用户名: 密码: 验证码:
松软破碎围岩巷道柔模混凝土支护研究与实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用理论研究、数值计算分析和现场工业性试验以及监测的方法,通过柔模混凝土支护原理的研究,包括锚碹联合支护及锚碹缓冲层联合支护形式,并针对松软破碎围岩巷道实际工程地质条件,提出了合理的支护参数设计方法和生产作业线,并将光纤光栅监测技术用于柔模混凝土支护应用监测中,为柔模混凝土巷道支护技术的推广应用奠定了理论基础。对以下问题开展了深入研究。
     (1)针对松软破碎围岩巷道,提出柔模混凝土巷道支护结构。根据岩碹组合梁理论,分析了锚碹联合支护作用原理及锚杆的作用,锚杆一方面增加了岩层与碹层之间的摩擦力,形成关键支撑架,避免两层出现离层现象;另一方面,锚杆杆体可增加岩层间的抗剪刚度,防止岩层间的水平错动,从而将锚杆的锚固范围内的岩层与碹层锁紧成一个较厚的组合梁,在混凝土强度形成前发挥过渡作用。研究了组合拱与柔模混凝土碹形成组合梁后,柔模混凝土支护结构整体稳定性。
     (2)围岩与柔模混凝土碹体形成一种共同体,研究了围岩性态及其变化状况对柔模混凝土碹体的作用,以及柔模混凝土碹体所受的压力及其变形,柔模混凝土碹体以自己的刚度和强度抑制围岩的变形和破裂的进一步发展,这一过程同样影响到柔模混凝土碹体自身的受力。以红柳煤矿缓坡副斜井柔模混凝土支护为依托,根据实际地质条件,提出柔模混凝土巷道支护参数设计方法。柔模混凝土支护是一种新型快速支护方式,适合煤矿松软破碎条件下安全快速施工的要求。
     (3)采用数值模拟计算方法,分析在仅有锚杆支护的条件下、锚杆与柔模混凝土碹体支护条件下,巷道顶底板位移、两帮位移,及巷道周边塑性区范围。得出锚杆和柔模混凝土碹体支护条件下,锚杆受力较小,没有发生塑性区,支护结构稳定性良好。
     (4)根据柔模混凝土支护具有的稳定性好、施工方便、工人劳动强度低、施工速度快等优点,研究了柔模混凝土支护施工工艺,建立了施工中工艺过程,制定了相应的施工质量控制及验收标准,为柔模混凝土支护的规范化操作提供了参考依据。研究无机化学锚固剂、外加剂的作用,柔性模板的滤水作用与外加剂分散作用形成自密实混凝土,节约了振捣工序;一次性浇注面积大,在泵压作用下混凝土相互挤密咬合,无回弹、无粉尘,保证了施工人员的健康。
     (5)在工程实践中,采用光纤光栅监测系统、激光位移实时监测系统等监测手段对柔模混凝土支护结构进行了支护质量监测,分析柔模混凝土支护的变形和锚杆的受力。光纤光栅系统监测了锚杆轴向力的大小,反映出柔模混凝土支护过程中围岩压力的变化,锚杆轴向力在支护过程中经历了先增大,后减小最后趋于稳定的状态。监测表明,柔模混凝土碹体在支护后与锚杆共同承载,整体支护结构稳定。
     (6)研究成果成功地应用于红柳煤矿缓坡副斜井支护施工,在服务期间内,巷道不需要维修,满足生产要求,取得了显著的技术、经济效益。
This dissertation studies the flexible formwork and concrete roadway support theory,including the anchored crown anchor combined supporting principle and buffer layer combinedsupporting principle, according to the actual geological conditions, puts forward the reasonablesupport parameter design method and production line, for the future application of flexibleformwork and concrete roadway supporting technology provides the theoretical basis anddesign method. The content of this paper is solving this problem, the technical route andinnovations. According to the research content, determined by theoretical study, numericalanalysis and in-situ test, combined with the research method of the monitoring system of fiberBragg grating. Through the research and practice the following results obtained:
     The first,according to the rock of combined beam theory, combination arch is a layer of alayer, body, roof bolt action, one is the friction between the anchoring force of strata and crownlayer, prevent sliding along the two layer, the two layer to avoid separation phenomenon; on theother hand, the anchor rod body can increase the shear stiffness among strata, prevent wrongamong strata moving, so the strata and crown layer anchorage range bolt of locking into a thickcomposite beam. Combined arch with flexible formwork arch formed concrete compositebeams, the bending moment is the only flexible formwork and concrete arch support moment0.063times, at this moment, greatly flexible formwork and concrete arch reduction, flexibleformwork and concrete supporting structure greatly improves the overall stability. Rock archbeam Yu yan arch laminated beam and flexible formwork and concrete arch with maximumtensile stress, reduced by11times, the bending moment is reduced by93%, large bearingcapacity increase.
