用户名: 密码: 验证码:
细粒锡石颗粒—气泡间相互作用及其对浮选的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据细粒浮选、胶体化学、表面化学和颗粒-气泡间的相互作用理论,通过浮选试验,Zeta电位、接触角的测定,采用扫描电镜、激光粒度分析仪、高速摄影仪等现代测试手段,对细粒锡石的表面性质、浮选行为和细粒锡石-气泡间的相互作用进行了研究。探明了使不同粒级的锡石浮选回收率达到最佳时颗粒-气泡间的最佳匹配范围。结合实验测定的参数进行计算拟合,对颗粒-气泡间的匹配关系进一步验证。统计分析了气泡量、气泡大小对浮选效果的影响。从微观角度分析了颗粒-气泡间的相互作用力对浮选的影响。
     通过对锡石的性质及其浮选行为的基础研究探明了影响细粒锡石浮选回收率的因素,主要有颗粒大小,气泡大小,气泡量、pH值、搅拌强度等。锡石与气泡之间存在一个最佳的匹配范围,药剂体系不同,匹配范围不同。①水杨羟肟酸和磷酸三丁酯体系中,-10μm、-20+10μm、-38+20μm三个粒级的锡石颗粒分别与45~59μm、59μm、69μm左右气泡尺寸相匹配。②油酸钠体系中,--10μm、-20+10μm、-38+20μm和-74+38μm粒级锡石分别与59μm、69μm、45μm气泡大小相匹配。③MOS体系中,-10μm、-20+10μm、-38+20μm、-74+38μm四种粒级所匹配的气泡大小分别为69μm、69μm、45~59μm、69μm
     捕收剂和电解质浓度的提高均能使颗粒和气泡间发生聚团,从而使颗粒-气泡的表观粒度增大。38μm、50μm、74μm、150μm、250μm420μm、1000μm阴极孔径切割的气泡平均尺寸分别为:20.2μm、29.5μm、44.6μm、59.2μm、68.7μm、78.5μm、88.8μm。气泡直径为21μm、32μm、41μm、52μm大小时的初始速度分别为:3.653cm/s、4.925cm/s、7.3059cm/s、9.336cm/so气泡量、尺寸、速度及气泡间桥连作用受电流、电解时间、电解质浓度的影响较大。
     锡石颗粒和气泡大小对锡石-气泡间的碰撞概率、粘附概率、脱附概率的影响很大,理论模型计算再次表明锡石颗粒尺寸与气泡尺寸有一个大概的匹配范围,在这个范围内,气泡对锡石的捕集概率达到最大,从而获得最佳的浮选回收率,颗粒越大,其获得最佳捕集概率所需要的气泡直径就越大。
     锡石-水-气泡体系的相互作用和界面能计算结果显示:锡石-气泡间发生粘附的概率主要取决于锡石-气泡间的碰撞效率,一旦细粒锡石与气泡间发生碰撞,二者间在力的作用下发生粘附的几率很大。锡石-气泡间接触并粘附前后的自由能变化△G负值越大,锡石越易与气泡发生粘附。
     通过高速摄影仪跟踪锡石-气泡间碰撞-粘附-脱附过程,结果表明不同条件下锡石-气泡间的碰撞-粘附-脱附模式和发生的概率有很大不同。尺寸不同的气泡间的聚团因其上升速度和所携带锡石颗粒量的不同,碰撞之后粘附的概率不同,尺寸较大的气泡表面携带锡石颗粒量较多,负载较大,上升速度减小,与小气泡携带的锡石颗粒间发生粘附的概率较低。大小和上升速度基本相同的气泡-锡石聚团较易发生粘附而形成更大的聚团,并最终达到上浮的目的。根据浮选体系中锡石-气泡间碰撞-粘附现象及实验数据,对已有模型进行了参数修正。
     锡石颗粒-气泡间相互作用的研究结果为细粒锡石的浮选回收途径提供了新的可行性思路,为微泡浮选在细粒锡石的回收方面的应用提供了一定的理论基础。
In this thesis, the studies relating to surface properties and floatation behaviors of fine cassiterite as well as the mechanism of their interactions with bubbles were carried out. It was based on fine particle flotation, colloid chemistry, surface chemistry and particle-bubble interaction theory, with the help of flotation tests, the Zeta potential measurement, contact angle measurement, scanning electron microscope, laser scattering particle analyzer, high-speed camera. It was discovered the best match between cassiterite particle and bubble occurred when the best flotation recovery of cassiterite was achieved. Combined with the parameters determined by experiments, the fitting calculation was carried out, proving the matching between particle and bubble further. The influences of bubble quantity and bubble size on flotation response were analyzed. In Microcosmic View, forces between particle and bubble were studied and their influences on flotation were discovered.
