宏.“橡胶金属”——一种新型多功能钛合金[J].Ti工业进展,2005,22:5-9.
    [32]Y.L. Hao, S.J. Li, S.Y. Sun, et al. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications [J]. Acta Biomaterialia,2007, 3:277-286.
    [33]于振涛,周廉, 罗丽娟,等.新型近β型医用钛合金TLM的加工,组织与性能[J].稀有金属,2006,02:226-230.
    [34]于振涛,张亚峰,刘辉,等.合金元素,加工与热处理对新型近β型钛合金TiZrMoNb力学性能的影响及微观分析[J].稀有金属材料与工程,2010,39:1795-1801.
    [35]Y. L. Hao,S. J. Li, B. B. Sun, et al. Ductile titanium alloy with low poisson's ratio[J]. Physical Review Letters,2007,98:216405-4.
    [36]J.L. Murray. Phase Diagram of Binary Titanium Alloys[M]. ASM International, Metal Park, OH,1987.
    [37]R. Banerjee, S. Nag, J. Stechschulte, et al. Strengthening mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys[J]. Biomaterials,2004, 3413-3419.
    [38]W.F. Ho. A comparison of tensile properties and corrosion behavior of cast Ti-7.5Mo with cp Ti, Ti-15Mo and Ti-6A1-4V alloys[J]. Journal of Alloys and Compounds,2008,464:580-583.
    [39]S. Kumar, T.S.N.S. Narayanan. Corrosion behaviour of Ti-15Mo alloy for dental implant applications[J]. Journal of dentistry,2008,36:500-507.
    [40]W.F. Ho, C.P. Ju, J.H. Chern Lin. Structure and properties of cast binary Ti-Mo alloys[J]. Biomaterials,1999,20:2115-2122.
    [41]C.M. Lee, C.P. Ju, J.H. Chern Lin. Structure-property relationship of cast Ti-Nb alloys[J]. Journal of Oral Rehabilitation,2002,29:314-322.
    [42]T. Ozaki, H. Matsumoto, S. Watanabe, et al. Beta Ti alloys with low Young's modulus[J]. Materials Transactions,2004,45:2776-2779.
    [43]Y.L. Zhou, M. Niinomi, T. Akahori. Effects of Ta content on Young's modulus and tensile properties of binary Ti-Ta alloys for biomedical applications [J]. Materials Science and Engineering A,2004,371:283-290.
    [44]N. Sakaguchi, M. Niinomi, T. Akahori, et al. Effect of Ta content on mechanical properties of Ti-30Nb-XTa-5Zr[J]. Materials Science and Engineering C,2005, 25:370-376.
    [45]Y.L. Zhou, M. Niinomi. Ti-25Ta alloy with the best mechanical compatibility in Ti-Ta alloys for biomedical applications [J]. Materials Science and Engineering C, 2009,29:1061-1065.
    [46]Y.L. Zhou, M. Niinomi, T. Akahori. Changes in mechanical properties of Ti alloys in relation to alloying additions of Ta and Hf[J]. Materials Science and Engineering A,2008,483-484:153-156.
    [47]Y. Okazaki, Y. Ito, A. Ito, et al. Effect of alloying elements on mechanical properties of titanium alloys for medical implants[J]. Materials Transactions, JIM, 1993,34:1217-1222.
    [48]D.J. Lin, J.H. Chern Lin, C.P. Ju. Structure and properties of Ti-7.5Mo-xFe alloys[J]. Biomaterials,2002,23:1723-1730.
    [49]X. Tang, T. Ahmed, H.J. Rack. Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys[J]. Journal of materials science,2000,35:1805-1811.
    [50]Y. Zhou, Y. Li, X. Yang, et al. Influence of Zr content on phase transformation, microstructure and mechanical properties of Ti75-xNb25Zrx (x=0-6) alloys[J]. Journal of Alloys and Compounds,2009,486(1-2):628-632.
    [51]Y.L. Hao, S.J. Li, S.Y. Sun, et al. Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys [J]. Materials Science and Engineering A, 2006,441:112-118.
    [52]B.L. Wang, Y.F. Zheng, L.C. Zhao. Effects of Sn content on the microstructure, phase constitution and shape memory effect of Ti-Nb-Sn alloys[J]. Materials Science and Engineering A,2008,486:146-151.
    [53]M. Morinaga, M. Kato, T. Kamimura, et al. Titanium 1992s, Science and Technology, Proc.7th Int. Conf. on Titanium, San Diego, CA, USA,1992, p.276-283.