     The second,soft mould pump note concrete support and concrete block Xuan build by laying bricks or stones compared with good stability, supporting capacity big, construction isconvenient, labor intensity low, construction speed etc; Fiber template filter water action andadmixture dispersion effect form self-compacting concrete, saving vibro process, improve thestrength of concrete at the same time for pumping concrete mechanical work provided acondition; Pump note concrete high mechanization degree, and construction speed is quick, acasting large thickness, high strength concrete, no rebound, no dust, and ensured theconstruction personnel health. In China using inorganic chemical anchoring agent, its materialand soil close, bonding effect is good, than resin anchoring agent and reliable, and easyinstallation, low cost, Soft mould pump note concrete support is a new type of rapid supportingmethod, suitable for Philippine coal mine soil conditions and the requirements of rapidconstruction safety.
     The third,fiber grating system can monitor the bolt axial force, reflected the change ofsurrounding rock pressure flexible formwork and concrete supporting process, support changesin the structure of the force, the axial force of bolt experienced increases in supporting process,and then decreases the final stable state. Bolt axial force on the flexible formwork and concretesupport6to7days after supporting peak, the maximum11.2kN, basically stable at20dayslater, and smaller stress, maximum8.42kN, flexible formwork and concrete arch in supportingwith bolt joint bearing, the supporting structure stability.
     The forth,rock arch composite beam theory calculation were not considered in theconnection of combined arch and flexible formwork and concrete arch bolt strength, stiffness,density, the simulations also had no effect on the anchor geometry size and different layout offlexible formwork and concrete arch bending moment of comparative studies; the anchorcombined support of buffer layer protecting just discussed earlier theories, there are manyproblems need to be further study and work to continue to explore and research.
     The fifth,in engineering practice,employ fiber bragg gratings monitoring system and laserdisplacement real-time monitoring system to monitor supporting quality of the flexibleformwork and concrete roadway supporting structure,analyse deformation of flexibleformwork concrete roadway supporting and the stress of the bolt.Fiber bragg gratingsmonitored the bolt axial stress,reflects the variation of the surrounding rocks stress in flexibleformwork and concrete roadway supporting.The bolt axial stress increases first,thendecreases,finaly gets stable in the supporting period.Monitoring demonstrates that the flexibleformwork concrete masonry bears the load with bolt,the whole supporting structure becomessteady.
     The end,research achievement put into use in Hongliu mine gentle slope inclined shaft supporting construction,in service period,the roadway needs no maintain,satisfy themanufacture requirement,attains remarkable technology and economic benefits.
引文
[1]张梁,业成,罗元华.地质灾害灾情评估理论与实践[M].北京:地质出版社,1998.
    [2]向喜琼,黄润秋.地质灾害风险评价与风险管理[J].地质灾害与环境保护,2000,11(1):38~41.
    [3]王得楷.泥石流灾害危险性评估技术分析[J].甘肃科学学报,2009,21(4):51~54.
    [4] DAVIS John C,CHUNG Chang~Jo,OHLMACHER Gregory C.Two models for evaluatinglandslide hazards[J].Computers and Geosciences.2006,32(8):1120~1127.
    [5] WIECZOREK G.F,MORGAN B.A,CAMPBELL R.H.Debris~flow hazards in the blueridge of central virginia environmental and engineering[J].Geoscience.2000,6(1):3~23.
    [6] WHITEHEAD J H,Leventhal Andrew.On~site wastewater management system design andlandslide risk assessment[J].Water Science and Technology.2005,51(10):55~63.
