用户名: 密码: 验证码:
含B2相的TiAl基合金及其低温超塑性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含B2相的γ-TiAl基合金在高温下有良好的变形能力,是一种具有重要应用前景的新型高温材料。本文设计了新型含B2相的Ti-Al-Fe-Mo系合金,系统、深入地研究了TiAl合金体系的成分、结构、组织与性能的相关性,建立了该TiAl合金的凝固过程和不连续动态再结晶诱导超塑性变形的模型,较好地改善了γ-TiAl基合金变形难的问题,并成功制备出TiAl基合金薄板材,为开发具有良好成型性和高温性能的新型TiAl基合金材料提供了重要参考。利用X射线衍射(XRD)、扫描电镜(SEM)、电子探针微区分析(EPMA)、差热分析(DSC)、透射电镜(TEM)等分析手段,开展了相关的研究工作及理论分析,主要探讨含B2相的TiAl基合金三个方面的内容,其中包括B2的形成:研究体系的相平衡与扩散,确定在TiAl基合金中β稳定性元素Mo和Fe的成分与其组织的相关性;B2相的可控性:研究优化设计含B2相的TiAl合金的成分和热处理工艺,调控B2相的含量和分布;以及B2相的作用:研究含B2相的TiAl合金的热变形能力,并探讨诱导TiAl合金发生超塑性行为的机理。取得如下成果:
     1)采用多元扩散偶技术研究900℃多元Ti-Al-Fe-Mo系的相关系,建立了近γ相区域的局部等温截面相图以及相平衡与扩散的数据库,探讨了Ti、Al、Fe和Mo元素在不同相中的扩散能力,确定了近γ相区域含B2相的单相区、双相和三相共存区中各元素成分分布,并研究了Ti-Mo、Ti-Al等体系的成分-结构-性能的相关性,为设计含B2相的TiAl合金提供重要依据。
     2)确立了含B2相的TiAl基合金的凝固过程模型。研究β稳定性元素Mo和Fe的成分与Ti-45A1基合金的组织之间的相关性,B2相随Mo和Fe含量的增加而增多,经优化设计后的Ti-45Al-3Fe-2Mo合金具有组织细小、热变形行为良好的特点,其凝固过程为L→L+βprimary→βprimary+α→α→α+(α'+γ)→(α'+γ)层片+(β'+γ)等轴→(α2+γ)层片+(B2+γ)等轴。
     3)建立了含B2相的TiAl合金的热变形行为机制和热加工图。Ti-45A1-3Fe-2Mo合金是一种温度、应变速率敏感的材料,高温压缩变形时的本构方程为ε=e23.118[sinh(0.0138σ)]3.45exp(-292.43/RT)。热加工图表明温度800℃左右时,压缩变形的应变速率应低于0.056s-1,在800-1100℃压缩过程中应变速率不应高于0.18s-1。当应变速率较高时,应根据加工图选择适当较高的变形温度。
     4)建立了含B2相的TiAl合金的不连续动态再结晶诱导超塑性的变形机制和模型。Ti-45Al-3Fe-2Mo合金为含B2相的TiAl合金,在790。C具有良好的低温超塑性变形行为;B2相的不连续动态再结晶,有利于层片晶团的扭转和拉长以及晶界滑移等共同软化与应变硬化的协调往复作用,缓解变形带来的应力集中,延缓孔洞的产生、聚合和连接,促使合金发生超塑性变形,直至超过材料的极限而断裂。
     本文含图88幅,表22个,参考文献162篇。
B2-containing TiAl alloy (the y-based TiAl alloy, which contains a certain amount of B2phase) has arisen worldwide concerns due to its excellent properties, including good workability and high-temperature performances. A novel B2-containing Ti-Al-Fe-Mo alloy has been developed in this research. And the relationship among composition, microstructure and properties of the Ti-Al-Fe-Mo system has been studied systematically. Models of the solidification process (SP) and discontinuous dynamic recrystallization (DDRX)-induced low-temperature superplasticity of this alloy have also been set up. Eventually thin-gage foils of the B2-containing TiAl alloy were successfully fabricated via hot rolling.
     A large number of experimental and theoretical analyses were performed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDXA), electron probe micro-analysis (EPMA), differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The following aspects of B2-containing TiAl alloy were studied:(a) the formation of B2phase——to understand the relationship between composition and microstructure by investigate the phase equilibrium and diffusion of Ti-Al-Fe-Mo system;(b) the controllability of the status of B2phase——to adjust and modify the content and distribution of B2phase by optimal designing the composition of B2-containing TiAl alloy and following heat treatment;(c) the effect of B2phase——to analyze the mechanism of thermal deformation and superplasticity of B2-containing TiAl alloy. Results are shown as below:
     1) The high-throughput diffusion multiples and EPMA has been used to analyze the Ti-Al-Fe-Mo diffusion system at900℃. The partial composition phase diagram and the database of Ti-Al-Fe-Mo phase equilibrium and diffusion have been established, which can be used for the design of new B2-containing TiAl alloy. There are different diffusion coefficients of the elements (including Ti, Al, Fe, and Mo) in different phases (B2, a2, and y phase). The distribution of the elements in various regions nearby y phase field has been discussed.