     The factors influencing recovery of fine cassiterite were proved up as flollows:particle size, bubble size, bubble quantity, pH value, stirring intensity. It was based on the basic research of surface properties and floatation behaviors of fine cassiterite. There is an optimal matching range between cassiterite particle and bubble size, which differs according to different reagent system.①in salicylhydroxamic acid and tributyl phosphate system,-10μm,-20+10μm,-38+20μm of cassiterie size fractions match with59μm,69μm,45pm of bubble sizes respectively.②In sodium oleate system,-10μm,-20+10μm,-38+20μm,-74+38μm of cassiterie size fractions match with59pm,69μm,45μm,45μm respectively.③In MOS system,-10μm,-20+10μm,-38+20μm,-74+38μm of cassiterie size fractions match with69μm,69μm,45~59μm,69μm respectively.
     Both the increase of electrolyte and collector concentration can make the occurrence of the agglomerate groups between particles and bubbles, resulting in the increase of the apparent size of particle-bubbles. The average sizes of bubbles cut by38μm、50μm、74μm、150μm、250μm、420μm、1000μm of cathode aperture size were20.2μ、29.5μm、 44.6μm、59.2μm、68.7μm、78.5μm、88.8μm separately. When bubble sizes were21μm,32μm,41μm,52μm, the initial velocities of which were3.653cm/s,4.925cm/s,7.3059cm/s,9.336cm/s separately. Bubble quantity, size, speed and bridge role between bubbles are greatly influenced by current, electrolytic time, concentration of electrolyte.
     Collision probability, attachment probability, detachment probability between cassiterite particle and bubble were influenced by cassiterite particle size and bubble size greatly. Theory model calculation proved there is an optimal matching range between cassiterite particle and bubble size, and the best collection probability and flotation recovery can be obtained in this range. Greater bubbles were needed for bigger particles to acquire the best collection probability.
     The results of interaction and interface calculation of cassiterite-water-bubble system showed that the adhesion probability between cassiterite and bubble depends on cassiterite-bubble collision efficiency, once the collision between particle and bubble occurred, the probability of attachment between particle and bubble was increased. The greater the negative of ΔG (the freedom energy change of cassiterite particles-bubbles before and after contact and adhesion) is, the easier the adhesion will happen.
     The collision-attachment-detachment process between cassiterite and bubble was treated by high speed camera, and the model and probability of which were various with different conditions. Agglomerate formed by bubbles with different sizes have different probability of attachment after collision, because bubbles with different sizes have different velocity and carry different amount of cassiterite particles. Bigger bubbles carry more cassiterite particles, resulting in larger load and lower rising velocity, which have fewer adhesion probability with cassiterite particles carried by small bubbles. Agglomerate between bubble and cassiterite with same size and rising velocity is more easily be adhered to form larger agglomerate, resulting in being flotated. According to collision-adhesion phenomenon between cassiterites and bubbles and experimental data in the flotation systems, the parameters of the existing model were fixed.
     The results of studying on the interaction between cassiterite particles and bubbles provide a new way feasible for fine cassiterite flotation, and provide certain theoretical basis for the appilication of micro-bubble flatation on the recovery of fine cassiterite particles.
引文
[1]余德文,钟志勇.原生细粒钛铁矿无抑制活化浮选[J].矿业快报,2000,(14):16-18.
    [2]Liu Q, Wannas D, Peng Y. Exploiting the dual functions of polymer depressants in fine particle flotation [J]. International Journal of Mineral Processing 2006,80(2-4):244-254.
    [3]Pease J D, Curry D C, Young M F. Designing flotation circuits for high fines recovery [J]. Minerals Engineering,2006,19(6-8):831-840.
    [4]尚旭,张文彬,刘殿文,等.微细粒矿物的分选技术及设备探讨[J].矿产保护与利用,2007,(1):31-35.