    [7] LEE E. Mark. Landslide risk assessment[J].The Challenge of Estimating the Probability ofLandsliding.2009,42(4):445~458.
    [8] FELL Robin. Landslide risk assessment and acceptable risk[J].Canadian GeotechnicalJournal,1994,31(2):261~272.
    [9]何满朝,景海河,孙晓明.软岩工程地质力学研究进展[J].工程地质学报,2000,8(1):46~62.
    [10]何满朝,郭志飚,任爱武,等.柳海矿运输大巷返修工程深部软岩支护设计研究[J].岩土工程学报,2005,27(9):977~980.
    [11]刘泉声,张华,林涛.煤矿深部岩巷围岩稳定与支护对策[J].岩石力学与工程学报,2004,23(21):3732~3737.
    [12]王连国.深部高应力极软岩巷道锚注支护技术研究[J].岩石力学与工程学报,2005,24(16):2889~2893.
    [13]邓昕.松散破碎围岩锚注机理分析及其在返修巷道中的应用[J].煤炭技术,2007,26(6):92~94.
    [14]刘泉声,白山云,肖春喜.基于现场监控量测的龙潭隧道施工围岩稳定性研究[J].岩石力学与工程学报,2007,26(10):1982~1990.
    [15]李利平,李术才,张庆松.浅埋大跨隧道现场试验研究[J].岩石力学与工程学报,2007,26(7):3555~3571.
    [16]李宁,陈蕴生,陈方方.地下硐室围岩稳定性评判方法新探讨[J].岩石力学与工程学报,2007,25(9):1941~1944.
    [17]蔡绍怀.现代钢管混凝土结构(修订版)[M].北京:人民交通出版社,2007.
    [18]韩林海,钟善桐.钢管混凝土力学[M].大连:大连理工大学出版社,1995.
    [19]臧德胜,王强.钢管混凝土支护模型试验研究[J].岩土工程学报,2001,23(3):342~344.
    [20]李春玉,张海戈,王志勤等.三软煤层放顶煤的矿压特点及液压支架的设计和实践.中国煤炭,1995(6):28~32.
    [21]丁克宽,马光弟.井巷工程[M].北京:煤炭工业出版社,1980.
    [22]张宝安.深部软岩回采巷道高应力复杂条件下锚网索复合支护研究[D].辽宁工程技术大学.2005.
    [23]何满潮.中国煤矿巷道支护理论与实践[M.]徐州:中国矿业大学出版社,1996:20~25.
    [24]薛顺勋,聂光国,等.软岩巷道支护技术指南[M].北京:煤炭工业出版社,2001:68~75.
    [25] Obert L. and Duvall W.I..Rock Mechanics and the Design of Structure in Rock.JohnWiley&Sons,1967.
    [26]杨米加,贺永年.试论破坏后岩石强度[J].岩石力学与工程学报,1998,17(4):379~385.
    [27] He Manchao,et al. The concept of soft rock and its classification[J].Threcurrent conditionand its prospects on the research of the soft rock engineering at the joint of the century.Beijing coal Industry press,1999.
    [28]韩瑞庚.地下工程新奥法[M].北京:科学出版社,1987:86~92.
    [29] Brown ET. Putting the NATM into Perspective[M].Tunnels and Tunneling SpecialIssue,1990,76~79.
    [30]于学馥,郑颖人,刘听成.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1993:16~19.
    [31] Stankusa J.C.Peng S.S.New concept for roof support.Coal Age[J].1996(Sep):67~70.
    [32] Roy S.Rajagopalan A.B.Analysis of rockbolt reinforcement using beam-columntheory[J].International Journal for Numerical and Analytical Methods inGeomechanics,1997,21(4):241~253.
    [33] Broch E.Myrvang A.M,Stjern G.Support of large rovk caverns in Norway[J].TunnellTunnelling and Underground Space Technology,1996,11(1):11~19.
    [34]蔡美峰,何满朝,刘东燕.岩石力学与工程[M].北京:科学出版社,2002:75~86.
    [35]苗国航.我国预应力岩土锚固技术的现状与发展[J].地质与勘探.2003,39(3):91~94.