     2) The relationship between the content of β stabilizers (Mo and Fe) and the microstructure of the Ti-45A1based alloy has been understood. With the increasing amount of Mo or/and Fe content, the B2phase grows gradually. In the Ti-45Al-3Fe-2Mo alloy, the grains are significantly refined to about12μm, and this alloy shows a very good hot workability at elevated temperatures. Its solidification process (SP) can be described as:L→L+βprmary→βprimary+α→α→α+(α'+γ)→lamellar (α'+γ)+equiaxed (β'+γ)→lamellar (α2+γ)+equiaxed (B2+y).
     3) The hot deformation mechanism and the processing map (PM) of the B2-containing TiAl alloy were established. Ti-45Al-3Fe-2Mo alloy is sensitive to temperature and strain rate since its flow stress decreases with temperature and increases with strain rate. The relationship among the strain rates, flow stress, and temperature could be expressed by the function: ε=e23.118[sinh(0.0138σ)]3.54exp(-292.43/RT). The PM shows that the strain rate should be lower than0.056s-1when compressed at800℃, and not higher than0.18s-1at the temperature between800and1100℃. A higher temperature should be selected according to the PM when compressed at higher strain rates.
     4) The mechanism of DDRX-induced low-temperature superplastic deformation of the B2-containing TiAl alloy was discussed. The low-temperature superplastic deformation takes place during tensile deformation of Ti-45Al-3Fe-2Mo alloy at790℃. For the existence of B2phase, the reciprocating cooperation between strain hardening and softening by DDRX, kinking and elongating of lamellar, and grain boundary sliding (GBS) has been promoted. The reciprocating cooperation is conductive to reduce the stress concentration and release the accumulation energy, which is helpful for postponing the occurrence, aggregation and concatenation of cavitations. This cooperation results in the B2-containing TiAl alloy exhibiting large plastic strain, not breaking until the material is stressed beyond its strength limit.
引文
[1]Appel F., Oehring M., Paul J. D. H. Nano-Scale Design of TiAl Alloys Based on β-Phase Decomposition[J]. Advanced Engineering Materials,2006,8(5): 371-376.
    [2]Leyens C, Peters M. Titanium and titanium alloys- fundamentals and applications[M]. Weinheim Chichester:Wiley-VCH; John Wiley (distributor), 2003.
    [3]陈国良.金属间化合物结构材料研究现状与发展[J].材料导报,2000,14(9):51-56.
    [4]李宝辉,孔凡涛,陈玉勇,等.TiAl金属间化合物的合金设计及研究现状[J].航空材料学报,2006,26(2):72-78.
    [5]Schuster J. C., Palm M. Reassessment of the binary aluminum-titanium phase diagram[J]. Journal of Phase Equilibria and Diffusion,2006,27(3):255-277.
    [6]Jung I. S., Jang H. S., Oh M. H., et al. Microstructure control of TiAl alloys containing beta stabilizers by directional solidification[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2002,329:13-18.
    [7]Munoz-Morris M. A., Gil I., Morris D. G Microstructural stability of y-based TiAl intermetallics containing β phase[J]. Intermetallics,2005,13(9):929-936.
    [8]Banerjee D., Gogia A. K., Nandy T. K. Deformation Structure in a Ti-24al-llnb Alloy [J]. Metallurgical Transactions a-Physical Metallurgy and Materials Science,1990,21(3):627-639.
    [9]Strychor R., Williams J. C., Soffa W. A. Phase-Transformations and Modulated Microstructures in Ti-Al-Nb Alloys[J]. Metallurgical Transactions a-Physical Metallurgy and Materials Science,1988,19(2):225-234.
    [10]Kimura M., Hashimoto K., Morikawa H. Study on Phase-Stability in Ti-Al-X Systems at High-Temperatures [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,1992,152(1-2): 54-59.
    [11]Schmoelzer T., Liss K. D., Zickler G A., et al. Phase fractions, transition and ordering temperatures in TiAl-Nb-Mo alloys:An in- and ex-situ study[J]. Intermetallics,2010,18(8):1544-1552.
    [12]Inkson B. J., Boothroyd C. B., Humphreys C. J. Microstructure of a Gamma Alpha-2 Beta Ti-Al Alloy Containing Iron and Vanadium[J]. Acta Metallurgica Et Materialia,1993,41(10):2867-2876.