    [5]唐敏,张文斌.微细粒铜镍硫化矿浮选的疏水絮凝机制研究[J].稀有金属,2008,32(4):506-512.
    [6]沈政昌,史帅星,卢世杰,等.浮选设备发展概况(续二)[J].有色设备,2005,(1):5-8.
    [7]周丽,文书明.细粒矿物浮选分选技术现状[J].国外金属矿选矿,2003,(2):10-14.
    [8]罗小苟,熊淑华,李小波.浮选理论与工艺研究现状[J].矿业快报,2007,(2):1-3.
    [9]Qin W, Ren L, Sun W. Electro-flotation research on fine cassiterite [C]. XXVInternational Mineral Processing Congress 2010. The Australasian Institute of Mining & Metallurgy,2010:2245-2253.
    [10]Fuerstenau D W,李晓莎.用剪切絮凝和载体浮选法提高细粒赤铁矿浮选回收率[J].国外金属矿选矿,1993,(3):1-6.
    [11]钟宏.细粒浮选法[C].第三届中国青年选矿学术研讨会论文集.1993:10.
    [12]张斌,林月琼,译.选矿过程的细粒回收问题[J].国外金属矿选矿,1993,(9):5-23.
    [13]Wang Y H C, Somasundarn P. Fime Prcessing [C]. AIME.1980:2.
    [14]帕斯科R D,多尔蒂E.用油酸钠对赤铁矿进行剪切絮凝和浮选的研究(一)[J].国外金属矿选矿,1999,(1):41-44.
    [15]帕斯科R D,多尔蒂E.用油酸钠对赤铁矿进行剪切絮凝和浮选的研究(二)[J].国外金属矿选矿,1999,(1):45-48.
    [16]邱冠周,胡为柏,金华爱.微细粒黑钨矿的载体浮选[J].中南矿冶学院学 报,1982,(3):24-31.
    [17]科卡S,等.从高岭土中载体浮选明矾石[J].国外金属矿选矿,2001,(9):42-45.
    [18]梁瑞禄,沼田芳明.关于微细粒锡矿石载体浮选的研究[J].国外金属矿选矿,1999,(8):7-12.
    [19]卢比奥J,等.利用疏水性聚合物载体浮选细粒矿物的方法[J].国外金属矿选矿,1997,(11):6-11.
    [20]张芹,胡定国,周文波,等.微细粒嵌布铁矿絮凝浮选基础理论研究综述[J].矿业快报,2006,(8):10-12.
    [21]松S,崔洪山,李长根.细粒方铅矿和闪锌矿的絮团浮选[J].国外金属矿选矿,2001,(4):6-11.
    [22]许孙曲摘译.用黄原酸纤维素选择性絮凝复杂硫化矿[J].有色矿山,2000,(4):52.
    [23]黄传兵,陈兴华,兰叶,等.选择性絮凝技术及其在矿物分选中的应用[J].矿业工程,2005,3(3):27-29.
    [24]黄云峰.浮选柱的现状与发展[C].第四届全国青年选矿学术会议论文集.云南科技出版社,1996:5-11.
    [25]Yang D C. [C]. Processings of the first ICPMMP.1992:569.
    [26]惠学德.双液浮选及其在细粒物料分选中的应用[J].国外金属矿选矿,1992,(11):18-22.
    [27]Lai R W M, Fuerstenau D W. Minerals Beneficiation-Liquid-Liquid Extraction of Ultrafine Particles [M]. Englewood:AIME 1969:549-555.
    [28]Shergold H L, Mellgren O. Concentration of minerals at the oil-water interface: hematite-isooctane-water system in the presence of sodium dodecyl sulphate [J]. Transactions of the Institution of Mining and Metallurgy, Section C,1969, 78:121-132.
    [29]Shergold H L, Stratton-Crawley R. Extraction of titanium dioxide into oil from anionic surfactant solutions [J]. Colloids and Surfaces,1981,3(3):253-265.
    [30]Kocabag D, Kelsall G H, Shergold H L. Natural olephilicity/hydrophobicity of sulphide minerals, Ⅰ. Galena [J]. International Journal of Mineral Processing, 1990,29(3-4):195-210.
    [31]Kocabag D, Shergold H L, Kelsall G H. Natural oleophilicity/hydrophobicity of sul-phide minerals, Ⅱ. Pyrite [J]. International Journal of Mineral Processing,1990,29(3-4):211-219.