    [36]秦爱新.全长锚固锚杆支护力学分析[J].河北煤炭,2001(1):3~5.
    [37]张建勇,郑富德.锚杆的作用力对锚固体力学性质的影响[J].山西煤炭,2002,22(2):9~11.
    [38]马国谚,常振华.岩体灌浆排水锚固理论与实践[M].中国水利水电出版社,2002.
    [39] Stankusa J.C.,Peng S.S.New concept for roof support[J].Coal Age,1996,101(9):67~70.
    [40]王思敬.地下工程岩体稳定性分析[M].北京:科学出版社,1984.
    [41]杨建辉,杨万斌,武梅良.煤巷板裂结构顶板锚杆一种设计方法及应用[J].煤炭科学技术,2000,28(10):42~451.
    [42]杨建辉.碎裂结构顶板锚杆支护实践[J].矿冶,2004,12:17~19.
    [43]庞占熬,雷浪法.李家峡水电站3号滑坡体预应力锚索施工[J].陕西水利发电,1997,13(1):38~42.
    [44]张玉军,孙钧.锚固岩体的流变模型及计算方法[J].岩土工程学报,1994,16(3):33~45.
    [45]孟祥瑞,舒航.煤巷锚杆支护设计专家决策支持系统[J].煤矿自动化,1999(4):6~7.
    [46]于学馥,乔瑞.轴变论和围岩稳定轴比三规律[J].有色金属,1981,33(3):8~15.
    [47]于学馥,等.岩石力学新概念与开挖结构优化设计[M].科学出版社,1995.
    [48]陆家梁.软岩巷道支护技术[M].吉林:吉林科学出版社,1995:52~55.
    [49]何满潮,等.软岩工程力学[M].科学出版社:2002:8~11.
    [50]郑雨天,祝顺义,李庶林,等.软岩巷道锚喷网—弧板复合支护试验研究[J].岩石力学与工程学报,1993,12(1):1~10.
    [51]董方庭,宋宏伟,郭志宏,等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(5):101~104.
    [52]董方庭,宋宏伟,等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):45~48.
    [53]董方庭,等.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001.
    [54]宋宏伟,郭志宏,等.围岩松动圈巷道支护理论的基本观点[J].建井技术,1991(3):12~15.
    [55] F.O.Franclss.Weak Rock Tunneling[M].A.A.Balkema press,1997:36~41.
    [56]曲永新.软弱夹层的工程地质预报.工程地质力学研究[M].地质出版社,1985.
    [57]谢和平,陈忠辉.岩石力学[M].科学出版社,2004.
    [58]夏佳.软岩特性及判别方法[J].南京建筑工程学院学报,1994,(1):31~37.
    [59]陈宗基.地下巷道长期稳定性的力学问题[J].岩土力学与工程报,1982,(1):1~20.
    [60]杨和平,曲永新,郑健龙.宁明膨胀土研究的新进展[J].岩土工程学报,2005,(9):981~987.
    [61]李洪志.中国煤矿膨胀型软岩工程地球化学研究[J].地学前缘,1996,3:1~2.
    [62]彭涛,何满潮,马伟民.煤矿软岩的粘土矿物成分及特征水文地质工程[J].1995(2):40~48.
    [63]温春莲,陈新万.初始含水率、容重及载荷对膨胀岩特性影响的试验研究[J].岩石力学与工程学报,1992,(1):304~311.
    [64]吴恩江,韩宝平,王桂梁.山东兖州煤矿区侏罗纪红层孔隙测试及其影响因素分析[J].高校地质学报,2005,11(3):442~452.
    [65]王树义,闫海明.对碎屑沉积岩构造裂隙水的认识[J].地下水,1995,(3):117~118.
    [66]郭志.岩体破坏机制和力学特性的围压效应[J].水文地质工程质,1985,(4):45~47.
    [67]范秋雁.对软岩定义和巷道临界埋深的讨论[J].矿山压力与顶板理,1995,115~117.
    [68]孙钧,曹刃.软岩塑应变软化与巷道支护的蠕变效应[J].金属矿山,1986,(8):6~12.