    [54]吴晓东,杨冠军,葛鹏,等.p钛合金及其固态相变的归纳[J].钛工业进展,2008,25:1-6.
    [55]G.M. Pennock, H.M. Flower, D.R.F. West. The control of a precipitation by two-step aging in beta Ti-15%Mo[C]. Titanium'80, Science and Technology, 1980;1343-1351.
    [56]Y. Ohmori, T. Ogo, K. Nakai, et al. Effects of co-phase precipitation on β→α, a" transformations in a metastable β titanium alloy[J]. Materials Science and Engineering A,2001,312:182-188.
    [57]T. Akahori, M. Niinomi, A. Noda, et al. Effect of aging treatment on mechanical properties of Ti-29Nb-13Ta-4.6Zr alloy for biomedical applications[J]. Journal of the Japan Institute of Metals,2006,70:295-303.
    [58]Y. Mantani, M. Tajima, Phase transformation of quenched a" martensite by aging in Ti-Nb alloys[J]. Materials Science and Engineering A,2006, 438-440:315-319.
    [59]常辉,曾卫东,罗媛媛,等.近p型钛合金Ti-B19时效过程中的相变及显微组织[J].稀有金属材料与工程,2006,35:1589-1592.
    [60]J.C. Williams. Critical review:kinetics and phase transformation[C], In:Titanium Science and Technology, Proceeding,1973,3:1433-1494.
    [61]Y.L. Hao, M. Niinomi, D. Kuroda, et al. Aging response of the young's modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr for biomedical applications[J]. Materials Transactions A,2003,34:1007-1012.
    [62]H.Y. Kim, Y. Ikehara, J.I. Kim, et al. Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys [J]. Acta Materialia,2006, 54:2419-2429.
    [63]H.Y. Kim, H. Satoru, J.I. Kim, et al. Mechanical properties and shape memory behavior of Ti-Nb alloys[J]. Materials Transactions,2004,45:2443-2448.
    [64]H.S. Kim, S.H. Lim, I.D. Yeo, et al. Stress-induced martensitic transformation of metastable P-titanium alloy[J]. Materials Science and Engineering A,2007, 449-451:322-325.
    [65]L. Wang, W. Lu, J. Qin, et al. Microstructure and mechanical properties of cold-rolled TiNbTaZr biomedical β titanium alloy [J]. Materials Science and Engineering A,2008,490:421-426.
    [66]X. Zhao, M. Niinomi, M. Nakai, et al. Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications[J]. Acta Biomaterialia,2011,7:3230-3236.
    [67]H. Matsumoto, S. Watanabe, S. Hanada. Microstructures and mechanical properties of metastable β TiNbSn alloys cold rolled and heat treated[J]. Journal of Alloys and Compounds,2007,439:146-155.
    [68]N. Sakaguch, M. Niinomi, T. Akahori. Tensile deformation behavior of Ti-Nb-Ta-Zr biomedical alloys[J]. Materials Transactions,2004,45:1113-1119.
    [69]J.I. Kim, H.Y. Kim, H. Hosoda, et al. Shape memory behavior of Ti-22Nb-(0.5-2.0)O(at%) biomedical alloys[J]. Materials Transactions,2005, 46:852-857.
    [70]J.I. Kim, H.Y. Kim, T. Inamura, et al. Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys[J]. Materials Science and Engineering A,2005,403:334-339.
    [71]X. Zhao, M. Niinomi, M. Nakai. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials,2011,4(8):2009-2016.
    [72]Y. Yang, S.Q. Wu, G.P. Li, et al. Evolution of deformation mechanisms of Ti-22.4Nb-0.73Ta-2Zr-1.34O alloy during straining[J]. Acta Materialia,2010, 58:2778-2787.
    [73]Y. Yang, GP. Li, G.M. Cheng, et al. Multiple deformation mechanisms of Ti-22.4Nb-0.73Ta-2.0Zr-1.34O alloy[J]. Applied Physics Letters,2009, 94:061901-3.
    [74]D. Raabe. Textures of strip cast and hot rolled ferritic and austenitic stainless steel[J]. Materials Science and Technology,1995,11:461-468.
    [75]M.M. Holscher, D. Raabe, K. Liicke. Relationship between rolling textures and shear textures in fcc and bcc metals [J]. Acta Metallurgica et Materialia,1994, 42:879-886.
    [76]B. Sander, D. Raabe. Texture inhomogeneity in a Ti-Nb-based β-titanium alloy after warm rolling and recrystallization[J]. Materials Science and Engineering A, 2008,479:236-247.
