用户名: 密码: 验证码:
氨性溶液中铜、镍、锌金属离子的萃取行为及微观机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
立足于解决国内紧缺战略有色金属矿产资源高效利用的难题,开发适合低品位矿、尾矿等非传统矿物的技术和工艺流程是我国有色冶金工业发展的重要方向。在众多的冶炼技术中,“氨浸—萃取—电积”工艺是处理低品位复杂氧化矿物最具前景的技术之一,萃取工序是该技术中最关键的步骤。因此,清楚掌握萃取过程的机理对改进萃取剂配方、设计萃取工艺流程具有重要意义。
     本文以铜、镍、锌金属为研究对象,以实验室合成的1-苯基-4-乙基-1,3-辛二酮(HA)为萃取剂,从萃取平衡和溶液结构两个方面,系统研究了氨-硫酸铵溶液中铜、镍、锌金属离子的萃取行为,分析了水和氨在萃取有机相中的分配规律,结合紫外-可见光谱(UV-Vis)、红外光谱(FT-IR)和X-射线近边吸收光谱(XANES)和扩展X-射线精细结构光谱(EXAFS)等方法研究了水相及有机相中的物种及其微观结构对萃取过程的影响,阐明了氨性溶液中铜、镍、锌金属离子的微观萃取机理,为低品位复杂氧化矿物氨配合冶金体系的建立提供了可靠的理论依据。
     具体研究内容及结论如下:
     (1)系统研究了氨性溶液中铜离子的萃取行为和微观机理。发现1-苯基-4-乙基-1,3-辛二酮在氨性体系可高效萃取铜离子,水相中铜氨配位离子的生成会抑制铜萃取反应,当pH>8.5时铜萃取率显著下降;萃取有机相中水分子不与铜萃合物配位,而少量氨分子可随铜萃合物萃取进入有机相;p-二酮与铜离子主要形成平面四边形构型的CuA2萃合物,其结构不受水相pH的影响;随着pH升高,氨性溶液中铜离子的结构从变形八面体构型逐渐转变为扭曲的平面四边形构型,从而抑制了铜离子的萃取,导致高pH下铜萃取率急剧下降。
     (2)系统研究了氨性溶液中镍离子的萃取行为和微观机理。发现氨性溶液pH对镍离子的萃取具有明显影响,镍萃取率在pH<8.5时随pH升高而增大,但在8.59.5时开始显著升高;水分子和氨分子可与镍萃合物配位进入有机相,生成的水合及氨配位镍萃合物降低了萃合物在非极性溶剂中的溶解度,从而抑制了镍离子的萃取;当水相pH>9.5时有机相析出绿色的萃合物晶体,有效降低了非有机相中镍萃合物的浓度,从而促进了镍离子的萃取反应,但该萃取行为不利于工业实际应用;有机相中镍萃合物组成为NiA2·H2O·NH3,萃合物在有机相中的结构与萃取法制备的镍萃合物结构相同,均为八面体构型。在镍氨溶液中,随着pH的增大,氨分子逐级取代镍离子中的水分子,形成各种稳定的镍氨物种,虽然其配位结构均为八面体构型,但镍氨物种的稳定性逐渐增大,尤其是Ni(NH3)52+和Ni(NH3)62+的生成显著抑制了萃取反应的进行。(3)系统研究了氨性溶液中锌离子的萃取行为和微观萃取机理。结果表明,氨性体系锌离子的萃取平衡对水相pH非常敏感,尤其是在pH>7.35时锌萃取率急剧降低,在pH>9时基本没有萃锌能力;水分子和氨分子可直接与锌萃合物配位,形成水合及氨配位的锌萃合物,增大水相pH可促进氨配位锌萃合物的生成;有机相中锌离子主要为四面体构型的ZnA2萃合物,水分子和氨分子与部分ZnA2生成五配位ZnA2·H2O和ZnA2·NH3;水相中氨分子逐级取代水合锌离子的水分子,形成各种稳定的锌氨配位离子,抑制了锌离子的萃取反应;当第三个氨分子与锌离子配位后,使锌离子从八面体构型转变为更稳定四面体构型,导致高pH下锌萃取率急剧降低。
     (4)以正辛醇、甲苯和壬烷为溶剂,研究了氨性体系锌离子萃取过程中的溶剂效应。发现增大溶剂极性可显著提高氨性溶液中锌离子的萃取率,萃锌性能正辛醇>甲苯≈壬烷,疏水性较低的水合和氨配位锌萃合物在极性溶剂中更易溶解,从而促进了锌离子的萃取,但辛醇体系中锌离子的萃取率在pH>7.3时仍急剧下降,表明增大溶剂极性仍难以促进四面体构型锌氨离子的萃取。
     (5)以三辛基氧膦(TOPO)、磷酸三丁酯(TBP)和三丁基膦(TBuP)三种含磷中性配体(B)为协萃剂,研究了氨性体系锌离子萃取过程中的协同效应。发现加入协萃剂可显著提高氨性溶液中锌的萃取率,萃锌性能TOPO>TbuP>TBP,且TOPO和TBuP体系在7.26     (6)以1-丁基-3-甲基咪唑六氟磷酸盐([BMIM]PF6)、1-辛基-3-甲基咪唑六氟磷酸盐([OMIM]PF6)、1-丁基-3-甲基咪唑双三氟甲磺酰亚胺盐([BMIM]NTf2)、口1-辛基-3-甲基咪唑双三氟甲磺酰亚胺盐([OMIM]NTf2)等四种离子液体为溶剂,首次研究了离子液体萃取体系从氨性溶液中萃取锌离子的行为。结果表明,p-二酮与疏水性离子液体萃取体系可用于氨性溶液中锌离子的萃取,萃锌性能[BMIM]PF6>[BMIM]NTf2>[OMIM]PF6>[OMIM]NTf2,极性较强的离子液体有利于锌离子的萃取。在四种离子液体中,锌萃合物主要以五配位结构存在;强极性离子液体的离子组分可能与锌萃合物外配位层相互作用,从而增强了萃合物的稳定性,促进了锌离子的萃取。
The development of new technologies used for high efficient extraction of non-traditional ores, which include low grade ore, tailings, and drosses etc., is an urgent target in order to solve the shortage problem of strategic non-ferrous metal resources in china. Among many metallurgical methods, the "ammoniacal leaching—solvent extraction—acidic electrowinning"(AL-SX-AE) is one of the most promising technologies used to treat the low-grade complex oxide minerals. And solvent extraction is the most key process in this technology. Therefore, the detailed insights into the extraction mechanism are essential to optimize extractant formula and design the extraction process.
     In this paper, the home-made β-diketone extractant,1-phenyl-4-ethyl-1,3-octanedione (denote as HA), was used to extract copper(II), nickel(II) and zinc(II) from ammonia-ammoniacal sulfate solution. The distribution behavior of water and ammonia in the organic phase has been studied in the absence and presence of metal ions. The coordination structure of the species in both aqueous and organic phases was characterized by using of UV-Vis spectroscopy, FT-IR spectroscopy, X-ray absorption near edge structure spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The extraction mechanism has been elucidated in view of the extraction equilibrium and structural characteristics of species in both phases. The obtained data are helpful for the development and application of "AL-SX-AE" technology.
     1. The extraction behavior and microscopic mechanism of Cu(II) in ammonia-ammoniacal sulfate solution have been investigated.
     It was found that the1-phenyl-4-ethyl-1,3-octanedione is a superior extractant for Cu(II) in ammoniacal solution. The formation of copper ammonia complexes inhibits the extraction reaction of Cu(II), resulting in that the extraction efficiency decreases sharply at pH>8.5. Water molecules can not be coordinated with copper extracts in the organic phase, but a small amount of ammonia molecules can be co-extracted into organic phase with copper extracts. The extracted copper complexes (CuA2) are four coordinate structure with a square planar configuration, which is independent of the aqueous pH. However, as the pH increases, the coordination structure of copper ions in ammoniacal solution can be gradually transformed from a six-coordinated octahedral geometry into a distorted square planar configuration, which is the essential reason why the extraction efficiency of copper(Ⅱ) decreases.