    [69]何满潮,景河海,孙晓明.软岩工程力学[M].北京科学出版社,2002:45~89.
    [70]薛守义.论连续介质概念与岩体的连续介质模型[J].岩石力学与工程报,1999,18(2):230~232.
    [71] Goodman.R.E and Shi Gen-hua,Block Theory and Its Application to Rock Engineering[M].New jersey:Prentice-hall.
    [72] R. Hart, P.A. Cundall and J. Lemos. Formulation of a three-dimensional distinct elementmodel—Part II. Mechanical calculations for motion and interaction of a system composedof many polyhedral blocks[J].International Journal of Rock Mechanics and MiningSciences&Geomechanics,1988,25(3):117~125.
    [73]石根华.不连续变形分析及其在隧道工程中的应用[J].工程学,1985,2(2):161~170.
    [74]裴觉民,石根华,R.E.Goodman.水电站地下厂房洞室的关键块体分析[J].ChineseJournal of Rock Mechanics and Engineering,1990,(1):11~21.
    [75]石根华.数值流形元方法与非连续变形分析[M].北京:清华大学出版社,1997.
    [76]于学馥.重新认识岩石力学与工程的方法论问题[J].岩石力学与工程学报,1994,13(3):279~282.
    [77]杨学堂,哈秋龄,等.厚层软岩与硬岩互层岩体高边坡卸荷变形与支护研究[J].2004,23(16):2681~2686.
    [78]杨学堂.工程岩体卸荷力学特性的研究与发展[J].岩土工程技术,2005,19(1):32~35.
    [79]张文佑,李荫愧,马福.地堑形成的力学机制[J].地质科学,1981,(1):1~11.
    [80]谷德振.从工程地质实践探讨地质力学的发展[J].地质评论,1979,25(1):39~41.
    [81]王祥秋,杨林德,高文华.软弱围岩蠕变损伤机理及合理支护时间的反演分析[J].岩石力学与工程学报,2004,23(5):793~796.
    [82]孙钧.岩体力学反演分析的概率方法及其工程应用[C].见:钱七虎,王良玺,徐志英主编.第一届华东岩土工程学术大会论文集.1990:477~483.
    [83]柴敬.层状岩体变形与破坏光纤传感检测基础实验研究[D].西安:西安科技大学:2003.
    [84] AGLAWE,JayPrataPrao. Unstableand violent failure around underground openings inhighly stressed ground.[Ph.D.Thesis][D].Canada:Queen’s University at Kingston,1999.
    [85]周小平,钱七虎.深埋巷道分区破裂化机制[J].岩石力学与工程学报,2007,26(5):877~885.
    [86]王明洋,宋华,等.深部巷道围岩的分区破裂机制及“深部”界定探讨[J].岩石力学与工程学报,2006,25(9):1771~1775.
    [87]贺永年,蒋斌松.深部巷道围岩间隔性区域断裂研究[J].中国矿业大学学报,2008,37(3):300~304.
    [88]顾金才,顾雷雨,陈安敏,等.深部开挖硐室围岩分层断裂破坏机制模型试验研究[J].岩石力学与工程学报,2008,27(3):433~438.
    [89]高丹盈,刘建秀.钢纤维混凝土基本理论[M].科学技术文献出版社,1994.
    [90]陈润峰,张国防,顾国芳.我国合成纤维研究进展与应用现状[J].建筑材料学报,20014(2):167~173.
    [91]陈建业(译).纤维水泥与纤维混凝土[M].北京:中国建筑工业出版社,1980:56~61.
    [92]陈德红.秦岭I号线隧道湿喷混凝土施工技术[J].铁道建筑技术,1991(1):31~32.
    [93]陈锋.聚丙烯纤维喷混凝土在黎南复线的试验应用[J].西部探矿工程,2001,13(3):3~4.
    [94]王建秀,朱合华,唐益群.连拱隧道裂缝运动的监测与分析[J].土木工程学报,2007,40(5):69~73.
    [95]付荣,范明建.煤矿软岩巷道支护现状及发展趋势[J].煤炭学报,2007,16(6):10~12.
    [96]黄菊华,钱应平,李厚民.不同形式叠合梁的应力分析[J].湖北工业大学学报,2008,23(3):87~89.