    [77]H. Tobe, H.Y. Kim, S. Miyazaki. Effect of Nb content on deformation textures and mechanical properties of Ti-18Zr-Nb biomedical alloys[J]. Materials transactions,2009,50:2721-2725.
    [78]T. Inamura, Y. Kinoshita, J.I. Kim, et al. Effect of{001}<110>texture on superelastic strain of Ti-Nb-Al biomedical shape memory alloys[J]. Materials Science and Engineering A,2006,438-440:865-869.
    [79]尤力,宋西平.轧制及退火对Ti-18Nb-4Sn合金织构的影响[J].金属学报,2008,44(11):1310-1315.
    [80]M. Tane, S. Akita, T.Nakano, et al. Peculiar elastic behavior of Ti-Nb-Ta-Zr single crystals[J]. Acta Materialia,2008,56:2856-2863.
    [81]L. Wang, W. Lu, J. Qin, et al. The characterization of shape memory effect for low elastic modulus biomedical β-type titanium alloy[J]. Materials Characterization,2010,61:535-541.
    [82]M. Niinomi, T. Hanawa, T. Narushima. Japanese research and development on metallic biomedical, dental, and healthcare materials[J]. JOM,2005,57:18-24.
    [83]Y.W. Zhang, S.J. Li, E.G Obbard, et al. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure[J]. Acta Materialia,2011, 59:3081-3090.
    [84]F. Sun, Y.L. Hao, J.Y. Zhang, et al. Contribution of nano-sized lamellar microstructure on recoverable strain of Ti-24Nb-4Zr-7.9Sn titanium alloy[J]. Materials Science and Engineering A,2011,528:7811-7815.
    [85]于振涛,周廉,王克光.生物医用型p型钛合金的设计与开发[J].稀有金属快报,2004,23(1):5-10.
    [86]浦素云.金属植入材料及腐蚀[M].北京:北京航空航天大学出版社,1990.
    [87]吴克俭,侯树勋.骨科实用固定技术[M].北京:人民军医出版社,2007.
    [88]W.Y. Guo, J. Sun, J.S.Wu. Electrochemical and XPS studies of corrosion behavior of Ti-23Nb-0.7Ta-2Zr-O alloy in Ringer's solution[J]. Materials Chemistry and Physics,2009,113:816-820.
    [89]V.S. Saji, H.C. Choe. Electrochemical corrosion behaviour of nanotubular Ti-13Nb-13Zr alloy in Ringer's solution[J]. Corrosion Science,2009, 51:1658-1663.
    [90]S. Kumar, T.S.N. S. Narayanan, S. Ganesh Sundara Raman, et al. Fretting corrosion behaviour of thermally oxidized CP-Ti in Ringer's solution[J]. Corrosion Science,2010,52:711-721.
    [91]S. Kumar, T.S.N.S. Narayanan. Electrochemical characterization of β-Ti alloy in Ringer's solution for implant application[J]. Journal of Alloys and Compounds, 2009,479:699-703.
    [92]I. Milosev, T. Kosec, H.H. Strehblow. XPS and EIS study of the passive film formed on orthopaedic Ti-6Al-7Nb alloy in Hank's physiological solution[J]. Electrochim Acta,2008,53:3547-3558.
    [93]邓辉,戴品强,许伟长,等.Ti-22Nb-6Zr合金的耐蚀性和超弹性研究[J].福州大学学报(自然科学版),2007,35(3):449-453.
    [94]Y.L. Zhou, M. Niinomi. Passive films and corrosion resistance of Ti-Hf alloys in 5% HCl solution[J]. Surface & Coatings Technology,2009,204:180-186.
    [95]Y.L. Zhou, D.M. Luo. Corrosion behavior of Ti-Mo alloys cold rolled and heat treated[J]. Journal of Alloys and Compounds,2011,509:6267-6272.
    [96]J. Li, L. Zhou, Z.C. Li. Corrosion behaviors of a new titanium alloy TZNT for surgical implant application in Ringer's solution[J]. Rare Metals,2010,29: 37-44.
    [97]白芸,李述军,郝玉琳,等.磷酸盐缓冲溶液中Ti-24Nb-4Zr-8Sn合金的电化学腐蚀行为[J].中国有色金属学报,2010,20:s1030-s1033.
    [98]Y.F. Zheng, B.L. Wang, J.G Wang, et al. Corrosion behaviour of Ti-Nb-Sn shape memory alloys in different simulated body solutions [J]. Materials Scienceand Engineering A,2006,438:891-895.