     2. The extraction behavior and microscopic mechanism of nickel(Ⅱ) in ammonia-ammoniacal sulfate solution have been investigated.
     It was found that the extraction behavior of nickel(Ⅱ) is strongly dependent on the aqueous pH. When the pH is lower than8.5, the extraction efficiency of nickel(Ⅱ) increases with the increase of pH, but decreases at8.59.5, which should be the essential reason why the extraction efficiency of nickel dramatically increases when pH is larger than9.5. This extraction behavior of Ni(Ⅱ) is unfavorable for the industrial practical application. The composition of soild nickel extracts is NiA2·H2O·NH3and the coordination structure is identified with an octahedral configuration. The structure of nickel extracts in organic phase is identical to that of the solid extracts. In aqueous phase, ammonia molecule will substitute successive-ly water molecule of Ni(Ⅱ) to form more stable nickel ammonia species with an octahedral configuration, thus inhabiting the extraction reaction of Ni(Ⅱ). Especially, the formation of Ni(NH3)52+and Ni(NH3)62+decreases the extraction efficiency of nickel significantly.
     3. The extraction behavior and microscopic mechanism of zinc(Ⅱ) in ammonia-ammoniacal sulfate solution have been investigated.
     It was found that the extraction equilibrium of zinc is very sensitive to the aqueous pH. Especially, the extraction efficiency of zinc decreases sharply when pH is larger than7.35. Water and ammonia molecules can be co-extracted into organic phase by coordinated with zinc extracts. Thus, several equilibrium species could co-exist in the organic phase, i.e, ZnA2, hydrated ZnA2and ammonia-solvated ZnA2. The resulting hydrated and ammonia-coordinated zinc extracts have higher hydrophilicity, thereby depressing the distribution of the extracted zinc complexes in a non-polar hydrocarbon solvent. The coordination structure of ZnA2is identified with a tetrahedral geometry. The hydrated ZnA2and ammonia-coordinated ZnA2are penta-coordinate structure. In the ammoniacal solution, as the pH increases, ammonia molecule will substitute successively water molecule of zinc ion to form more stable zinc ammonia species. The coordination structure of zinc ions can be gradually transformed from a six-coordinated octahedral geometry into a four-coordinated tetrahedral configuration, thus the extraction efficiency of zinc will be sharply decreased at pH>7.35.
     4. The solvent effect on the extraction of zinc(Ⅱ) in ammoniacal solution has been investigated with n-octanol, toluene, and nonane as solvents.
     It was found that the increase of polarity of the solvent can promote the extraction reaction of zinc(Ⅱ) in ammoniacal solution. However, the extraction efficiency of zinc in octanol system still decreases sharply at pH>7.3. And the concentration of water and ammonia in octanol system dramatically increases with the increase of zinc concentration. The strong solvent effect in octanol system could be attributed to the role of hydrogen bonding between zinc extracts and octanol molecules, and the distribution of hydrated ZnA2and ammonia-solvated ZnA2into polar solvent can be improved. The zinc extract is a penta-coordinate structure.
     5. The synergistic effect on the extraction of zinc(Ⅱ) in ammoniacal solution has been investigated with tributyl phosphate (TBP), trioctyl-phosphine oxide (TOPO) and tributylphosphane (TBuP) as synergists.
     It was found that the addition of neutral phosphorus-containing ligands (denote as B) can significantly promote the extraction reaction of zinc(Ⅱ) in ammoniacal solution. And the extraction performance is stable at7.26     6. The extraction behavior of zinc(Ⅱ) from ammoniacal solution into four hydrophobic ionic liquids ([OMIM]PF6,[BMIM]PF6,[BMIM]NTf2and [OMIM]NTf2) was investigated with HA as the extractant.
     It was found that hydrophobic ILs combined with HA can be used to extract zinc(Ⅱ) from ammoniacal solutions. The extraction behavior of zinc(Ⅱ) is dependent on the zinc species in ammoniacal solutions and the hydrophobicity of ILs. The extraction efficiency of zinc decreases in the order of [BMIM]PF6>[BMIM]NTf2>[OMIM]PF6>[OMIM]NTf2. The zinc extract in four ionic liquids is mainly the penta-coordinated structure, and the average coordination number of the zinc extracts decreases with the increase of the hydrophobicity of the ILs. The good extraction performance of [BMIM]PF6system can be attributed to the interaction between zinc extracts with ionic components of the ionic liquid.
引文
[1]黄伯云.我国有色金属材料现状及发展战略[J].中国有色金属学报,2004,14(F01):122-127.
    [2]中国有色金属工业协会.中国有色金属工业年鉴[M].北京:中国有色金属工业协会,2011.
    [3]林如海.中国有色金属矿物资源开发现状及展望[J].中国金属通报,2011,(35):2-7.
    [4]文世澄.中国矿产资源特点与前景[J].中国矿业,1996,5(5):5.
    [5]于光.关于矿产资源可持续发展的理性思考[J].资源产业,2005,7(1):25-28.
    [6]毛小兵.论我国有色金属矿产资源开发的理论导向[J].矿业研究与开发,2005,25(001):10-13.
    [7]李海波,卢才武.矿产资源开发与可持续发展[J].黄金科学技术,2000,8(002):10-14.
    [8]张葛.本世纪全球铜业的机遇与挑战[J].世界有色金属,2011,(11):30-31.
    [9]晓华.世界铜镍矿物原料基地:回顾与展望(上)[J].国土资源情报,2008,(11):34-40.
    [10]Warner A, Diaz C, Dalvi A, et al. JOM world nonferrous smelter survey Part IV: Nickel:Sulfide [J]. JOM Journal of the Minerals, Metals and Materials Society,2007, 59(4):58-72.
    [11]晓华.世界铜镍矿物原料基地:回顾与展望(下)[J].国土资源情报,2008,(12):32-39.
    [12]张莓.全球铅锌资源及勘查进展[J].世界有色金属,2012,(2):64-65.
    [13]Norgate T, Jahanshahi S. Low grade ores-Smelt, leach or concentrate? [J]. Miner Eng,2010,23(2):65-73.
    [14]张雷.我国可持续发展的矿产资源基础[J].自然资源学报,1998,13(2):133-138.
    [15]曹异生.国际湿法炼铜最新进展[J].世界有色金属,1995,(04):10-17.
    [16]张寿庭,赵鹏大.斑岩型矿床—非传统矿产资源研究的重要对象[J].地球科学(中国地质大学学报),2011,38(2):247-254.
    [17]王文军.矿山难选氧化铜矿处理工艺及新技术[J].铜业工程,2012,(1):19-22.
    [18]翟秀静,符岩,衣淑立.镍红土矿的开发与研究进展[J].世界有色金属,2008,(8):36-38.
    [19]Warner AEM, Diaz C, Dalvi A, et al. JOM world nonferrous smelter survey, Part Ⅲ:Nickel:Laterite [J]. JOM Journal of the Minerals, Metals and Materials Society, 2006,58(4):11-20.
    [20]彭犇,岳清瑞,李建军,等.红土镍矿利用与研究的现状与发展[J].有色金属工程,2012,1(4):15-22.
    [21]刘红卫,蔡江松,王红军,等.低品位氧化锌矿湿法冶金新工艺研究[J].有色金属(冶炼部分),2005,(05):29-31.
    [22]陈世明,瞿开流.兰坪氧化锌矿石处理方法探讨[J].云南冶金,1998,(05):32-36.
    [23]张小并.铜湿法冶金工艺发展概况[J].世界采矿快报,1996,(11):6-8.
    [24]李士彬,李宏志,王素萍.我国矿产资源综合利用分析及对策研究[J].资源与产业,2011,13(4):99-104.
    [25]马荣骏.湿法冶金新发展[J].湿法冶金,2007,26(1):1-12.
    [26]马明煌.浸出方法发展新趋势和远景[J].湿法冶金,1992,(4):36-42.
    [27]刘维平,邱定蕃,卢惠民.湿法冶金新技术进展[J].矿冶工程,2003,(05):39-42.