    [97]何满潮,孙晓明.中国煤矿软岩巷道工程支护设计与施工指南[M].科学出版社,2004.
    [98]周金城.柔模泵注混凝土在沿空留巷支护技术的应用[J].煤矿支护,2010,4:1~5.
    [99]张新华.红柳煤矿井巷柔模混凝土巷道支护作用的FLAC模拟[J].西部矿山建设工程理论与实践,2009.
    [100]柴敬,等.松散地层深部沉降变形的光纤Bragg光栅监测[J].煤炭学报,2009,34(6):741~746.
    [101] Chai Jing,Wei Shi-ming,Liu Jin-xuan.Study on rock deformation monitoring using fiberBragg grating in simulation experiment[J].Journal of Coal Science&Engineering(China).2006,12(2):30~33.
    [102]柴敬,魏世明,相似材料中光纤传感检测特性分析[J].中国矿业大学学报,2007,36(4):458~462.
    [103]柴敬,魏世明,常心坦.岩梁变形监测的分布式光纤传感技术[J].岩石力学与工程学报,2004,23(23):4068~4071.
    [104]柴敬,常心坦.光纤传感器在相似材料模型测试中的相容性研究[J].实验力学,2004,4:453~458.
    [105]柴敬,魏世明,常心坦,等.相似材料模型实验中的OTDR检测方法[C].中国岩石力学与工程学会第八次大会文集,中国科学技术出版社,2004.
    [106]魏世明,柴敬.岩梁小变形的光纤光栅检测方法研究[J].地下空间与工程学报,2005,1(6):986~989.
    [107]魏世明,柴敬.相似模拟实验中光纤光栅传感检测研究[J].地下空间与工程学报,2007,(6):1171~1175.
    [108]曹野.基于数值模拟的顶板围岩损伤过程动力响应信号的能量分析[J].岩石力学与工程学报.2009,28(1):3137~3145.
    [109]南秋明.贴片式FBG传感器在锚固工程中的应用[J].科技信息,2006(1):11~13.
    [110]冯仁俊.基于光纤光栅测试的全长锚固锚杆实验研究[D].西安科技大学,2006.
    [111]柴敬.光纤Bragg光栅锚杆应力应变监测系统[J].西安科技大学学报,2005,25(1):1~4.
    [112]黄志怀,等.BOTDR技术监测GFRP锚杆应变试验研究[J].华北水利水电学院学报,2005,26(2):49~51.
    [113]黄晓东.GFRP锚杆工作状态下的应变分布特征研究[J].中外公路,2006,26(2):58~60.
    [114]隋海波.基于BOTDR的锚杆拉拔试验研究[J].岩土工程学报,2008,30(5):755~759.
    [115]李国维.全长粘结玻璃纤维增强聚合物锚杆破坏机制拉拔模型试验[J].岩石力学与工程学报,2007,26(8):1653~1663.
    [116]邓年春,付振安.光纤光栅纤维增强塑料筋锚杆[J].煤炭技术,2005,24(11):53~55.
    [117]杨亚平.组合梁应力分析.青海大学学报(自然科学版),2003,21(6):54~56.
    [118]刘高,聂德新,等.高应力软岩巷道围岩变形破坏研究[J].岩石力学与工程学报,2000,19(6):726~730.
    [119]周宏伟,谢和平,等.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91~99.
    [120]伍永平,来兴平,南葆,等.深部高应力松软岩层稳定性监测及实验研究[J].西安科技大学学报,2005,25(4):407~410.
    [121] TalobreJ.岩石力学[M].中国工业出版社,1982.
    [122]王焕文,王继良,等.锚喷支护[M].煤炭工业出版社,1989.
    [123]王建宇.锚喷支护原理和设计[M].中国铁道出版社,1980.
    [124]中华人民共和国交通部.公路隧道设计规范(JTGD702004).
    [125]张荣立,何国纬,李铎.采矿工程设计手册[M].煤炭工业出版社,2003.
    [126]吴玉意,王晓利,陈永峰.松软地层大断面井巷最小支护厚度计算方法及应用[J].煤炭技术,2009,28(8):134~136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700