    [99]A. Kawashima, S. Watanabe, K. Asami. XPS study of corrosion behavior of Ti-18Nb-4Sn shape memory alloy in a 0.05 mass% HC1 solution[J]. Materials Transactions,2003,44(7):1405-1411.
    [100]Y.L. Zhou, M. Niinomi, T. Akahori, et al. Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications [J]. Materials Science and Engineering A,2005,398:28-36.
    [101]M. Karthega, V. Raman, N. Rajendran. Influence of potential on the electrochemical behaviour of β titanium alloys in Hank's solution[J]. Acta Biomaterialia,2007,3:1019-1023.
    [102]黄道远.热/力作用下钴基硬质合金组织性能变化及相关机理的研究[D].博士学位论文,长沙:中南大学,2010.
    [103]陆家和,陈长彦.表面分析技术[M].北京:电子工业出版社,1987.
    [104]D. Briggs(桂琳琳等译).X射线与紫外光电子能谱[M].北京:北京大学出版社,1984.
    [105]C.D. Wagner, W.M. Riggs, L.E. Davis, et al. Handbook of X-Ray photoelectron spectroscopy [M]. Eden Prairie, Minnesota:Perkin-Elmer Corporation,1979.
    [106]M. Morinaga, N. Yukawa, T. Maya, et al. Theoretical design of titanium alloys[C].88'Titanium:Science and Technology,1988, p.1601-1606.
    [107]廉才浩.新型Ti-Nb-Ta-Zr系p医用钛合金的微观组织和性能研究[D].硕士学位论文,长沙:中南大学,2010.
    [108]H. Ikehata, N. Nagasako, T. Furuta, et al. First-principles calculations for development of low elastic modulus Ti alloys[J]. Physical Review B,2004,70: 174113.
    [109]T.S. Li, J.W. Morris, N. Nagasako, et al. "Ideal" engineering alloys[J]. Physical Review Letters,2007,98:105503.
    [110]姚强,邢辉,孟丽君,孙坚.Ti-Mo合金结构稳定性和弹性性质的第一性原理研究[J].金属学报,2008,44:19-22.
    [111]W.F. King, P.H. Cutler. A first principle pseudopotential calculation of the elastic shear constants of beryllium[J]. Physics Letters A,1968,28:289-290.
    [112]欧阳义芳,曾凡江,王陆阳,等.Al-Zr二元合金的第一性原理计算[J].广西大学学报(自然科学版),2007,32(1):35-37.
    [113]杨锐,王元明,赵越,等.合金化对TiH2体模量作用的第一性原理研究[J].原子能科学技术,2002,36(4/5):416-419.
    [114]P. Hohenberg, W. Kohn. Inhomogeneous electron gas[J]. Physical Review B, 1964,136:864-871.
    [115]D.R. Hamann, M. Sehiuter, C. Chiang. Norm-conserving pseudopotentials[J]. Physical Review Letters,1979,43:1494-1497.
    [116]D.Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B,1990,41:7892-7895.
    [117]G. Kresse, J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B,1996, 54(16):11169-11186.
    [118]T. Inamuraa, H. Hosoda, H.Y. Kim, et al. Antiphase boundary-like stacking fault in a"-martensite of disordered crystal structure in β-titanium shape memory alloy[J]. Philosophical Magazine,2010,90:3475-3498.
    [119]J. P. Perdew, K. M. Burke, M. Emzerhof. Generalized gradient approximation made simple[J]. Physical Review Letters,1996,77(18):3865-3868.
    [120]G. Kresse, J. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B,1999,59(3):1758-1775.
    [121]H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations [J]. Physical Review B,1976,13(12):5188-5192.
    [122]P.E. Blochl, O. Jepsen, O.K. Andersen. Improved tetrahedron method for Brillouin-zone integrations[J]. Physical Review B,1994,49(23):16223-16233.
    [123]T. H. Fischer, J. Almlof. General methods for geometry and wave function optimization[J]. The Journal of Physical Chemistry,1992,96(24):9768-9774.
    [124]B. Hammer, L. B. Hansen, J. K. Norkov. Improved adsorption energetics with density-functional theory using revised Perdew-Burke-Ernzerhof functional [J]. Physical Review B,1999,59(11):7413-7421.
    [125]M. J. Mehl, B. M. Klein, D. A. Papaconstantopoulos. Intermetallic Compounds: Principles and Applications[M]. London:John Wiley & Sons Ltd,1994, p.195.