    [28]李艳军,于海臣,王德全,等.红土镍矿资源现状及加工工艺综述[J].金属矿山,2010,413(11):5-9.
    [29]杨晓霞.镍矿的湿法冶金研究现状与发展前景[J].世界有色金属,2010,(007):44-45.
    [30]李启厚,王娟,刘志宏.世界红土镍矿资源开发及其湿法冶金技术的进展[J].矿产保护与利用,2009,(006):42-46.
    [31]刘三平,王海北,蒋开喜,等.中国湿法炼锌的新进展[J].矿冶,2009,(04):27-31.
    [32]马荣骏.改进湿法炼锌工艺的新设想[J].湖南有色金属,2002,(02):11-13.
    [33]Tasker PA, Plieger PG, West LC. Metal complexes for hydrometallurgy and extraction. In:McCleverty JA, Meyer TJ, editors. Comprehensive Coordination Chemistry Ⅱ [M]. Oxford:Pergamon; 2003. p.759-808.
    [34]Benedict CH. Solution. US Patent:1131986 [P],1915.
    [35]刘殿文,张文彬.东川汤丹难处理氧化铜矿加工利用技术进步[J].中国工程科学,2005,(S1):260-265.
    [36]Mackenzie M, Virnig M, Feather A. The recovery of nickel from high-pressure acid leach solutions using mixed hydroxide product-LIX(?)84-INS technology [J]. Miner Eng,2006,19(12):1220-1233.
    [37]李勇,王吉坤,任占誉,等.氧化锌矿处理的研究现状[J].矿冶,2009,(02):61-67.
    [38]张保平,唐谟堂.氨浸法在湿法炼锌中的优点及展望[J].江西有色金属,2001,15(4):27-28.
    [39]杨声海,李英念,巨少华,等.用NH4C1溶液浸出氧化锌矿石[J].湿法冶金,2007,25(4):179-182.
    [40]Chen Q, Li L, Bai L, et al. Synergistic extraction of zinc from ammoniacal ammonia sulfate solution by a mixture of a sterically hindered β-diketone and tri-n-octylphosphine oxide (TOPO) [J]. Hydrometallurgy,2010,105(3-4):201-206.
    [41]王玉棉,李军强.微生物浸矿的技术现状及展望[J].甘肃冶金,2004,26(001):36-39.
    [42]Watling HR. The bioleaching of sulphide minerals with emphasis on copper sulphides—A review [J]. Hydrometallurgy,2006,84(1-2):81-108.
    [43]高曙光,张卫民,严思静.低品位原生硫化铜矿微生物浸出工艺研究进展[J].湿法冶金,2008,27(2):67-71.
    [44]Watling H. The bioleaching of nickel-copper sulfides [J]. Hydrometallurgy,2008, 91(1-4):70-88.
    [45]赵思佳,翁毅,肖超.镍钴硫化矿生物浸出研究进展[J].湖南有色金属,2012,27(6):10-16.
    [46]石绍渊,张广积.硫化锌矿的生物浸出[J].国外金属矿选矿,2002,39(2):12-19.
    [47]Deveci H, Akcil A, Alp I. Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria:comparative importance of pH and iron [J]. Hydrometallurgy,2004,73(3):293-303.
    [48]Ehrlich HL. Past, present and future of biohydrometallurgy [J]. Hydrometallurgy, 2001,59(2-3):127-134.
    [49]Ndlovu S. Biohydrometallurgy for sustainable development in the African minerals industry [J]. Hydrometallurgy,2008,91(1-4):20-27.
    [50]Lewis AE. Review of metal sulphide precipitation [J]. Hydrometallurgy,2010, 104(2):222-234.
    [51]Ntuli F, Lewis AE. Kinetic modelling of nickel powder precipitation by high-pressure hydrogen reduction [J]. Chemical Engineering Science,2009,64(9): 2202-2215.
    [52]van Deventer J. Selected ion exchange applications in the hydrometallurgical industry [J]. Solvent Extraction and Ion Exchange,2011,29(5-6):695-718.
    [53]Zainol Z, Nicol MJ. Comparative study of chelating ion exchange resins for the recovery of nickel and cobalt from laterite leach tailings [J]. Hydrometallurgy,2009, 96(4):283-287.
    [54]张汉鹏.液膜分离在金属离子分离中的应用研究[J].过滤与分离,2008,18(1):1-3.
    [55]Kumbasar RA, Sahin I. Separation and concentration of cobalt from ammoniacal solutions containing cobalt and nickel by emulsion liquid membranes using 5,7-dibromo-8-hydroxyquinoline (DBHQ) [J]. J Membr Sci,2008,325(2):712-718.
    [56]Kumbasar RA, Kasap S. Selective separation of nickel from cobalt in ammoniacal solutions by emulsion type liquid membranes using 8-hydroxyquinoline (8-HQ) as mobile carrier [J]. Hydrometallurgy,2009,95(1-2):121-126.
    [57]Kumbasar R. Selective extraction of nickel from ammoniacal solutions containing nickel and cobalt by emulsion liquid membrane using 5, 7-dibromo-8-hydroxyquinoline (DBHQ) as extractant [J]. Miner Eng,2009,22(6): 530-536.
    [58]Ritcey GM. Solvent Extraction in Hydrometallurgy:Present and Future [J]. Tsinghua Science and Technology,2006,11(2):137-152.
    [59]Robinson T, Sandoval S, Cook P. World copper solvent extraction plants: Practices and design [J]. JOM Journal of the Minerals, Metals and Materials Society, 2003,55(7):24-26.
    [60]郭亚惠.铜湿法冶金现状及未来发展方向[J].中国有色冶金,2006,(04):13-18.
    [61]肖超,肖连生.钴,镍萃取分离原理与方法[J].湿法冶金,2010,29(004):225-228.
    [62]Deep A, de Carvalho JMR. Review on the Recent Developments in the Solvent Extraction of Zinc [J]. Solvent Extraction and Ion Exchange,2008,26(4):375-404.
    [63]李淑文.即将实施的锌矿山项目——成功的关键在于锌的溶剂萃取[J].有色冶炼,2003,(04):8-11.
    [64]Scuffham JB, Rowden GA. Solvent extraction of metals from ammoniacal solutions [J]. Min Eng,1973,25(12):33-34.
    [65]Parija C, Bhaskara Sarma PVR. Separation of nickel and copper from ammoniacal solutions through co-extraction and selective stripping using LDC84 as the extractant [J]. Hydrometallurgy,2000,54(2-3):195-204.
    [66]Nathsarma KC, Bhaskara Sarma PVR. Processing of ammoniacal solutions containing copper, nickel and cobalt for metal separation [J]. Hydrometallurgy,1993, 33(1-2):197-210.
    [67]Pandey BD, Kumar V, Bagchi D, et al. Extraction of nickel and copper from the ammoniacal leach solution of sea nodules by LIX 64N [J]. Industrial & Engineering Chemistry Research,1989,28(11):1664-1669.
    [68]Alguacil FJ, Navarro P. Non-dispersive solvent extraction of Cu(Ⅱ) by LIX 973N from ammoniacal/ammonium carbonate aqueous solutions [J]. Hydrometallurgy,2002, 65(1):77-82.
    [69]Alguacil FJ. Mechanistic study of active transport of copper(Ⅱ) from ammoniacal/ammonium carbonate medium using LIX 973N as a carrier across a liquid membrane [J]. Hydrometallurgy,2001,61(3):177-183.
    [70]Sridhar V, Verma JK, Kumar SA. Selective separation of copper and nickel by solvent extraction using LIX 984N [J]. Hydrometallurgy,2009,99(1-2):124-126.
    [71]Kyuchoukov G, Bogacki MB, Szymanowski J. Copper extraction from ammoniacal solutions with LIX 84 and LIX 54 [J]. Ind Eng Chem Res,1998,37(10): 4084-4089.
    [72]Rosinda M, Ismael C, Lurdes M, et al. Extraction Equilibrium of Copper from Ammoniacal Media with LIX 54 [J]. Separ Sci Technol,2004,39(16):3859-3877.