    [13]Inkson B. J., Clemens H., Marien J. gamma+alpha(2)+B2 lamellar domains in rolled TiAl[J]. Scripta Materialia,1998,38(9):1377-1382.
    [14]Vanderschueren D., Nobuki M., Nakamura M. Superplasticity in a vanadium alloyed gamma plus beta phased Ti-Al intermetallic[J]. Scripta Metallurgica Et Materialia,1993,28(5):605-610.
    [15]Nieh T. G, Hsiung L. M., Wadsworth J. Superplastic behavior of a powder metallurgy TiAl alloy with a metastable microstructure[J]. Intermetallics,1999, 7(2):163-170.
    [16]Jin Y., Wang J. N., Yang J., et al. Microstructure refinement of cast TiAl alloys by β solidification[J]. Scripta Materialia,2004,51(2):113-117.
    [17]Masahashi N., Mizuhara Y., Matsuo M., et al. High Temperature Deformation Behavior of Titanium-Aluminide Based Gamma Plus Beta Microduplex Alloy [J]. ISIJ International,1991,31(7):728-737.
    [18]Clemens H., Wallgram W., Kremmer S., et al. Design of Novel β-Solidifying TiAl Alloys with Adjustable β/B2-Phase Fraction and Excellent Hot-Workability [J]. Advanced Engineering Materials,2008,10(8):707-713.
    [19]He Y. H., Liu Y, Huang B. Y.钛铝基合金气门的制备方法[P].in, China, ZL99115238.7,2003.
    [20]Liu Y, Liu B., Zhang W.一种高致密TiAl基合金制备方法[P].in, China, ZL200710034383.4,2009,9.
    [21]Tetsui T., Shindo K., Kaji S., et al. Fabrication of TiAl components by means of hot forging and machining[J]. Intermetallics,2005,13(9):971-978.
    [22]Weimer M. J., Kelly T. J. Overview of TiAl Implementation at GE Aviation[R]. in:17th AeroMat Conference & Exposition,2006.
    [23]Bewlay B. P., Huron E., Kelly T. J., et al. TiAl Application Status At GE Aviation[R]. in:Materials Science & Technology 2010,2010.
    [24]Appel F., Paul J. D. H., Oehring M. Gamma Titanium Aluminide Alloys[M]. GmbH & Co. KGaA:Wiley-VCH Verlag,2011.
    [25]Chen Z., Jones I. P. Sublattice Occupancy in 3 Ti-Al-Mo B2 Phases [J]. Scripta Metallurgica Et Materialia,1995,32(4):553-557.
    [26]Villars P., Okamoto H., Cenzua K. A-B-C Phase Diagram[EB/OL]. http://wwwl.asminternational.org/AsmEnterprise/APD, ASM International, Materials Park, OH,2006.
    [27]Taylor A., Floyd R. W. The constitution of Nickel-rich alloys of the Nickel-Chromium-Titanium system[J]. J. Inst. Met.,1951/52,80(2):577-587.
    [28]Clark D., Jepson K. S., Lewis G. I. A Study of the Titanium-Aluminium System up to 40 At.-% Aluminium[J]. J. Inst. Met.,1962/63,91:197-203.
    [29]Penaloza V. A., Houska C. R. Refinements on the X-Ray Internsities from Ti3Al[R]. in:An. Congr. Nac. Metal.3rd,1983:A55-A59.
    [30]Sridharan S., Nowotny H., Wayne S. F. Investigations Within the Quaternary System Titanium-Nickel-Aluminium-Carbon[J]. Monatsh. Chem.,1983,114(2): 127-135.
    [31]Singh A. K., Kumar S., Banumathy S., et al. Structure of the B2 phase in Ti-25Al-25Mo alloy[J]. Philosophical Magazine,2007,87(34):5435-5445.
    [32]Kazantseva N. V., Mushnikov N. V., Popov A. G, et al. Use of mechanoactivation for obtaining hydrides of titanium aluminides[J]. Physics of Metals and Metallography,2008,105(5):460-470.
    [33]Bendersky L. A., Boettinger W. J., Roytburd A. Coherent Precipitates in the B.C.C./Orthorhombic Two-Phase Field of the Ti-Al-Nb System[J]. Acta Metall. Mater.,1991,39(8):1959-1969.
    [34]Raman A., Schubert K. Uber die Verbreitung des Zr2Cu-Typs und Cr2Al-Typs[J]. Z. Metallkd.(in German),1964,55(1):798-804
    [35]Murray J. L. The Al-Ti (Aluminum-Titanium) System[J]. Phase Diagrams of Binary Titanium Alloys,1987,44:12-24.
    [36]Kainuma R., Palm M., Inden G. Solid-Phase Equilibria in the Ti-Rich Part of the Ti-Al System[J]. Intermetallics,1994,2(4):321-332.