    [126]O.L. Anderson. A simplified method for calculating the Debye temperature from elastic constants[J]. Journal of Physics and Chemistry of Solids,1963,24: 909-917.
    [127]姚强,邢辉,郭文渊,等.Ti-Nb合金β结构稳定性和弹性性质[J].中国有色金属学报,2008,18:126-131.
    [128]S. G Fedotov, P. K. Belousov. Elatic constants of alloys of the system titanium-niobium[J]. Physics of Metals and Metallography,1964,17-5:83-86.
    [129]M. Born, K. Huang. Dynamical theory of crystal lattices[M]. Oxford:Clarendon Press,1954.
    [130]E.W. Collings. Physical metallurgy of titanium alloys[M]. Metals Park, OH: ASM; 1984.
    [131]P. Villars. Pearson's Handbook of Crystallographic data for intermetallic phases[M]. Ohio:Materials Park,1991.
    [132]D.L. Moffat, D.C. Larbalestier. The compctition between martensite and omega in quenched Ti-Nb alloys[J]. Metallurgical and Materials Transactions A,1988, 19:1677-1686.
    [133]姚强,邢辉,郭文渊,等.Ti-25at%Nb合金β、α"和ω相结构稳定性和弹性性质理论计算[J].稀有金属材料与工程,2009,38(4):663-666.
    [134]J. Sun, Q. Yao, H. Xing, et al. Elastic properties of β,α" and ω metastable phases in Ti-Nb alloy from first-principles [J]. Journal Physics:Condensed Matter,2007,19:486215.
    [135]T. Hong, T.J, Watson-Yang, A.J. Freeman, et al. Crystal structure, phase stability, and electronic structure of Ti-Al intermetallics:TiAl3 [J]. Physical Review B, 1990,41:12462-12467.
    [136]刘江龙,环境材料导论[M].北京:冶金工业出版社,1999.
    [137]D. Kuroda, M. Niinomi, M. Morinaga, et al. Design and mechanical properties of new β type titanium alloys for implant materials[J]. Materials Science and Engineering A,1998,243:244-249.
    [138]M. Abdel-Hady, K. Hinoshita, M. Morinaga. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters[J]. Scripta Materialia,2006,55:477-480.
    [139]P.J. Bania. Beta titanium alloys and their role in the titanium industry[C]. Titanium Alloys in the 1990's. Warrendale:The Mineral, Metals&Materials Society,1993.
    [140]I. Weiss, S.L. Semiatin. Thermomechanical processing of beta titanium alloys—an overview[J]. Materials Science and Engineering A,1998, 243:46-65.
    [141]Y.L. Zhou, M. Niinomi, T. Akahori. Decomposition of martensite a" during aging treatments and resulting mechanical properties of Ti-Ta alloys [J]. Materials Science and Engineering A,2004,384:92-101.
    [142]S.K. Sikka, Y.K. Vohra, R. Chidambaram. Omega phase in materials [J]. Progress in Materials Science,1982,27:245-310.
    [143]C.Y. Cui, D.H. Ping. Microstructural evolution and ductility improvement of a Ti-30Nb alloy with Pd addition[J]. Journal of Alloys and Compounds,2009, 471:248-252.
    [144]S. Nag, R. Banerjee, R. Srinivasan, et al. ω-assisted nucleation and growth of a precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe P titanium alloy[J]. Acta Materialia,2009,57:2136-2147.
    [145]W.G. Burgers. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium[J]. Physica,1934,1:561-586.
    [146]D.I. Potter. The structure, morphology and orientation relationship of V3N in a-vanadium[J]. Journal of the Less-Common Metals,1973,31:299-309.
    [147]Q. Guo, Q. Wang, X.L. Han, et al. Crystalline characteristics of alpha precipitates in Ti-15V-3Sn-3Al-3Cr alloy[J]. Micron,2010,41:565-570.
    [148]D.L. Moffat, D. C. Larbalestier. The compctition between the alpha and omega phases in aged Ti-Nb alloys [J]. Metallurgical and Materials Transactions A, 1988,19:1687-1694.
    [149]Z. Fan, A.P. Miodownik. Microstructural evolution in rapidly solidified Ti-7.5Mn-0.5B alloy[J]. Acta Materialia,1996,44:93-110.
    [150]D. Fontaine. Mechanical instabilities in the bcc lattice and the beta to omega phase transformation[J]. Acta Metallurgica 1970,18:275-279.