    [73]Mickler W, Uhlemann E. Liquid-Liquid Extraction of Copper from Ammoniacal Solution with β-Diketones [J]. Separ Sci Technol,1992,27(12):1669-1674.
    [74]Alguacil FJ, Alonso M. Recovery of copper from ammoniacal/ammonium sulfate medium by LIX 54 [J]. J Chem Technol Biotechnol,1999,74(12):1171-1175.
    [75]Gameiro MLF, Ismael MRC, Reis MTA, et al. Recovery of copper from ammoniacal medium using liquid membranes with LIX 54 [J]. Sep Purif Technol, 2008,63(2):287-296.
    [76]梁启文.高位阻β-二酮合成及氨性蚀刻废液中铜萃取研究[D].长沙:中南大学,2011.
    [77]Rao KS, Sahoo PK. Effect of ammonium salts on the extraction of copper using Hostarex DK-16 [J]. Hydrometallurgy,1993,33(1-2):211-218.
    [78]Przeszlakowski S, Wydra H. Extraction of nickel, cobalt and other metals [Cu, Zn, Fe(III)] with a commercial P-diketone extractant [J]. Hydrometallurgy,1982,8(1): 49-64.
    [79]Fu W, Chen Q, Hu H, et al. Solvent extraction of copper from ammoniacal chloride solutions by sterically hindered β-diketone extractants [J]. Sep Purif Technol, 2011,80(1):52-58.
    [80]陈永强,邱定蕃,王成彦,等.从氨性溶液中萃取分离铜、钴的研究[J].矿冶,2003,12(003):61-63.
    [81]Rice NM, Nedved M, Ritcey GM. The extraction of nickel from ammoniacal media and its separation from copper, cobalt and zinc using hydroxyoxime extractants I. SME-529 [J]. Hydrometallurgy,1978,3(1):35-54.
    [82]Parija C, Reddy BR, Bhaskara Sarma PVR. Recovery of nickel from solutions containing ammonium sulphate using LIX 84-1 [J]. Hydrometallurgy,1998,49(3): 255-261.
    [83]Bhaskara Sarma PVR, Nathsarma KC. Extraction of nickel from ammoniacal solutions using LIX 87QN [J]. Hydrometallurgy,1996,42(1):83-91.
    [84]Alguacil FJ, Cobo A. Solvent extraction with LIX 973N for the selective separation of copper and nickel [J]. Journal of Chemical Technology & Biotechnology, 1999,74(5):467-471.
    [85]Sridhar V, Verma JK, Shenoy NS. Separation of nickel from-copper in ammoniacal/ammonium carbonate solution using ACORGA M5640 by selective stripping [J]. Miner Eng,2010,23(5):454-456.
    [86]Alguacil FJ, Cobo A. Extraction of nickel from ammoniacal/ammonium carbonate solutions using Acorga M5640 in Iberfluid [J]. Hydrometallurgy,1998, 50(2):143-151.
    [87]Alguacil FJ, Cobo A. Solvent extraction equilibrium of nickel with LIX 54 [J]. Hydrometallurgy,1998,48(3):291-299.
    [88]Parhi PK, Panigrahi S, Sarangi K, et al. Separation of cobalt and nickel from ammoniacal sulphate solution using Cyanex 272 [J]. Sep Purif Technol,2008,59(3): 310-317.
    [89]Reddy B, Parija C, Sarma P. Processing of solutions containing nickel and ammonium sulphate through solvent extraction using PC-88A [J]. Hydrometallurgy, 1999,53(1):11-17.
    [90]W. Ashbrook A. Extraction of metals from ammonium sulphate solution using a carboxylic acid-II Nickel [J]. J Inorg Nucl Chem,1972,34(10):3243-3249.
    [91]Bacon G, Mihaylov I. Solvent extraction as an enabling technology in the nickel industry [J]. J S Afr Inst Min Metall,2002,102(8):435-443.
    [92]Hoh YC, Chou NP, Wang WK. Extraction of zinc by LIX 34 [J]. Ind Eng Chem Proc Design Dev,1982,21(1):12-15.
    [93]Rao KS, Sahoo PK, Jena PK. Extractions of zinc from ammoniacal solutions by Hostarex DK-16 [J]. Hydrometallurgy,1992,31(1-2):91-100.
    [94]Alguacil FJ, Cobo A. Extraction of zinc from ammoniacal/ammonium sulphate solutions by LIX 54 [J]. J Chem Technol Biotechnol,1998,71(2):162-166.
    [95]王延忠.从氨浸出液中萃取锌的试验研究[J].有色金属,2004,56(1).
    [96]陈浩. Zn-NH3-H2O体系中LIX54萃取锌[J].有色金属,2003,55(3):50-51.
    [97]张文彬,胡显智,字富庭,等.从氧化锌矿氨浸液中萃取锌的方法.中国:101503760[P],2009.
    [98]Fu W, Chen Q, Wu Q, et al. Solvent extraction of zinc from ammoniacal/ammonium chloride solutions by a sterically hindered β-diketone and its mixture with tri-n-octylphosphine oxide [J]. Hydrometallurgy,2010,100(3-4): 116-121.
    [99]何静,黄玲,陈永明,等.新型萃取剂YORS萃取Zn(Ⅱ)-NH3配合物体系中的锌[J].中国有色金属学报,2011,21(3):687-693.
    [100]Shmidt VS. Some Problems of the Development of the Physicochemical Principles of Modern Extraction Technology [J]. Russ Chem Rev,1987,56(8):792.
    [101]Matsubayashi I, Ishiwata E, Shionoya T, et al. Synergistic extraction of lanthanoids(III) with 2-thenoyltrifluoroacetone and benzoic acid:thermodynamic parameters in the complexation in organic phases and the hydration [J]. Talanta,2004, 63(3):625-633.
    [102]Hasegawa Y, Miratsu M, Choppin GR. Dehydration from tris[β-diketonato]lanthanoids(Ⅲ) on the 1,10-phenanthroline adduct formation across lanthanoid series [J]. Anal Chim Acta,2001,428(1):149-154.
    [103]Hasegawa Y, Miratsu M, Kondo T. Trend of variation of hydration number of tris[P-diketonato]lanthanoids(Ⅲ) in chloroform across lanthanoid series [J]. Inorg Chim Acta,2000,303(2):291-294.
    [104]Hasegawa Y, Ishiwata E, Ohnishi T, et al. Hydration Number of Tris[1-(2-thienyl)-4,4,4-trifluoro-1,3-butanedionato]lanthanoids in Chloroform across the Lanthanoid Series [J]. Anal Chem,1999,71(22):5060-5063.
    [105]Imura H, Suzuki N. Solvent effect on the liquid-liquid partition coefficients of copper(Ⅱ) chelates with some β-diketones [J]. Talanta,1985,32(8, Part 2):785-790.
    [106]Flett D, Melling J. Extraction of ammonia by commercial copper chelating extractants [J]. Hydrometallurgy,1979,4(2):135-146.
    [107]Flett D, Melling J. Extraction of ammonia by diketone extractants [J]. Hydrometallurgy,1980,5(2-3):283.
    [108]Olafson S. Process for removing and recovering ammonia from organic metal extractant solutions in a liquid-liquid metal extraction process. United States:[P],1998 Aug.4,1998.
    [109]刘晓荣,邱冠周.Lix984N的降解行为研究[J].矿冶工程,2002,22(3):79-82.
    [110]Kordosky GA, Virnig MJ, Mattison P. β-diketone copper extractants:structure and stability. International Solvent Extraction Conference. Cape Town, South Africa: South African Institute of Mining and Metallurgy.2002. p.360-365.
    [111]饶林峰.热力学和光谱学方法在锕系元素络合化学研究中的应用[J].化学进展,2011,23(7):1295-1307.
    [112]Mazalov LN. Electronic Structure Effects in Extractions. Ⅰ [J]. J Struct Chem, 2003,44(1):1-28.