    [37]Ohnuma I., Fujita Y., Mitsui H., et al. Phase equilibria in the Ti-Al binary system[J]. Acta Materialia,2000,48(12):3113-3123.
    [38]Jin Z. P. A Study of the Range of Stability of σ Phase in Some Ternary Systems [J]. Scand. J. Metall.,1981,10:279-287.
    [39]Zhao J. C. Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships [J]. Progress in Materials Science,2006,51(5):557-631.
    [40]Yi S. Phase equilibria and development of β0+g two phase microstructures in gamma-based Ti-Al-Mo ternary alloys[D]. United States-Wisconsin:The University of Wisconsin-Madison,1997.
    [41]Kainuma R., Fujita Y., Mitsui H., et al. Phase equilibria among alpha (hcp), beta (bcc) and gamma (L1(0)) phases in Ti-Al base ternary alloys [J]. Intermetallics, 2000,8(8):855-867.
    [42]Hillert M. Phase Equilibria, Phase Diagrams and Phase Transformations[M]. London:Cambridge University Press,1998.
    [43]Mishin Y, Herzig C. Diffusion in the Ti-Al system[J]. Acta Materialia,2000, 48(3):589-623.
    [44]Tetsui T., Shindo K., Kobayashi S., et al. Strengthening a high-strength TiAl alloy by hot-forging [J]. Intermetallics,2003,11(4):299-306.
    [45]Tetsui T., Shindo K., Kobayashi S., et al. A newly developed hot worked TiAl alloy for blades and structural components [J]. Scripta Materialia,2002,47(6): 399-403.
    [46]Huang L., Liaw P.K., Liu C.T., et al. Microstructural evolution of (TiAl)+Nb +W+B alloy [J]. Transactions of Nonferrous Metals Society of China,2011, 21(10):2192-2198.
    [47]郑运荣,汪小平.TiAl-Cr合金中的β2相[J].中国有色金属学报,1998,8(01):1-6.
    [48]刘自成,李书江,张卫军,等.Nb和A1对γ-TiAl基合金高温强度的影响[J].中国有色金属学报,2000,10(04):470-475.
    [49]黄伯云,曲选辉,雷长明,等.添加合金元素对TiAl有序合金中位错组态与室温延性的影响[J].中国有色金属学报,1993,3(04):38-41.
    [50]黄劲松,刘咏,贺跃辉,等.铌、钨和硼在TiAl基合金中的分布及其对组织的影响[J].粉末冶金材料科学与工程,2006,11(1):32-37.
    [51]Schmoelzer T., Mayer S., Sailer C., et al. In Situ Diffraction Experiments for the Investigation of Phase Fractions and Ordering Temperatures in Ti-44 at% Al-(3-7) at% Mo Alloys[J]. Advanced Engineering Materials,2011,13(4):306-311.
    [52]吴红丽,张伟,宫声凯.Nb元素影响TiAl金属间化合物键合特征的第一原理计算[J].化学学报,2008,66(14):1669-1675.
    [53]Bryant J. D., Christodoulou L., Maisano J. R. Effect of TiB2 additions on the colony size of near gamma titanium aluminides[J]. Scripta Metallurgica Et Materialia,1990,24(1):33-38.
    [54]Hu D., Wu X., Loretto M. H. Advances in optimisation of mechanical properties in cast TiAl alloys[J]. Intermetallics,2005,13(9):914-919.
    [55]Imayev R. M., Imayev V. M., Oehring M., et al. Alloy design concepts for refined gamma titanium aluminide based alloys[J]. Intermetallics,2007,15(4): 451-460.
    [56]杨广宇,刘咏,王岩,等.微量B和Y对铸造Ti-Al-Nb-W合金显微组织的影响[J].中国有色金属学报,2011,21(04):777-783.
    [57]Gosslar D., Gunther R., Hecht U., et al. Grain refinement of TiAl-based alloys: The role of TiB2 crystallography and growth[J]. Acta Materialia,2010,58(20): 6744-6751.
    [58]饶光斌,刘奎,韩恩厚,等.硼化物细化y-TiAl基合金晶粒的机制[J].中国有色金属学报,2004,14(1):225-271.
    [59]王琪,李圣刚,吕宏军.雾化法制备高品质钛合金粉末技术研究[J].钛工业进展,2010,27(5):16-18.
    [60]Park H. S., Nam S. W., Kim N. J., et al. Refinement of the lamellar structure in TiAl-based intermetallic compound by addition of carbon[J]. Scripta Materialia, 1999,41(11):1197-1203.
    [61]Appel F., Brossmann U., Christoph U., et al. Recent progress in the development of gamma titanium aluminide alloys[J]. Advanced Engineering Materials,2000, 2(11):699-720.