    [151]E. Sukedai, D. Yoshimitsu, H. Matsumoto, et al. β to ω phase transformation due to aging in a Ti-Mo alloy deformed in impact compression[J]. Materials Science and Engineering A,2003,350:133-138.
    [152]S. Azimzadeh, H.J. Rack. Phase transformations in Ti-6.8Mo-4.5Fe-1.5Al[J]. Metallurgical and Materials Transactions A,1998,29:2455-2467.
    [153]F. Prima, P. Vermaut, G. Texier, et al. Evidence of a-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy [J]. Scripta Materialia,2006,54:645-648.
    [154]M.J. Blackburn, J.C. Williams. Phase transformations in Ti-Mo and Ti-V alloys[J]. Transactions of the Metallurgical Society of AIME,1968,242:2461.
    [155]G.B. Olson, H.K. D. H. Bhadeshia, M. Cohen. Coupled diffusional/displacive transformations [J]. Acta Metallurgica,1989,37:381-390.
    [156]H. I. Aaronson. Invited talk presented at solid-solid phase transformations in inorganic materials [C]. proc. PTM. TMS.2005,1:497-510.
    [157]W. Sha, Z. Guo. Phase evolution of Ti-6A1-4V during continuous heating[J]. Journal of Alloys and Compounds,1999,290:L3-L7.
    [158]F.J. Gil, J.A. Planell. Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys[J]. Materials Science and Engineering A,2000, 283:17-24.
    [159]S.L. Semiatin, J.C. Soper, I. M. Sukonnik. Short-time beta grain growth kinetics for a conventional titanium alloy[J]. Acta materialia,1996,44: 1979-1986.
    [160]S. Malinov, P. Markovsky, W. Sha, et al. Resistivity study and computer modelling of the isothermal transformation kinetics of Ti-6A1-4V and Ti-6Al-2Sn-4Zr-2Mo-0.08Si alloys[J]. Journal of Alloys and Compounds, 2001,314:181-192.
    [161]常辉,E. Gautier, F. Bruneseaux等.Ti-B19钛合金的β→α+β等温相变动力学[J].稀有金属材料与工程,2006,35:1695-1699.
    [162]J.D.C. Teixeira, B. Appolaire, E. Aeby-Gautier, et al. Transformation kinetics and microstructures of Ti17 titanium alloy during continuous cooling[J]. Materials Science and Engineering A,2007,448:135-145.
    [163]周明哲,易丹青,尹德艳等.电场对2E12铝合金中S相析出动力学的影响[J].中国有色金属学报,2010,20:1290-1295.
    [164]T. Ozawa. Kinetics of non-isothermal crystallization[J]. Polymer,1971, 12:150-158.
    [165]H.E. Kissinger. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry,1957,29:1702-1706.
    [166]M. Hillert. On the theory of normal and abnormal grain growth[J]. Acta Metallurgica, 1965,13:227-238.
    [167]J.E. Burke, D. Turnbull. Recrystallization and grain growth[J]. Progress in Metal Physics,1952,3:220-292.
    [168]GA. Sargent, H. Huang, R.J. De Angelis. Omega phase formation in RMI (38-6-44) beta titanium alloy [J]. Journal of Materials Science,1974,9:487-490.
    [169]O. Lyon. A study of precipitates found in the omega phase of a Ti-35Nb alloy by electron microscopy and diffusion by small-angle X-ray scattering[J]. Journal of the Less-Common Metals,1981,81:103-113.
    [170]M.C. Jon, H. Fujimura, R.J. De Angelis. Omega-phase formation in Beta III titanium alloy[J]. Metallography,1972,5:139-150.
    [171]李瑞松,周善初.金属热处理[M].长沙:中南大学出版社,2003.
    [172]T. Akahori, M. Niinomi. Fracture characteristics of fatigued Ti-6A1-4V ELI as an implant material[J]. Materials Science and Engineering A,1998, 243:237-243.
    [173]C.J. Boehlert, C.J. Cowen, J.P. Quast, et al. Fatigue and wear evaluation of Ti-Al-Nb alloys for biomedical applications [J]. Materials Science and Engineering C,2008,28:323-330.
    [174]J.C. Williams, B.S. Hickman, H.L. Marcus. The effect of omega phase on the mechanical properties of titanium alloys[J]. Metallurgical and Materials Transactions B,1971,2:1913-1919.
    [175]G Lutjering. Influence of processing on microstructure and mechanical properties of (a+β) titanium alloys[J]. Materials Science and Engineering A, 1998,243:32-45.