    [113]Mazalov LN. Electronic Structure Effects in Extraction. Ⅱ [J]. J Struct Chem, 2003,44(2):268-294.
    [114]Zapatero MJ, Castresana JM, Puy Elizalde M. Isolation and characterization of the active component in commercial extractant LIX 54 [J]. Analytical Sciences,1989, 5(5):591-596.
    [115]Cotton FA, Wise JJ. Assignment of the electronic absorption spectra of bis(β-ketoenolate) complexes of copper(Ⅱ) and nickel(Ⅱ) [J]. Inorg Chem,1967,6(5): 917-924.
    [116]Buketova A. An IR-spectroscopic examination of copper-LIX984N extractant complexes [J]. Russian Journal of Applied Chemistry,2009,82(1):23-26.
    [117]Staszak K, Prochaska K. Investigation of the interaction in binary mixed extraction systems by Fourier Transform Infrared Spectroscopy (FT-IR) [J]. Hydrometallurgy,2008,90(2-4):75-84.
    [118]Rudolph WW, Irmer G, Hefter GT. Raman spectroscopic investigation of speciation in MgSO4(aq) [J]. Physical Chemistry Chemical Physics,2003,5(23): 5253-5261.
    [119]Rudolph WW, Mason R, Pye CC. Aluminium (Ⅲ) hydration in aqueous solution. A Raman spectroscopic investigation and an ab initio molecular orbital study of aluminium (Ⅲ) water clusters [J]. Physical Chemistry Chemical Physics,2000, 2(22):5030-5040.
    [120]Rudolph WW, Pye CC. Zinc(II) Hydration in Aqueous Solution:A Raman Spectroscopic Investigation and An ab initio Molecular Orbital Study of Zinc(II) Water Clusters [J]. Journal of Solution Chemistry,1999,28(9):1045-1070.
    [121]Rudolph WW, Brooker MH, Tremaine PR. Raman Spectroscopy of Aqueous ZnSO4 Solutions under Hydrothermal Conditions:Solubility, Hydrolysis, and Sulfate Ion Pairing [J]. Journal of Solution Chemistry,1999,28(5):621-630.
    [122]Rudolph WW, Pye CC. Raman spectroscopic measurements and ab initio molecular orbital studies of cadmium (II) hydration in aqueous solution [J]. The Journal of Physical Chemistry B,1998,102(18):3564-3573.
    [123]Rudolph WW. Hydration and water-ligand replacement in aqueous cadmium(II) sulfate solution A Raman and infrared study [J]. Journal of the Chemical Society, Faraday Transactions,1998,94(4):489-499.
    [124]Rudolph W, Irmer G. Raman and infrared spectroscopic investigation of contact ion pair formation in aqueous cadmium sulfate solutions [J]. Journal of Solution Chemistry,1994,23(6):663-684.
    [125]Xue Z, Daran J-C, Champouret Y, et al. Ligand Adducts of Bis(acetylacetonato)iron(II):A 1H NMR Study [J]. Inorganic chemistry,2011,50(22): 11543-11551.
    [126]Szabo Z, Vallet V, Grenthe I. Structure and dynamics of binary and ternary lanthanide (III) and actinide (III) tris [4,4,4-trifluoro-l-(2-thienyl)-1, 3-butanedione](TTA) complexes. Part 2, the structure and dynamics of binary and ternary complexes in the Y (III)/Eu (III)-TTA-tributylphosphate (TBP) system in chloroform as studied by NMR spectroscopy [J]. Dalton Trans,2010.
    [127]Soderholm L, Skanthakumar S, Wilson RE. Structural Correspondence between Uranyl Chloride Complexes in Solution and Their Stability Constants [J]. The Journal of Physical Chemistry A,2011,115(19):4959-4967.
    [128]Scott RA. X-ray absorption spectroscopy [J]. Physical Methods in Bioinorganic Chemistry Spectroscopy and Magnetism,2000:465-503.
    [129]Eisenberger P, Kincaid B. EXAFS:new horizons in structure determinations [J]. Science,1978,200(4349):1441.
    [130]Denecke MA. Actinide speciation using X-ray absorption fine structure spectroscopy [J]. Coordination Chemistry Reviews,2006,250(7-8):730-754.
    [131]Penner-Hahn JE. X-ray absorption spectroscopy in coordination chemistry [J]. Coord Chem Rev,1999,190:1101-1123.
    [132]Penner-Hahn JE. Characterization of "spectroscopically quiet" metals in biology [J]. Coord Chem Rev,2005,249(1-2):161-177.
    [133]Narita H, Tanaka M, Sato Y, et al. Structure of the Extracted Complex in the Ni(II)-LIX84I System and the Effect of D2EHPA Addition [J]. Solvent Extr Ion Exch, 2006,24(5):693-702.
    [134]Gannaz B, Antonio MR, Chiarizia R, et al. Structural study of trivalent lanthanide and actinide complexes formed upon solvent extraction [J]. Dalton Transactions,2006, (38):4553-4562.
    [135]Guoxin T, Yongjun Z, Jingming X, et al. Investigation of the extraction complexes of light lanthanides (Ⅲ) with bis (2,4,4-trimethylpentyl) dithiophosphinic acid by EXAFS, IR, and MS in comparison with the americium (Ⅲ) complex [J]. Inorganic chemistry,2003,42(3):735-741.
    [136]Cocalia VA, Jensen MP, Holbrey JD, et al. Identical extraction behavior and coordination of trivalent or hexavalent f-element cations using ionic liquid and molecular solvents [J]. Dalton Transactions,2005, (11):1966-1971.
    [137]Antonio MR, Dietz ML, Jensen MP, et al. EXAFS studies of cesium complexation by dibenzo-crown ethers in tri-n-butyl phosphate [J]. Inorganica Chimica Acta,1997,255(1):13-20.
    [138]Jensen MP, Dzielawa JA, Rickert P, et al. EXAFS investigations of the mechanism of facilitated ion transfer into a room-temperature ionic liquid [J]. J Am Chem Soc,2002,124(36):10664-10665.
    [139]高建勋,王建晨,宋崇立,等.NMR和XAFS方法研究溶液中杯芳冠醚与碱金属离子配位化学[J].物理化学学报,2005,21(4):354-359.
    [140]D'Angelo P, Barone V, Chillemi G, et al. Hydrogen and Higher Shell Contributions in Zn2+, Ni2+, and Co2+ Aqueous Solutions:□ An X-ray Absorption Fine Structure and Molecular Dynamics Study [J]. Journal of the American Chemical Society,2002,124(9):1958-1967.
    [141]D'Angelo P, Benfatto M, Della Longa S, et al. Evidence of distorted fivefold coordination of the Cu2+ aqua ion from an X-ray absorption spectroscopy quantitative analysis [J]. Phys Rev B,2002,66:1-7.
    [142]D'Angelo P, Benfatto M, Della Longa S, et al. Combined XANES and EXAFS analysis of Co2+, Ni2+, and Zn2+ aqueous solutions [J]. Physical Review B,2002, 66(6):064209.
    [143]Foresman JB, Frisch AE, Gaussian I. Exploring chemistry with electronic structure methods [J].1996.
    [144]Koch W, Holthausen MC. A chemist's guide to density functional theory [M]: Wiley Online Library,2001.
    [145]Truhlar DG Molecular Modeling of Complex Chemical Systems [J]. Journal of the American Chemical Society,2008,130(50):16824-16827.
    [146]Comba P, Gloe K, Inoue K, et al. Molecular Mechanics Calculations and the Metal Ion Selective Extraction of Lanthanoids [J]. Inorganic Chemistry,1998,37(13): 3310-3315.
    [147]Peter C. Metal ion selectivity and molecular modeling [J]. Coordination Chemistry Reviews,1999,185-186(0):81-98.
    [148]Varadwaj PR, Cukrowski I, Marques HM. Low-spin complexes of Ni2+with six NH3 and H2O ligands:A DFT-RX3LYP study [J]. J Mol Struc-Theochem,2009, 902(1-3):21-32.