    [62]黄伯云,曲选辉,贺跃辉,等.TiAl基合金的渗碳处理[J].中国有色金属学报,1994,04(04):53-55.
    [63]董利民,崔玉友,杨锐.B和C对铸造TiAl基合金宏观和显微组织的影响[J].金属学报,2002,38(6):643-646.
    [64]Tian W. H., Nemoto M. Precipitation behavior of nitrides in L10-ordered TiAl[J]. Intermetallics,2005,13(10):1030-1037.
    [65]Noda T., Okabe M., Isobe S., et al. Silicide Precipitation Strengthened Tial[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,1995,192-193(2):774-779.
    [66]肖伟豪,张亮,姜惠仁.Si对TiAl合金高温抗氧化性能的影响[J].北京航空航天大学学报,2006,32(3):365-369.
    [67]Wang J. N., Xie K. Refining of coarse lamellar microstructure of TiAl alloys by rapid heat treatment[J]. Intermetallics,2000,8(5-6):545-548.
    [68]陈玉勇,张树志,孔凡涛,等.新型β-γTiAl合金的研究进展[J].稀有金属,2012,36(1):154-160.
    [69]Huang Z. W., Voice W., Bo wen P. Thermal exposure induced alpha(2)+gamma-> B2(omega) and alpha(2)-> B2(omega) phase transformations in a high Nb fully lamellar TiAl alloy[J]. Scripta Materialia,2003,48(1):79-84.
    [70]Kim Y. W. Microstructural Evolution and Mechanical-Properties of a Forged Gamma-Titanium Aluminide Alloy[J]. Acta Metallurgica Et Materialia,1992, 40(6):1121-1134.
    [71]Wang J. N., Wang Y. An investigation of the origin of the superplasticity of cast TiAl alloys[J]. International Journal of Plasticity,2006,22(8):1530-1548.
    [72]Yang K. L., Huang J. C., Wang Y. N. Phase transformation in the β phase of super α2 Ti3Al base alloys during static annealing and superplastic deformation at 700-1000℃[J]. Acta Materialia,2003,51(9):2577-2594.
    [73]Zhang D., Dehm G, Clemens H. Effect of heat-treatments and hot-isostatic pressing on phase transformation and microstructure in a beta/B2 containing gamma-TiAl based alloy [J]. Scripta Materialia,2000,42(11):1065-1070.
    [74]Novoselova T., Malinov S., Sha W. Experimental study of the effects of heat treatment on microstructure and grain size of a gamma TiAl alloy [J]. Intermetallics,2003,11(5):491-499.
    [75]Jewett T. J., Ahrens B., Dahms M. Stability of TiAl in the Ti-Al-Cr system[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,1997,225(1-2):29-37.
    [76]Wang Y, Liu Y, Yang G. Y, et al. Microstructure of cast y-TiAl based alloy solidified from P phase region[J]. Transactions of Nonferrous Metals Society of China,2011,21(02):215-222.
    [77]黄劲松,刘咏,贺跃辉,等.热处理工艺对Ti-45Al-7Nb-0.15B-0.4W显微组织的影响[J].中国有色金属学报,2005,15(03):344-351.
    [78]Huang L., Liaw P. K., Liu Y., et al. Effect of hot-deformation on the microstructure of the Ti-Al-Nb-W-B alloy[J]. Intermetallics,2012,28(9):11-15.
    [79]Sun F. S., Cao C. X., Kim S. E., et al. Alloying mechanism of beta stabilizers in a TiAl alloy[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,2001,32(7):1573-1589.
    [80]Imaev V. M., Imaev R. M., Oleneva T. I., et al. Microstructure and mechanical properties of the intermetallic alloy Ti-45Al-6(Nb, Mo)-0.2B[J]. The Physics of Metals and Metallography,2008,106(6):641-648.
    [81]Imayev V., Khismatullin T., Imayev R. Microstructure and technological plasticity of cast intermetallic alloys on the basis of gamma-TiAl[J]. Physics of Metals and Metallography,2010,109(4):402-410.
    [82]Chen Y. Y., Niu H. Z., Kong F. T., et al. Microstructure and fracture toughness of a beta phase containing TiAl alloy[J]. Intermetallics,2011,19(10):1405-1410.
    [83]Zhu H., Seo D. Y., Maruyama K. Strengthening of lamellar TiAl alloys by precipitation bands of βo particles[J]. Materials Science and Engineering:A, 2009,510-511(15):14-19.
    [84]Imayev V., Oleneva T., Imayev R., et al. Microstructure and mechanical properties of low and heavy alloyed γ-TiAl+α2-Ti3Al based alloys subjected to different treatments[J]. Intermetallics,2012,26(0):91-97.