    [176]D. Eylon, P.J. Bania. Fatigue crack characteristics of annealed large colony Ti-11 alloy[J]. Metallurgical and Materials Transactions A 1978,9:1273-1279.
    [177]U. Krupp. Fatigue crack propagation in metals and alloys:microstructural aspects and modelling concepts[M]. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim,2007.
    [178]J. Ruppen, P. Bhowal, D. Eylon, et al. On the process of subsurface fatigue crack initiation in Ti-6Al-4V[M]. ASTM STP 1979;675:47-68.
    [179]马英杰,李晋炜,雷家峰,等.显微组织对TC4ELI合金疲劳裂纹扩展路径及扩展速率的影响[J].金属学报,2010,46(9):1086-1092.
    [180]李辉,赵永庆,曲恒磊,等.损伤容限型TC4-DT合金疲劳裂纹扩展行为研究[J].稀有金属材料与工程,2007,36:963-967.
    [181]张民.热处理对TC21钛合金组织与性能的影响[D].硕士学位论文,西安:西北工业大学,2004.
    [182]姚磊江.疲劳损伤过程的能量耗散分析及基于能量耗散的疲劳损伤模型[D].博士学位论文,西安:西北工业大学,2000.
    [183]王栓柱.金属疲劳[M].福州:福建科学技术出版社,1985,p170.
    [184]Y.L. Hao, S.J. Li, S.Y. Sun, et al. Super-elastic titanium alloy with unstable plastic deformation[J]. Applied Physics Letters,2005,87(9):091906-3.
    [185]W. Xu, K.B. Kim, J. Das, et al. Phase stability and its effect on the deformation behavior of Ti-Nb-Ta-In/Cr β alloys[J]. Scripta Materialia,2006, 54:1943-1948.
    [186]陆世英,张凯,杨长强,等.不锈钢[M].北京:原子能出版社,1995.
    [187]沈凯,B.J. Dugga.冷轧体心立方IF钢中剪切带的形成[J].南京航空航天大学学报,2005,37:571-575.
    [188]毛卫民.材料的晶体结构原理[M].北京:冶金工业出版社,p107-123.
    [189]T. Inamura, Y. Fukui, H. Hosoda, et al. Pseudoelastic properties of cold-rolled TiNbAl alloy[J]. Materials Science Forum,2005,475-479:2323-2328.
    [190]S. Semboshi, T. Shirai, T.J. Konno, et al. In-situ transmission electron microscopy observation on the phase transformation of Ti-Nb-Sn shape memory alloys[J]. Metallurgical and Materials Transactions A,2008,39: 2820-2829.
    [191]D.H. Ping, Y. Mitarai, F.X. Yin. Microstructure and shape memory behavior of a Ti-30Nb-3Pd alloy[J]. Scripta Materialia,2005,52:1287-1291.
    [192]D.H. Ping, Y. Yamabe-Mitarai, C.Y. Cui, et al. Stress-induced a" martensitic (110) twinning in β-Ti alloys[J]. Applied Physics Letters,2008,93:151911-3.
    [193]T.W. Duerig, J. Albrecht, D. Richter. Formation and reversion of stress-induced martensite in Ti-10V-2Fe-3Al[J]. Acta Materialia,1982,30(12):2161-2172.
    [194]D.H. Ping, C.Y. Cui, F.X. Yin, et al. TEM investigations on martensite in a Ti-Nb-based shape memory alloy [J]. Scripta Materialia,2006,54:1305-1310.
    [195]郝玉琳,杨锐,李述军,等.α"马氏体相对Ti-29Nb-13Ta-4.6Zr医用钛合金杨氏模量和力学性能的影响[J].金属学报,2002,s38:236-239.
    [196]H. Matsumoto, S. Watanabe, S. Hanada. a'Martensite Ti-V-Sn alloys with low Young's modulus and high strength[J]. Materials Science and Engineering A, 2007,448:39-48.
    [197]M.Y. Gutkin, T. Ishizaki, S. Kuramoto, et al. Nanodisturbances in deformed gum metal[J]. Acta Materialia,2006,54:2489-2499.
    [198]M.F. Lopez, J.A. Jimenez, A. Gutierrez. Corrosion study of surface-modified vanadium-free titanium alloys[J]. Electrochim Acta,2003,48:1395-1401.
    [199]N.J. Hallab, S. Anderson, T. Stafford, et al. Lymphocyte responses in patients with total hip arthroplasty[J]. Journal of Orthopaedic Research,2005, 23:384-391.