    [32]Fuerstenau M C. On the natural flotability of sulfides [J]. International Journal of Mineral Processing,1981,8(1):79-84.
    [33]Zambrana G. Phase separation of fine cassiterite particles in organic media-apolar and-polar systems [J]. International Journal of Mineral Processing,1974, (1):335-345.
    [34]Zambrana G Z, Medina R T, Gutierrez G B, et al. Recovery of minus ten micron cassiterite by liquid-liquid extraction [J]. International Journal of Mineral Processing,1974,1(4):335-345.
    [35]Marinakis K I, Kelsall G H. Adsorption of dodecyl sulfate and decyl phosphonate on wolframite, (Fe, Mn)WO4, and their use in the two-liquid flotation of fine wolframite particles [J]. Journal of Colloid and Interface Science,1985,106(2):517-531.
    [36]樊晓鹏,刘开平,谭晨曦,等.浮选气泡矿化机理研究[J].矿业快报,2005,(7):12-15.
    [37]赵宝生,蔡青.离子浮选法处理放射性废水[J].原子能科学技术,2004,38(4):382-384.
    [38]朱建光,朱玉霜,王升鹤,等.利用协同效应最佳点配制钛铁矿捕收剂[J].有色金属(选矿部分),2002,(4):39-41.
    [39]何虎,余德文.ZY捕收剂分选粗粒级钛铁矿的试验研究[J].金属矿山,2002,(6):23-25.
    [40]谢建国,张径生,孟长春,等.新型捕收剂ROB浮选微细粒级钛铁矿的试验研究[J].矿冶工程,2002,22(2):47-50.
    [41]胡岳华.细粒浮选的进展[J].国外金属矿选矿,1992,(12):6-9.
    [42]Yoon R H.细粒浮选的进展-微泡浮选[J].国外金属矿选矿,1993,(6):1-4.
    [43]Sivamohan R. The Problem of Recovering Very Fine Particles in Mineral Processing-A Review [J]. International Journal of Mineral Processing,1990, 28(3-4):247-288.
    [44]Matis K A. Dissolved air flotation and electronic flotation [C]. Mineral Processing at a crossroad. Nijhoff M,1986:37-69.
    [45]何廷树,陈柄辰.微细粒浮选设备探讨[J].中国矿业,1994,(13):32-35.
    [46]张强,王化军,李正龙.浮选柱的发展[J].国外金属矿选矿,1991,(9):1-13、26.
    [47]周凌锋,傅联海,张强.高效细粒浮选柱[J].有色金属(选矿部分),2007, 59(2):55-58.
    [48]刘炯天,欧泽深,高敏.旋流器浮选柱的研究[J].选煤技术,1993,12(5):60-63.
    [49]霍尔.浮选柱进入成熟期[J].国外金属矿选矿,1993,5(10):45-48.
    [50]程敢,曹亦俊,徐宏祥,等.浮选柱技术及设备的发展[J].选煤技术,2011,(1):66-70.
    [51]何廷树.新型细粒浮选机的研究[M].沈阳:东北大学出版社,1997:14-20.
    [52]周凌锋,张立明,甘正如.浮选柱强化细粒分选的研究[J].有色金属(选矿部分),2004,(4):33-35.
    [53]Weber M, Paddock D. Interceptional and gravitational collsion efficiencies for single collectors at intermediate Reynolds numbers [J]. Journal of Colloid and Interface Science,1994,2(5):328-335.
    [54]Schneider J C, Weert G V. Design of operation of the hydrochem fydrochem flotation column [J]. Column Flotation,1999,11(7):287-292.
    [55]罗立群,陈敏,黄红.浮选柱技术的发展及其装备的应用动态[J].矿冶工程,2010,30(4):135-139.
    [56]李延锋,张敏,刘炯天.浮选柱充填方式及其优化[J].煤炭学报,2008,33(4):431-434.
    [57]Finch J A. Column flotation:a selected review-part IV:novel flotation devices [J]. Minerals Engineering,1995,8(6):587-602.
    [58]Bilgesu I, Meloy T P, Williams M C. Packed column froth flotation escalator model and plugging [J]. International Journal of Mineral Processing, 1998,53(s1-2):59-74.