    [85]彭超群,黄伯云,贺跃辉.合金化对TiAl基合金性能的影响及机理[J].中国有色金属学报,1998,8(S1):11-17.
    [86]Ng K. S., Ngan A. H. W. Breakdown of Schmid's law in micropillars[J]. Scripta Materialia,2008,59(7):796-799.
    [87]唐建成.TiAl基合金组织演变与室温拉伸变形的研究[D].长沙:长沙:中南大学,2000.
    [88]Morris M. A., Li Y. G. Deformation Mechanisms and Slip Transfer in a Ti-44al-2mo Alloy [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,1995,197(2):133-145.
    [89]Court S. A., Lofvander J. P. A., Loretto M. H., et al. The Influence of Temperature and Alloying Additions on the Mechanisms of Plastic-Deformation of Ti3al[J]. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties,1990,61(1):109-139.
    [90]Kad B. K., Fraser H. L. On the Contribution of Climb to High-Temperature Deformation in Single-Phase Gamma-Tial[J]. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties,1994,69(4): 689-699.
    [91]Appel F. An electron microscope study of mechanical twinning and fracture in TiAl alloys[J]. Philosophical Magazine,2005,85(2-3):205-231.
    [92]Wiezorek J. M. K., Deluca P. M., Mills M. J., et al. Deformation mechanisms in a binary Ti-48 at.%Al alloy with lamellar microstructure[J]. Philosophical Magazine Letters,1997,75(5):271-280.
    [93]Godfrey A., Hu D., Loretto M. H. The role of the alpha(2) phase in the transmission of slip in lamellar TiAl-based alloys[J]. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 1998,77(2):287-297.
    [94]Zhu H. L., Seo D. Y, Maruyama K. Strengthening Behavior of Beta Phase in Lamellar Microstructure of TiAl Alloys[J]. Jom,2010,62(1):64-69.
    [95]吴诗惇.金属超塑性变形理论[M].北京:国防工业出版社,1997.
    [96]张俊红.TiAl基合金的组织超塑性研究[D].长沙:中南大学,2003.
    [97]Nobuki M., Tsujimoto T. Influence of Alloy Composition on Hot Deformation Properties of Ti-Al Binary Intermetallics [J]. Isij International,1991,31931.
    [98]Tsujimoto T., Hashimoto K., Nobuki M. Alloy design for improvement of ductility and workability of alloys based on intermetallic compound TiAl[J]. JIM, Materials Transactions,1992,33(11):989-1003.
    [99]鲁世强,黄伯云,贺跃辉,等.TiAl基合金的超塑性变形机理[J].稀有金属材料与工程,2003,32(7):481-485.
    [100]Cheng S. C., Wolfenstine J., Sherby O. D. Superplastic behavior of two-phase titanium aluminides[J]. Metallurgical Transactions A,1992,23(5):1509-1513.
    [101]Ameyama K., Uno H., Tokizane M. Superplastic behaviour of Ti-48at.%Al two-phase titanium aluminide compacts made from mechanically alloyed powder[J]. Intermetallics,1994,2(4):315-319.
    [102]Imayev R. M., Salishchev G. A., Senkov O. N., et al. Low-temperature superplasticity of titanium aluminides[J]. Materials Science and Engineering A, 2001,300(1-2):263-277.
    [103]Jimenez J. A., Ruano O. A., Frommeyer G, et al. Superplastic behaviour of two extruded gamma TiAl(Mo,Si) materials[J]. Intermetallics,2005,13(7):749-755.
    [104]Semiatin S. L., Segal V. M., Goetz R. L., et al. Workability of a gamma titanium aluminide alloy during equal channel angular extrusion[J]. Scripta Metallurgica et Materialia,1995,33(4):535-540.
    [105]Nieh T. G, Wadsworth J. Microstructural characteristics and deformation properties in superplastic intermetallics [J]. Materials Science and Engineering:A, 1997,239-240(0):88-96.
    [106]Nieh T. G, Wang J. N., Hsiung L. M., et al. Low temperature superplasticity in a TiAl alloy with a metastable microstructure[J]. Scripta Materialia,1997,37(6): 773-779.
    [107]Huang B., Deng Z., Liu Y, et al. Superplastic behavior of a TiAl-based alloy[J]. Intermetallics,2000,8(5-6):559-562.
    [108]Imayev V., Imayev R., Khismatullin T., et al. Superplastic behavior of Ti-43Al-7(Nb,Mo)-0.2B alloy in the cast plus heat-treated condition[J]. Scripta Materialia,2007,57(3):193-196.
    [109]Yoshio A. Manufacturing Proeess of TiAl sheets[J]. Light Metal,1994,44(11): 604-608.
    [110]Koeppe C., Bartels A., Clemens H., et al. Optimizing the properties of TiAl sheet material for application in heat protection shields or propulsion systems[J]. Materials Science and Engineering:A,1995,201(1-2):182-193.