    [200]E. Mccafferty. Introduction to Corrosion Science[M]. Alexandria, VA 22309, USA,2010, p148.
    [201]E. Mccafferty. Validation of corrosion rates measured by the Tafel extrapolation method[J]. Corrosion Science,2005,47:3202-3215.
    [202]S.T. Pride, J.R. Scully, J.L. Hudson. Metastable pitting of aluminum and criteria for the transition to stable pit growth[J]. Journal of the Electrochemical Society, 1994,141:3028-3040.
    [203]S.B. Basame, H.S. White. Pitting corrosion of titanium the relationship between pitting potential and competitive anion adsorption at the oxide film/electrolyte interface[J]. Journal of the Electrochemical Society 2000,147(4):1376-1381.
    [204]G.T. Burstein, R.M. Souto. Observations of localised instability of passive titanium in chloride solution[J]. Electrochim Acta,1995,40:1881-1888.
    [205]G.T. Burstein, C. Liu, R.M. Souto. The effect of temperature on the nucleation of corrosion pits on titanium in Ringer's physiological solution[J]. Biomaterials, 2005,26:245-256.
    [206]I. Milosev, M. Metikos-Hukovi6, H.H. Strehblow. Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy[J]. Biomaterials,2000,21:2103-2113.
    [207]M. Pankuch, R. Bell, C. A. Melenders. Composition and structure of the anodic films on titanium in aqueous solutions [J]. Electrochim Acta,1993, 38:2777-2779.
    [208]C.N.R. Rao, D.D. Sarma, S. Vasudevan, et al. Study of transition metal oxides by photoelectron spectroscopy[J]. Proceeding of Royal Society of London A, 1979,367:239-252.
    [209]Y. Tanaka, M. Nakai, T. Akahori, et al. Characterization of air-formed surface oxide film on Ti-29Nb-13Ta-4.6Zr alloy surface using XPS and AES[J]. Corrosion Science,2008,50:2111-2116.
    [210]A.K. Satpati, S.V. Phadnis, R.I. Sundaresan. Electrochemical and XPS studies and the potential scan rate dependent pitting corrosion behavior of Zircaloy-2 in 5% NaCl solution[J]. Corrosion Science,2005,47:1445-1458.
    [211]Y. Okazaki, T. Tateishi, Y. Ito. Corrosion resistance of implant alloys in pseudo physiological solution and role of alloying elements in passive films[J]. Materials Transactions,1997,38:78-84.
    [212]G. Cabello, L. Lillo. G.E. Buono-Core. Zr(IV) and Hf(IV)β-diketonate complexes as precursors for the photochemical deposition of ZrO2 and HfO2 thin films[J]. Journal of Non-Crystalline Solids,2008,354:982-988.
    [213]Y. Okazaki, A. Ito, T. Tateishi et al. Effect of alloying elements on anodic polarization properties of titanium alloys in acid solutions [J]. Materials Transactions,1994,35:58-66.
    [214]李荻.电化学原理[M].北京:北京航空航天大学出版社,1999,p406-410.
    [215]S.Y. Yu, J.R. Scully. Corrosion and passivity of Ti-13%Nb-13%Zr in comparison to other biomedical implant alloys[J]. Corrosion,1997, 53:965-976.
    [216]S.Y. Yu, J.R. Scully, C.M. Vitus. Influence of niobium and zirconium alloying additions on the anodic dissolution behavior of activated titanium in HC1 solutions[J]. Journal of the Electrochemical Society,2001,148:B68-B78.
    [217]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
    [218]D.D. Macdonald. The point defect model for the passive state[J]. Journal of the Electrochemical Society,1992,139:3434-3449.
    [219]M. Metikos-Hukovi6, A. Kwokal, J. Piljac. The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution[J]. Biomaterials,2003,24:3765-3775.
    [220]E.N. Codaro, R.Z. Nakazato, A.L. Horovistiz, et al. An image analysis study of pit formation on Ti-6A1-4V[J]. Materials Science and Engineering A,2003,341: 202-210.
    [221]H.E. Hanninen. Influence of metallurgical variables on environment-sensitive cracking of austenitic alloys[J], International Metals Reviews,1979,98(3): 85-136.
    [222]A. Barbucci, G. Cerisola, P.L. Cabot. Effect of cold-working in the passive behavior of 304 stainless steel in sulfate media[J]. Journal of the Electrochemical Society,2002,149(12):B534-B542.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700