    [59]Ding Y, Wu Y, Li D, et al. Study of processing technology for dressing collophane in packed flotation column [J]. Mineral Engineering,2001,14(9): 1101-1105.
    [60]周凌锋.新型细粒浮选柱的研究[D].北京:北京科技大学,2006.
    [61]周晓华,赵朝勋,刘炯天.浮选柱研究现状及发展趋势[J].选煤技术,2003,(6):51-54.
    [62]彭寿清.浮选柱的发展和应用[J].湖南有色金属,1998,14(2):14-19.
    [63]李艳.微细粒高岭石颗粒与气泡相互作用研究[D].长沙:中南大学,2009.
    [64]杨锦隆,王毓华.新型充填式浮选柱[J].国外金属矿选矿,1991,28(2): 8-12.
    [65]冉红想,梁殿印.磁铁矿在磁浮力场中的分选试验研究[J].矿冶,2004,13(3):30-33.
    [66]周凌峰,张强.气泡尺寸变化对微细粒浮选效果的研究[J].有色金属(选矿部分),2005,(3):21-23.
    [67]Trahar W J, Warren L J. The flotability of very fine particles-a review [J]. International Journal of Mineral Processing,1976,3(2):103-131.
    [68]Fuerstenau D W. Fine particle flotation [C]. Fine Particle Processing, Proceedings International Symposium.1980:669-705.
    [69]Yoon R H, Luttrell G H. The effect of bubble size on fine particle flotation [J]. Mineral Processing and Extractive Metallurgy,1989,5(1-4):101-122.
    [70]Dai Z F, Fornasiero D, Ralston J. Particle-bubble collision models-a review [J]. Advances in Colloid and Interface Science,2000,85(2-3):231-256.
    [71]Matis K A, Backhurst J R. Solid-Liquid Separation [M]. Chichester:Ellis Horwood Ltd,1984:29-40.
    [72]Qin W-Q, Ren L-Y, Wang P-P, et al. Electro-flotation and collision-attachment mechanism of fine cassiterite [J]. Transactions of Nonferrous Metals Society of China 2012,22(4):1711-1717.
    [73]Sun W, Ma L, Hu Y, et al. Hydrogen bubble flotation of fine minerals containing calcium [J]. Mining Science and Technology (China),2011,21(4): 591-597.
    [74]Ben Mansour L, Chalbi S, Kesentini I. Experimental study of hydrodynamic and bubble size distributions in electroflotation process [J]. Indian Journal of Chemical Technology,2007,14(3):253-257.
    [75]Sarkar M S K A, Donne S W, Evans G M. Hydrogen bubble flotation of silica [J]. Advanced Powder Technology,2010,21 (4):412-418.
    [76]Glembotskii V A, Mamakov A A, Romanov A M, et al. Selective separation of fine mineral slimes using the method of electric flotation [C]. Proceedings 11th International Mineral Processing Congress.1975:561-582.
    [77]Sutherland K L. Physical chemistry of flotation XI. Kinetics of the flotation process [J]. Journal of Physical and Colloid Chemistry,1948,52(2):394-425.
    [78]Crawford R, Ralston J. The influence of particle size and contact angle in mineral flotation [J]. International Journal of Mineral Processing 1988, 23(1-2):1-24.
    [79]Ralston J, Dukhin S S. The interaction between particles and bubbles [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,1999, 151(1-2):3-14.
    [80]Duan J, Fornasiero D, Ralston J. Calculation of the flotation rate constant of chalcopyrite particles in an ore [J]. International Journal of Mineral Processing, 2003,72(1-4):227-237.
    [81]Pyke B, Fornasiero D, Ralston J. Bubble particle heterocoagulation under turbulent conditions [J]. Journal of Colloid and Interface Science,2003, 265(1):141-151.
    [82]Miettinen T, Ralston J, Fornasiero D. The limits of fine particle flotation [J]. Minerals Engineering,2010,23(5):420-437.
    [83]Ralston J, Dukhin S S, Mishchuk N A. Wetting film stability and flotation kinetics [J]. Advances in Colloid and Interface Science,2002,95(2-3): 145-236.
    [84]Nguyen A V, Schulze H J. Colloidal Science of Flotation [M]. New York: Marcel Dekker,2004:850.
    [85]Levich V G Physicochemical Hydrodynamics [C]. Prentice-Hall.1962:700.