    [111]Clemens H. Intermetallics TiAl based alloy sheet materials-proeessing and mechanical Properties[J]. Z. Metallkd.,1995,86(12):814-822.
    [112]Kaibyshev O. A.,李良福译.利用超塑性变形规范制造金属间化合物制件[J].国内钛合金动态,1999,7:7-10.
    [113]王旭.国外钛合金超塑性成形应用现状及发展趋势[J].航空工业,1989,8(4):20-25.
    [114]金展鹏.三元扩散偶及其在相图研究中的应用[J].中南矿冶学院学报,1983,1(3):27-36.
    [115]Zhao J. C. Diffusion Multiple Screening:Phase Diagram Determination and Related Studies[J]. in:BUSCHOW K. H. J., ROBERT W. C., MERTON C. F., BERNARD I., EDWARD J. K., SUBHASH M. and PATRICK V. (Eds.) Encyclopedia of Materials:Science and Technology, Elsevier, Oxford,2005: 1-13.
    [116]Zhao J. C., Peluso L. A., Jackson M. R., et al. Phase diagram of the Nb-Al-Si ternary system[J]. Journal of Alloys and Compounds,2003,360(1-2):183-188.
    [117]Zhao J. C., Jackson M. R., Peluso L. A. Mapping of the Nb-Ti-Si phase diagram using diffusion multiples[J]. Materials Science and Engineering A,2004, 372(1-2):21-27.
    [118]Zhao J. C., Zheng X., Cahill D. G. High-throughput diffusion multiples[J]. Materials Today,2005,8(10):28-37.
    [119]Zhao J. C. Phase diagram determination using diffusion multiples[J]. in:ZHAO J. C. (Ed.) Methods for Phase Diagram Determination, Elsevier Science Ltd, Oxford,2007:246-272.
    [120]Austin C. Y., Alan O. W. Materials Thermodynamics[M]. New Jersey:John Wiley & Sons,2010.
    [121]Ikehata H., Nagasako N., Furuta T., et al. First-principles calculations for development of low elastic modulus Ti alloys[J]. Physical Review B,2004, 70(17).
    [122]Ho W. F., Ju C. P., Lin J. H. C. Structure and properties of cast binary Ti-Mo alloys[J]. Biomaterials,1999,20(22):2115-2122.
    [123]Hill R. The Elastic Behaviour of a Crystalline Aggregate[J]. Proceedings of the Physical Society. Section A,1952,65(5):349.
    [124]吴昌义.b型钛合金相稳定性和弹性性能第一性原理研究[D].湘潭:湘潭大学,2011.
    [125]刘恩雪,王清,马仁涛,等.低Nb含量Ti-Mo-Nb-Zr-Sn BCC氐弹性模量固溶体合金的成分设计[J].中国有色金属学报,2012,22(12):3378-3385.
    [126]Sato A., Meshii M. Solid solution softening and solid solution hardening[J]. Acta Metallurgica,1973,21:753-768.
    [127]Liu C. T., Fu C. L., Pike L. M., et al. Magnetism-induced solid solution effects in intermetallic Ni60Al40[J]. Acta Materialia,2002,50(12):3205-3212.
    [128]Fine M.E., Weertman J., Freeman A.. Cr-Based Alloys[R]. in:a NSF-sponsored project, Northwestern University,2004.
    [129]Urakami A. Effect of Li additions on mechanical properties of Mg based single crystals in basal and prinsmatic sliping[D]. Evanston:Northwestern University, 1971.
    [130]Hao S., Weertman H. A Variational Principle of Dislocations Kinetic in Crystals and a Toughening Mechanism of BCC or HCP Metals[J]. in:ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, Colorado, USA,2011:715-723.
    [131]Yi S. Phase equilibria and development of β0+g two phase microstructures in gamma-based Ti-Al-Mo ternary alloys[D]. United States-Wisconsin:The University of Wisconsin-Madison,1997:249.
    [132]Morris M. A., Li Y. G, Leboeuf M. Variation of the phase distribution in a Ti-44Al-2Mo alloy by annealing:Influence on its strength and ductility [J]. Scripta Metallurgica et Materialia,1994,31(4):449-454.
    [133]Nishikiori S., Matsuda K., Nakagawa Y. G. Microstructural effects on tensile properties of cast TiAl-Fe-V-B alloy [J]. Materials Science and Engineering:A, 1997,239-240(0):592-599.
    [134]Tokar A., Berner A., Levin L. The origin of a new phase observed during quenching of a TiAl-2Fe alloy [J]. Materials Science and Engineering:A,2001, 308(1-2):13-18.
    [135]胡汉起.金属凝固[M].北京:冶金工业出版社,1985.