    [149]Varadwaj PR, Cukrowski I, Marques HM. DFT-UX3LYP Studies on the Coordination Chemistry of Ni2+. Part 1:Six Coordinate [Ni(NH3)n(H2O)6-n]2+ Complexes [J]. J Phys Chem A,2008,112(42):10657-10666.
    [150]Qaiser Fatmi M, Hofer TS, Rode BM. The stability of [Zn(NH3)4]2+ in water:A quantum mechanical/molecular mechanical molecular dynamics study [J]. Phys Chem Chem Phys,2010,12(33):9713-9718.
    [151]Fatmi MQ, Hofer TS, Randolf BR, et al. Exploring Structure and Dynamics of the Diaquotriamminezinc (II) Complex by QM/MM MD Simulation [J]. J Phys Chem B,2008,112(18):5788-5794.
    [152]Fatmi MQ, Hofer TS, Randolf BR, et al. Stability of Different Zinc(II)-Diamine Complexes in Aqueous Solution with Respect to Structure and Dynamics:A QM/MM MD Study [J]. J Phys Chem B,2007,111(1):151-158.
    [153]Qaiser Fatmi M, Hofer TS, Randolf BR, et al. Structure and dynamics of the [Zn(NH3)(H2O)5]2+ complex in aqueous solution obtained by an ab initio QM/MM molecular dynamics study [J]. Phys Chem Chem Phys,2006,8(14):1675-1681.
    [154]Fatmi MQ, Hofer TS, Randolf BR, et al. Temperature Effects on the Structural and Dynamical Properties of the Zn(II)-Water Complex in Aqueous Solution:A QM/MM Molecular Dynamics Study [J]. The Journal of Physical Chemistry B,2005, 110(1):616-621.
    [155]Fatmi MQ, Hofer TS, Randolf BR, et al. An extended ab initio QM/MM MD approach to structure and dynamics of Zn (II) in aqueous solution [J]. J Chem Phys, 2005,123:4514.
    [156]Cao X, Heidelberg D, Ciupka J, et al. First-Principles Study of the Separation of Am(III)/Cm(III) from EuIII with Cyanex301 [J]. Inorganic Chemistry,2010:323-576.
    [157]Galand N, Wipff G. Uranyl Extraction by β-Diketonate Ligands to SC-CO2: Theoretical Studies on the Effect of Ligand Fluorination and on the Synergistic Effect of TBP [J]. The Journal of Physical Chemistry B,2005,109(1):277-287.
    [158]Tasker P, Gasperov V. Ligand Design for Base Metal Recovery [J]. Macrocyclic Chemistry,2005:365-382.
    [159]Alguacil FJ, Alonso M. The effect of ammonium sulphate and ammonia on the liquid-liquid extraction of zinc using LIX 54 [J]. Hydrometallurgy,1999,53(2): 203-209.
    [160]付翁.高位阻p-二酮萃取剂的制备及其对氨性溶液中铜和锌萃取性能的研究[D].长沙:中南大学,2010.
    [161]Zawadiak J, Mrzyczek M. UV absorption and keto-enol tautomerism equilibrium of methoxy and dimethoxy 1,3-diphenylpropane-1,3-diones [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2010,75(2): 925-929.
    [162]郑春阳,汪敦佳,范玲.几种p-二酮化合物互变异构体的光谱性质研究[J].分析测试学报,2009,28(4):445-448.
    [163]褚庆辉,高连勋,汪冬梅,等.几种p-二酮化合物及其互变异构体的光谱[J].高等学校化学学报,2000,21(3):439-443.
    [164]Nekoei A-R, Tayyari SF, Vakili M, et al. Conformation and vibrational spectra and assignment of 2-thenoyltrifluoroacetone [J]. Journal of Molecular Structure,2009, 932(1-3):112-122.
    [165]GB/T 15249.3-2009,合质金化学分析方法第3部分:铜量的测定碘量法[S].北京:中华人民共和国国家质量监督检验检疫总局,2009.
    [166]HB/Z 5083-2001,金属镀覆和化学覆盖溶液分析用试剂[S].北京:国防科学技术工业委员会,2002.
    [167]GB/T 4372.1-2001,直接法氧化锌化学分析方法Na2EDTA滴定法测定氧化锌量[S].北京:中华人民共和国国家质量监督检验检疫总局,2001.
    [168]Buhl M, Schreckenbach G, Sieffert N, et al. Effect of Counterions on the Structure and Stability of Aqueous Uranyl(VI) Complexes. A First-Principles Molecular Dynamics Study [J]. Inorganic Chemistry,2009,48(21):9977-9979.
    [169]Ravel B, Newville M. ATHENA and ARTEMIS:interactive graphical data analysis using IFEFFIT [J]. Physica Scripta,2005,2005:1007.
    [170]Kelly S, Hesterberg D, Ravel B. Analysis of soils and minerals using X-ray absorption spectroscopy [J]. Methods of Soil Analysis, Part,2008.
    [171]Hennig C, Hallmeier K, Zahn G, et al. Conformational influence of dithiocarbazinic acid bishydrazone ligands on the structure of zinc (II) complexes:A comparative XANES study [J]. Inorg Chem,1999,38(1):38-43.
    [172]Rossberg A, Reich T, Bernhard G. Complexation of uranium (VI) with protocatechuic acid—application of iterative transformation factor analysis to EXAFS spectroscopy [J]. Anal Bioanal Chem,2003,376(5):631-638.
    [173]Wasserman SR, Allen PG, Shuh DK, et al. EXAFS and principal component analysis:a new shell game [J]. Journal of Synchrotron Radiation,1999,6(3):284-286.
    [174]Ikeda A, Hennig C, Rossberg A, et al. Structural Determination of Individual Chemical Species in a Mixed System by Iterative Transformation Factor Analysis-Based X-ray Absorption Spectroscopy Combined with UV-Visible Absorption and Quantum Chemical Calculation [J]. Analytical Chemistry,2008,80(4): 1102-1110.
    [175]Frenkel Al, Kleifeld O, Wasserman SR, et al. Phase speciation by extended X-ray absorption fine structure spectroscopy [J]. The Journal of chemical physics, 2002,116:9449.
    [176]Wang X, Chen Q, Yin Z, et al. Real-solution stability diagrams for copper-ammonia-chloride-water system [J]. Journal of Central South University of Technology,2011,18(1):48-55.
    [177]Salhi R. Recovery of nickel and copper from metal finishing hydroxide sludges by ammoniacal leaching [J]. Mineral Processing and Extractive Metallurgy,2010, 119(3):147-152.
    [178]Gameiro M, Machado R, Ismael M, et al. Copper extraction from ammoniacal medium in a pulsed sieve-plate column with LIX 84-1 [J]. J Hazard Mater 2010, 183(1-3):165-175.
    [179]Sengupta B, Bhakhar MS, Sengupta R. Extraction of zinc and copper-zinc mixtures from ammoniacal solutions into emulsion liquid membranes using LIX 841 [J]. Hydrometallurgy,2009,99(1-2):25-32.
    [180]Giannopoulou I, Panias D, Paspaliaris I. Electrochemical modeling and study of copper deposition from concentrated ammoniacal sulfate solutions [J]. Hydrometallurgy,2009,99(1-2):58-66.
    [181]Sano M, Maruo T, Masuda Y, et al. Structural study of copper(II) sulfate solution in highly concentrated aqueous ammonia by X-ray absorption spectra [J]. Inorganic chemistry,1984,23(26):4466-4469.
    [182]Pasquarello A, Petri I, Salmon PS, et al. First solvation shell of the Cu (II) aqua ion:Evidence for fivefold coordination [J]. Science,2001,291(5505):856.
    [183]Chaboy J, Munoz-Paez A, Merkling PJ, et al. The hydration of Cu:Can the Jahn-Teller effect be detected in liquid solution? [J]. The Journal of chemical physics, 2006,124(064509):1-10.
    [184]Veidis MV, Schreiber GH, Gough TE, et al. Jahn-Teller distortions in octahedral copper(II) complexes [J]. Journal of the American Chemical Society,1969,91(7): 1859-1860.