    [86]Abrahamson J. Collision rates of small particles in a vigorously turbulent fluid [J]. Chemical Engineering Science,1975,30(11):1371-1379.
    [87]Jordan C E, Spears D R. Evaluation of a turbulent flow model for fine-bubble and fine-particle flotation [J]. Minerals and Metallurgical Processing 1990, 7(2):65-73.
    [88]Rulyov N N. Turbulent microflotation:theory and experiment [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2001,192(1-3): 73-91.
    [89]Gaudin A M, Schuhmann Jr. R, Schlechten A W. Flotation kinetics Ⅱ. The effect of size on the behaviour of galena particles [J]. Journal of Physical Chemistry A,1942,46(8):902-910.
    [90]Gaudin A M. Flotation, seconded [M]. New York:McGraw-Hill Book Company,1957:560.
    [91]Schulze H J. Flotation as a heterocoagulation process:possibilities of calculating the probability of flotation [M]. New York:Dekker,1993:321-353.
    [92]Dai Z, Dukhin S S, Fornasiero D, et al. The inertial hydrodynamic interaction of particles and rising bubbles with mobile surfaces [J]. Journal of Colloid and Interface Science,1998,197(2):275-292.
    [93]Rulyov N N. Colloidal-hydrodynamic flotation theory [J]. Khimiya i Teknologiya Vody 1989,11(3):195-216.
    [94]Reay D, Ratcliff G A. Removal of fine particles from water by dispersed air flotation. Effects of bubble size and particle size on collection efficiency [J]. Canadian Journal of Chemical Engineering,1973,51(2):178-185.
    [95]Reay D, Ratcliff G A. Experimental testing of the hydrodynamic collision model of fine particle flotation [J]. Canadian Journal of Chemical Engineering, 1975,53(5):481-486.
    [96]Collins G L. Dispersed air flotation of fine particles [D]. London University of London,1975.
    [97]Spielman L A, Goren S L. Capture of small particles by London forces from low-speed liquid flows [J]. Environmental Science and Technology 1970,4(2): 135-140.
    [98]Prieve D C, Ruckenstein E. Effect of London forces upon the rate of deposition of Brownian particles [J]. AIChE Journal 1974,20(6):1178-1187.
    [99]Jameson G J, Nam S, Young M M. Physical factors affecting recovery rates in flotation [J]. Minerals Science Engineering 1977,9(3):103-118.
    [100]Yang S M, Han S P, Hong J J. Capture of small particles on a bubble collector by Brownian diffusion and interception [J]. Journal of Colloid and Interface Science,1995,169(1):125-134.
    [101]Davis R E, Acrivos A. Influence of surfactants on the creeping motion of bubbles [J]. Chemical Engineering Science,1966,21(8):681-685.
    [102]Edwards D A, Brenner H, Wasan D T. Interfacial Transport Processes and Rheology [M]. Boston:Butterworth-Heinemann,1991:558.
    [103]Li D, Fitzpatrick J A, Slattery J C. Rate of collection of particles by flotation [J]. Industrial and Engineering Chemistry Research,1990,29(6):955-967.
    [104]Jowett A. Formation and disruption of particle-bubble aggregates in flotation [C]. Proceedings International Symposium. Inst. Min. Metall. and Pet. Engrs, 1980:720-754.
    [105]Ye Y, Miller J D. Bubble/particle contact time in the analysis of coal flotation [J]. Coal Preparation (London, United Kingdom),1988,5(3-4):147-166.
    [106]Dai Z, Fornasiero D, Ralston J. Particle-bubble attachment in mineral flotation [J]. Journal of Colloid and Interface Science,1999,217(1):70-76.
    [107]Nguyen A V, George P, Jameson G J. Demonstration of a minimum in the recovery of nanoparticles by flotation:Theory and experiment [J]. Chemical Engineering Science,2006,61(8):2494-2509.
    [108]Yoon R H, Mao L. Application of extended DLVO theory, IV. Derivation of flotation rate equation from first principles [J]. Journal of Colloid and Interface Science,1996,181(2):613-626.
    [109]Mishchuk N, Ralston J, Fornasiero D. Influence of dissolved gas on van der Waals forces between bubbles and particles [J]. Journal of Physical Chemistry A,2002,106(4):689-696.