    [136]郝士明.材料热力学[M].北京:化学工业出版社,2004.
    [137]Barin I. Thermochemical Data of Pure Substances[M]. Weinheim:VCH Verlagsgesellschaft mbH,1995.
    [138]Lifshitz I. M., Slyozov V. V. The kinetics of precipitation from supersaturated solid solutions[J]. Journal of Physics and Chemistry of Solids,1961,19(1-2): 35-50.
    [139]Liang X. P., Liu Y., Li H. Z., et al. Constitutive relationship for high temperature deformation of powder metallurgy Ti-47Al-2Cr-2Nb-0.2W alloy[J]. Materials & Design,2012,37:40-47.
    [140]黎文献,杨军军,肖于德.Al-Fe-V-Si合金高温变形热模拟[J].中南工业大学学报(自然科学版),2000,31:56-59.
    [141]Mcqueen H. J., Ryan N. D. Constitutive analysis in hot working[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2002,322(1-2):43-63.
    [142]Mcqueen H. J., Imbert C. a. C. Dynamic recrystallization:plasticity enhancing structural development J]. Journal of Alloys and Compounds,2004,378(1-2): 35-43.
    [143]Mcqueen H. J., Fry E., Belling J. Comparative constitutive constants for hot working of Al-4.4Mg-0.7Mn (AA5083)[J]. Journal of Materials Engineering and Performance,2001,10(2):164-172.
    [144]Doherty R. D., Hughes D. A., Humphreys F. J., et al. Current issues in recrystallization:A review[J]. Materials Today,1998,1(2):14-15.
    [145]Mohri T., Mabuchi M., Nakamura M., et al. Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2000,290(1-2): 139-144.
    [146]Brockman R. A. Analysis of elastic-plastic deformation in TiAl polycrystals[J]. International Journal of Plasticity,2003,19(10):1749-1772.
    [147]Marketz W. T., Fischer F. D., Clemens H. Deformation mechanisms in TiAl intermetallics-experiments and modeling[J]. International Journal of Plasticity, 2003,19(3):281-321.
    [148]Deng T. Q., Ye L., Sun H. F., et al. Development of flow stress model for hot deformation of Ti-47%Al alloy[J]. Transactions of Nonferrous Metals Society of China,2011,21, Supplement 2(0):s308-s314.
    [149]Liu B., Liu Y, Li Y. P., et al. Thermomechanical characterization of p-stabilized Ti-45Al-7Nb-0.4W-0.15B alloy[J]. Intermetallics,2011,19(8):1184-1190.
    [150]Zhang W., Liu Y, Wang L., et al. Numerical simulation and physical analysis for dynamic behaviors of P/M TiAl alloy in hot-packed forging process [J]. Transactions of Nonferrous Metals Society of China,2012,22(4):901-906.
    [151]Prasad Y, Gegel H. L., Doraivelu S. M, et al. Modeling of dynamic material behavior in hot deformation:Forging of Ti-6242[J]. Metallurgical Transactions A, 1984,15(10):1883-1892.
    [152]Prasad Y. Recent advances in the science of mechanical processing[J]. Indian Journal of Technology,1990,28(6-8):435-441.
    [153]Ravichandran N., Prasad Y. Dynamic recrystallization during hot deformation of aluminum:A study using processing maps[J]. Metallurgical Transactions A, 1991,22(10):2339-2348.
    [154]Shen G, Vedhanayagam A., Kropp E., et al. A method for evaluating friction using a backward extrusion-type forging[J]. Journal of Materials Processing Technology,1992,33(1-2):109-123.
    [155]Roebuck B., Lord J. D., Brooks M., et al. Measurement of flow stress in hot axisymmetric compression tests [J]. Materials at High Temperatures,2006,23(2): 59-83.
    [156]黄海清,周文龙,陈国清,等.滚珠旋压应变与变形均匀性的有限元分析[J].航天制造技术,2010,3:21-25.
    [157]何景素,王燕文.金属的超塑性[M].北京:科学出版社,1986.
    [158]林兆荣.金属超塑性成形原理及应用[M].北京:航空工业出版社,1980.
    [159]Sun J., Wu J. S., He Y. H. Improved superplasticity in a TiAl-based alloy subjected to thermo-mechanical processing[J]. Zeitschrift Fur Metallkunde,2000, 91(6):472-476.
    [160]Liu B., Liu Y, Li Y P., et al. Thermomechanical characterization of beta-stabilized Ti-45Al-7Nb-0.4W-0.15B alloy[J]. Intermetallics,2011,19(8): 1184-1190.
    [161]梁伟,李强,刘会亭,等.双相层片型TiAl基合金中γ相的形变孪生[J].金属学报,1996,2(32):154-159.
    [162]张俊善.材料的高温变形与断裂[M].北京:科学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700