    [185]Musinu A, Paschina G, Piccaluga G, et al. Coordination of copper(II) in aqueous copper sulfate solution [J]. Inorganic chemistry,1983,22(8):1184-1187.
    [186]Valli M, Matsuo S, Wakita H, et al. Solvation of Copper(II) Ions in Liquid Ammonia [J]. Inorganic Chemistry,1996,35(19):5642-5645.
    [187]Sakane H, Miyanaga T, Watanabe I, et al. EXAFS amplitudes of six-coordinate aqua and ammine 3d transition metal complexes in solids and in aqueous solutions [J]. Chemistry Letters,1990,19(9):1623-1626.
    [188]Nilsson KB, Eriksson L, Kessler VG, et al. The coordination chemistry of the copper (II), zinc (II) and cadmium (II) ions in liquid and aqueous ammonia solution, and the crystal structures of hexaamminecopper (II) perchlorate and chloride, and hexaamminecadmium (II) chloride [J]. J Mol Liq,2007,131:113-120.
    [189]Matsuo S, Wakita H. Structural Characterization of Chemical Species in Solution by a Theoretical Analysis of XANES Spectra [J]. Structural Chemistry,2003, 14(1):69-76.
    [190]Schwenk CF, Rode BM. The influence of the Jahn-Teller effect and of heteroligands on the reactivity of Cu2+[J]. Chemical Communications,2003,39(11): 1286-1287.
    [191]Schwenk CF, Rode BM. Influence of heteroligands on structural and dynamical properties of hydrated Cu2+:QM/MM MD simulations [J]. Physical Chemistry Chemical Physics,2003,5(16):3418-3427.
    [192]Persson I, Persson P, Sandstrom M, et al. Structure of Jahn-Teller distorted solvated copper(II) ions in solution, and in solids with apparently regular octahedral coordination geometry [J]. Journal of the Chemical Society, Dalton Transactions, 2002, (7):1256-1265.
    [193]Frisch MJ, Trucks G, Schlegel H, et al. Gaussian 03, revision E.01 [J]. Gaussian, Inc,2004.
    [194]Narbutt J, Bartos B, Siekierski S. Effect of outer-sphere hydration on liquid-liquid partition of tris-p-diketonates of 3d metal ions [J]. Solvent Extr Ion Exch, 1994,12(5):1001-1011.
    [195]Zawadiak J, Mrzyczek M. UV absorption and keto-enol tautomerism equilibrium of methoxy and dimethoxy 1,3-diphenylpropane-1,3-diones [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2010,75(2): 925-929.
    [196]Fackler JP, Cotton FA, Barnum DW. Electronic Spectra of β-Diketone Complexes. Ⅲ. α-Substituted β-Diketone Complexes of Copper(Ⅱ) [J]. Inorganic chemistry,1963,2(1):97-101.
    [197]Chen Z, Wu Y, Huang F, et al. Synthesis, spectral, and thermal characterizations of Ni(Ⅱ) and Cu(Ⅱ) β-diketone complexes with thenoyltrifluoroacetone ligand [J]. Spectrochim Acta Pt A-Mol Bio,2007,66(4-5):1024-1029.
    [198]Kazao N. Infrared Spectra of Inorganic and Coordination Compounds. New York:John Wiley & Sons; 1963.
    [199]Mazalov L, Trubina S, Fomin E, et al. X-Ray Study of the Electronic Structure of Copper(Ⅱ) Acetylacetonate [J]. Journal of Structural Chemistry,2004,45(5): 800-807.
    [200]Mazalov LN, Bausk NV, Erenburg SB, et al. X-Ray Investigation of the Structure of Metal Chelate Dithiocarbamate Complexes in Solution [J]. Journal of Structural Chemistry,2001,42(5):784-793.
    [201]Erenburg SB, Bausk NV, Zemskova SM, et al. Spatial structure of transition metal complexes in solution determined by EXAFS spectroscopy [J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2000,448(1-2):345-350.
    [202]Smith R, Martell A, Motekaitis R. Critically selected stability constants of metal complexes database [J]. NIST Standard Reference Database,2001,46.
    [203]Smith RM, Matell AE. Critical stability constants. Inorganic Complexes, vol.4. [M]. New York and London:Plenum Press; 1976.
    [204]Pettit L, Powell H. The IUPAC Stability Constants Database, Academic Software and IUPAC. Royal Society of Chemistry, London; 1992.
    [205]Chaboy J, Munoz-Paez A, Carrera F, et al. Ab initio X-ray absorption study of copper K-edge XANES spectra in Cu(II) compounds [J]. Physical Review B,2005, 71(13):134208.
    [206]Schwenk CF, Rode BM. Influence of Electron Correlation Effects on the Solvation of Cu2+[J]. Journal of the American Chemical Society,2004,126(40): 12786-12787.
    [207]Pavelka M, Burda JV. Theoretical description of copper Cu(I)/Cu(II) complexes in mixed ammine-aqua environment. DFT and ab initio quantum chemical study [J]. Chem Phys,2005,312(1-3):193-204.
    [208]Burda JV, Pavelka M, Simanek M. Theoretical model of copper Cu(I)/Cu(II) hydration. DFT and ab initio quantum chemical study [J]. Journal of Molecular Structure:THEOCHEM,2004,683(1-3):183-193.
    [209]Berces A, Nukada T, Margl P, et al. Solvation of Cu2+ in Water and Ammonia. Insight from Static and Dynamical Density Functional Theory [J]. The Journal of Physical Chemistry A,1999,103(48):9693-9701.
    [210]Liang Q-w, Hu H-p, Fu W, et al. Recovery of copper from simulated ammoniacal spent etchant using sterically hindered beta-diketone [J]. Transactions of Nonferrous Metals Society of China,2011,21(8):1840-1846.
    [211]Schwenk CF, Rode BM. Cu" in Liquid Ammonia:An Approach by Hybrid Quantum-Mechanical/Molecular-Mechanical Molecular Dynamics Simulation [J]. ChemPhysChem,2004,5(3):342-348.
    [212]Meng X, Han K. The Principles and Applications of Ammonia Leaching of Metals—A Review [J]. Mineral Processing and Extractive Metallurgy Review,1996, 16(1):23-61.
    [213]Mironov V, Pashkov Q Stupko T. Thermodynamics of formation reaction and hydrometallurgical application of metal-ammonia complexes in aqueous solutions [J]. Russ Chem Rev,1992,61:944.
    [214]Cole P, Sole K. Solvent extraction in the primary and secondary processing of zinc [J]. J S Afr Inst Min Metall,2002,102(8):451-456.
    [215]Cote G Hydrometallurgy of strategic metals [J]. Solvent Extraction and Ion Exchange,2000,18(4):703-727.
    [216]Sandhibigraha A, Bhaskara Sarma PVR. Co-extraction and selective stripping of copper and nickel using LIX87QN [J]. Hydrometallurgy,1997,45(1-2):211-219.
    [217]Reddy BR, Priya DN. Process development for the separation of copper(II), nickel(II) and zinc(II) from sulphate solutions by solvent extraction using LIX 84 I [J]. Sep Purif Technol,2005,45(2):163-167.
    [218]Tanaka M, Alam S. Solvent extraction equilibria of nickel from ammonium nitrate solution with LIX84I [J]. Hydrometallurgy,2010,105(1-2):134-139.
    [219]Hoffmann MM, Darab JG, Palmer BJ, et al. A Transition in the Ni2+ Complex Structure from Six to Four Coordinate upon Formation of Ion Pair Species in Supercritical Water:An X-ray Absorption Fine Structure, Near-Infrared, and Molecular Dynamics Study [J]. The Journal of Physical Chemistry A,1999,103(42): 8471-8482.
    [220]Feth Martin P, Klein A, Bertagnolli H. Investigation of the Ligand Exchange Behavior of Square-Planar Nickel(II) Complexes by X-ray Absorption Spectroscopy and X-ray Diffraction [J]. Eur J Inorg Chem,2003,2003(5):839-852.