    [110]Snoswell D R E, Duan J M, Fornasiero D, et al. Colloid stability and the influence of dissolved gas [J]. Journal of Physical Chemistry B,2003,107(13): 2986-2994.
    [111]Ducker W A, Xu Z, Israelachvili J N. Measurements of hydrophobic and DLVO forces in bubble-surface interactions in aqueous solution [J]. Langmuir, 1994,10(9):3279-3289.
    [112]Ishida N, Higashitani K. Interaction forces between chemically modified hydrophobic surfaces evaluated by AFM-The role of nanoscopic bubbles in the interactions [J]. Minerals Engineering,2006,19(6-8):719-725.
    [113]Fielden M L, Hayes R A, Ralston J. Surface and capillary forces affecting air bubble-particle interactions in aqueous electrolyte [J]. Langmuir,1996,12(15): 3721-3727.
    [114]Hewitt D, Fornasiero D, Ralston J, et al. Aqueous film drainage at the quartz/water/air interface [J]. Journal of the Chemical Society, Faraday Transactions,1993,89(5):817-822.
    [115]Newcombe G, Ralston J. Bubble spreading kinetics and mineral flotation [J]. Minerals Engineering,1994,7(7):889-903.
    [116]Klassen V I, Mokrousov V A. An introduction to the theory of flotation [C]. London:Butterworths,1963:493.
    [117]Collins G L, Jameson G J. Double-layer effects in the flotation of fine particles [J]. Chemical Engineering Science 1977,32(3):239-246.
    [118]Li C, Somasundaran P. Reversal of bubble charge in multivalent inorganic salt solutions-effect of magnesium [J]. Journal of Colloid and Interface Science, 1991,146(1):215-218.
    [119]Takahashi M. potential of microbubbles in aqueous solutions:Electrical properties of the gas-water interface [J]. Journal of Physical Chemistry B, 2005,109(46):21858-21864.
    [120]Blake T D, Kitchener J A. Stability of aqueous films on hydrophobic methylated silica [J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1972,68(pt.8):1435-1442.
    [121]Weisenberger S, Schumpe A. Estimation of gas solubilities in salt solutions at temperatures from 273 K to 363 K [J]. AIChE Journal 1996,42(1):298-300.
    [122]Laskowski J, Kitchener J A. Hydrophilic-hydrophobic transition on silica [J]. Journal of Colloid and Interface Science 1969,29(4):670-679.
    [123]Brandon N P, Kelsall G H, Levine S, et al. Interfacial electrical properties of electrogenerated bubbles [J]. Journal of Applied Electrochemistry,1985,5(4): 485-493.
    [124]Kelsall G H, Tang S, Yurdakul S, et al. Electrophoretic behaviour of bubbles in aqueous electrolytes [J]. Journal of the Chemical Society, Faraday Transactions,1996,92(20):3887-3893.
    [125]Hewitt D, Fornasiero D, Ralston J. Bubble-particle attachment [J]. Journal of the Chemical Society, Faraday Transactions 1995,91(13):1997-2001.
    [126]Anfruns J F, Kitchener J A. Rate of capture of small particles in flotation [J]. Transactions of the Institution of Mining and Metallurgy, Section C; Mineral Processing and Extractive Metallurgy,1977,86:9-15.
    [127]Blake P, Ralston J. Controlled methylation of quartz particles [J]. Colloids and Surfaces,1985,15(1-2):101-118.
    [128]Dobby G S, Finch J A. Particle size dependence in flotation derived from a fundamental model of the capture process [J]. International Journal of Mineral Processing,1987,21(3-4):241-260.
    [129]Mishchuk N A, Koopal L K, Dukhin S S. Microflotation Suppression and Enhancement Caused by Particle/Bubble Electrostatic Interaction [J]. Journal of Colloid and Interface Science,2001,237(2):208-223.
    [130]Derjaguin B V, Dukhin S S, Rulyov N N. Kinetic theory of flotation of small particles [M]. New York:Wiley Interscience,1984:71-113.
    [131]Schulze H J. Physico-chemical Elementary Processes in Flotation:An Analysis from the Point of View of Colloid Science Including Process Engineering Considerations [M]. Amsterdam, New York.:Elsevier,1984: 24-30.
    [132]邬武进.细泥锡石浮选工艺研究[J].上海第二工业大学学报,2000,(2):66-72.