    [221]Clause O, Kermarec M, Bonneviot L, et al. Nickel(Ⅱ) ion-support interactions as a function of preparation method of silica-supported nickel materials [J]. Journal of the American Chemical Society,1992,114(12):4709-4717.
    [222]Koshimura H, Okubo T. Extraction of nickel in the presence of ammonia with β-diketones containing phenyl and alkyl groups [J]. Polyhedron,1983,2(7):645-649.
    [223]中本雄一.无机和配位化合物的红外和拉曼光谱[M].北京:化学工业出版社,1986.
    [224]Colpas GJ, Maroney MJ, Bagyinka C, et al. X-ray spectroscopic studies of nickel complexes with application to the structure of nickel sites in hydrogenases [J]. Inorganic chemistry,1991,30(5):920-928.
    [225]张保平,唐谟堂,杨声海.氨法处理氧化锌矿制取电锌[J].中南工业大学学报,2003,34(6):619-623.
    [226]Ding Z, Yin Z, Hu H, et al. Dissolution kinetics of zinc silicate (hemimorphite) in ammoniacal solution [J]. Hydrometallurgy,2010,104(2):201-206.
    [227]Yin Z, Ding Z, Hu H, et al. Dissolution of zinc silicate (hemimorphite) with ammonia-ammonium chloride solution [J]. Hydrometallurgy,2010,103(1-4): 215-220.
    [228]Watanabe I, Tanida H, Kawauchi S. Coordination structure of zinc (II) ions on a Langmuir monolayer, observed by total-reflection X-ray absorption fine structure [J]. Journal of the American Chemical Society,1997,119(49):12018-12019.
    [229]Pan HK, Knapp GS, Cooper SL. EXAFS and XANES studies of Zn2+and Rb+ neutralized perfluorinated ionomers [J]. Colloid Polym Sci,1984,262(9):734-746.
    [230]Diamond H, Pan H-K, Knapp GS, et al. The coordination of zinc in the Zn(TTA)2TBP complex in benzene solution using EXAFS [J]. Solvent Extraction and Ion Exchange,1983,1(3):515-528.
    [231]Martell AE, Hancock RD. Metal complexes in aqueous solutions [M]. New York:Plenum Press 1996.
    [232]Alzoubi BM, Puchta R, van Eldik R. Ligand exchange processes on the solvated zinc cation Ⅱ. [Zn(H2O)4L]2+·2H2O with L=NH3, NH2(CH3), NH(CH3)2, and N(CH3)3 [J]. Aust J Chem,2010,63(2):236-244.
    [233]Yamaguchi T, Ohtaki H. X-Ray Diffraction Studies on the Structures of Tetraammine-and Triamminemonochlorozinc (Ⅱ) Ions in Aqueous Solution [J]. Bull Chem Soc Jpn,1978,51(11):3227-3231.
    [234]Adrian MR, Boris VK. Dependence of the extraction ability of organic compounds on their structure [J]. Russian Chemical Reviews,1996,65(11):973.
    [235]Hancock RD, Martell AE. Ligand design for selective complexation of metal ions in aqueous solution [J]. Chem Rev,1989,89(8):1875-1914.
    [236]Lenarcik B, Kierzkowska A. The influence of alkyl chain length on stability constants of Zn(Ⅱ) complexes with 1-Alkylimidazoles in aqueous solutions and their partition between aqueous phase and organic solvent [J]. Solvent Extr Ion Exch,2004, 22(3):449-471.
    [237]Lenarcik B, Kierzkowska A. The influence of alkyl chain length and steric effect on extraction of zinc(Ⅱ) complexes with 1-alkyl-2-methylimidazoles [J]. Solvent Extr Ion Exch,2006,24(3):433-445.
    [238]Sastre AM, Szymanowski J. Discussion of the physicochemical effects of modifiers on the extraction properties of hydroxyoximes. A review [J]. Solvent Extr Ion Exch,2004,22(5):737-759.
    [239]Atanassova M, Dukov I. A Comparative Study of the Solvent Extraction of the Trivalent Elements of the Lanthanoid Series with Thenoyltrifluoroacetone and 4-Benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one Using Diphenylsulphoxide as Synergistic Agent [J]. J Solution Chem,2009,38(3):289-301.
    [240]Luo F, Li D, Wei P. Synergistic extraction of zinc(Ⅱ) and cadmium(Ⅱ) with mixtures of primary amine N1923 and neutral organophosphorous derivatives [J]. Hydrometallurgy,2004,73(1-2):31-40.
    [241]Bhattacharyya A, Mohapatra PK, Banerjee S, et al. Role of Ligand Structure and Basicity on the Extraction of Uranyl Isoxazolonate Adducts [J]. Solvent Extr Ion Exch,2004,22(1):13-29.
    [242]Torkestani K, Goetz-Grandmont G, J., Brunette J-P. Synergistic extraction of some divalent metal cations with 3-phenyl-4-benzoylisoxazol-5-one and P=O donor ligands in chloroform [J]. Analusis,2000,28(4):324-329.
    [243]Huddleston JG, Rogers RD. Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction [J]. Chem Commun,1998,34(16):1765-1766.
    [244]Dietz ML, Dzielawa JA, Laszak I, et al. Influence of solvent structural variations on the mechanism of facilitated ion transfer into room-temperature ionic liquids [J]. Green Chem,2003,5(6):682-685.
    [245]孙晓琦.离子液基萃取金属离子的研究进展[J].分析化学,2007,35(4):597-604.
    [246]Dai S, Ju Y, Barnes C. Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids [J]. J Chem Soc, Dalton Trans,1999,28(8): 1201-1202.
    [247]Sun X, Wu D, Chen J, et al. Separation of scandium(Ⅲ) from lanthanides(Ⅲ) with room temperature ionic liquid based extraction containing Cyanex 925 [J]. J Chem Technol Biotechnol,2007,82(3):267-272.
    [248]Kidani K, Imura H. Solvent effect of ionic liquids on the distribution constant of 2-thenoyltrifluoroacetone and its nickel(Ⅱ) and copper(Ⅱ) chelates and the evaluation of the solvent properties based on the regular solution theory [J]. Talanta,2010,83(2): 299-304.
    [249]Visser AE, Jensen MP, Laszak I, et al. Uranyl coordination environment in hydrophobic ionic liquids:An in situ investigation [J]. Inorg Chem,2003,42(7): 2197-2199.
    [250]Grigorieva NA, Pavlenko NI, Pashkov GL, et al. Investigation of the State of Bis(2,4,4-trimethylpentyl)dithiophosphinic Acid in Nonane in the Presence of Electron-Donor Additives [J]. Solvent Extr Ion Exch,2010,28(4):510-525.
    [251]Tokuda H, Ishii K, Susan MABH, et al. Physicochemical Properties and Structures of Room-Temperature Ionic Liquids.3. Variation of Cationic Structures [J]. The Journal of Physical Chemistry B,2006,110(6):2833-2839.
    [252]Tokuda H, Hayamizu K, Ishii K, et al. Physicochemical Properties and Structures of Room Temperature Ionic Liquids.2. Variation of Alkyl Chain Length in Imidazolium Cation [J]. The Journal of Physical Chemistry B,2005,109(13): 6103-6110.
    [253]Tokuda H, Hayamizu K, Ishii K, et al. Physicochemical Properties and Structures of Room Temperature Ionic Liquids.1. Variation of Anionic Species [J]. The Journal of Physical Chemistry B,2004,108(42):16593-16600.
    [254]Freire MG, Neves CMSS, Carvalho PJ, et al. Mutual solubilities of water and hydrophobic ionic liquids [J]. J Phys Chem B,2007,111(45):13082-13089.
    [255]Li Y, Wang LS, Cai SF. Mutual Solubility of Alkyl Imidazolium Hexafluorophosphate Ionic Liquids and Water [J]. J Chem Eng Data,2010,55: 5289-5293.
    [256]Jensen MP, Neuefeind J, Beitz JV, et al. Mechanisms of metal ion transfer into room-temperature ionic liquids:the role of anion exchange [J]. J Am Chem Soc,2003, 125(50):15466-15473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700