    [133]何名飞,罗朝艳,陈玉平,等.细粒锡石浮选研究[J].矿冶工程,2008,28(4):29-31,
    [134]蒋荫林.锡矿泥浮选的可能性分析[J].锡业科技,2001,2(5):50-52.
    [135]李瑞生.锡矿泥选矿[J].锡业科技,2001,2(3):1-5.
    [136]张曙光,朱广泽.某含锡硫化锌矿的选矿工艺研究[J].云南冶金,2006,35(2):26-27、45.
    [137]尹文新,韩跃新.某锡矿重精反浮选试验研究[J].有色矿冶,2005,21(5):13-15.
    [138]任浏祎,覃文庆,何小娟,刘三军.从锡石-多金属硫化矿尾矿中回收锡的浮选研究[J].矿冶工程,2009,29(1):44-47.
    [139]Srdjan M B.21-Flotation of Tin Minerals [M]. Amsterdam:Elsevier,2010: 87-109.
    [140]Matis K A, Gallios G P, Kydros K A. Separation of fines by flotation techniques [J]. Separations Technology,1993,3(2):76-90.
    [141]Clauss C R A, Appleton E A, Vink J J. Selective flocculation of cassiterite in mixtures with quartz using a modified polyacrylamide flocculant [J]. International Journal of Mineral Processing,1976,3(1):27-34.
    [142]Baldauf H, Schoenherr J, Schubert H. Alkane dicarboxylic acids and aminonaphthol-sulfonic acids-A new reagent regime for cassiterite flotation [J]. International Journal of Mineral Processing,1985,15(1-2):117-133.
    [143]刘德全,朱建光.水杨羟肟酸与铜铁灵浮选锡石的协同作用及其机理研究[J].矿冶工程,1994,14(2):27-31.
    [144]蒋军华,丘继存.微细粒锡石的油团聚[J].有色金属(选矿部分),1987,(5):18-20.
    [145]韦大为,蒋君华,丘继存.细粒黑钨矿、锡石油团聚的影响因素[J].有色金属(选矿部分),1988,(1):10-14.
    [146]Houot R, Desbrosses Y. Is the cassiterite contained in complex sulphide polymetallic ore recoverable? [J]. International Journal of Mineral Processing, 1991,32(1-2):45-57.
    [147]Janczuk B, Gonzalez-Martin L M, Bruque J M. Wettability of cassiterite in presence of sodium dodecyl sulphate [J]. Materials Chemistry and Physics, 1994,38(3):225-233.
    [148]Gruner H, Bilsing U. Cassiterite flotation using styrene phosphonic acid to produce high-grade concentrates at high recoveries from finely disseminated ores-comparison with other collectors and discussion of effective circuit configurations [J]. Minerals Engineering,1992,5(3-5):429-434.
    [149]Khangaonkar P R, Kamarudin H. Studies on the cassiterite-sulphosuccinamate flotation system [J]. International Journal of Mineral Processing,1994,42(1-2): 99-110.
    [150]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993:117,231-236.
    [151]曾清华,赵宏.锡石浮选化学[J].国外金属矿选矿,1997,(3):6-12,25.
    [152]Turner J W G, Hallewell M P. Process improvements for fine cassiterite recovery at Wheal Jane [J]. Minerals Engineering,1993,6(8-10):817-829.
    [153]戴少涛.微细粒锡石-石英疏水絮凝研究[J].中国矿业,1997,6(2):43-45.
    [154]张文彬.非硫化矿与复合矿浮选[J].国外金属矿选矿,1992,(8):24-28.
    [155]Skvarla J K S. Influence of wettability on the aggregation of fine minerals [J]. International Journal of Mineral Processing,1991,1-2(32):111-131.
    [156]覃文庆,龙怀中,邱冠周.微细粒锡石疏水团聚-絮凝的研究[J].有色金属,1996,48(3):39-43.
    [157]Elizaveta F. Shear, selective and temperature responsive flocculation:A comparison of fine particle flotation techniques [J]. International Journal of Mineral Processing,2011,99(1-4):1-10.
    [158]Sun W, Deng M-J, Hu Y-H. Fine particle aggregating and flotation behavior induced by high intensity conditioning of a CO2 saturation slurry [J]. Mining Science and Technology (China),2009,19(4):483-488.
    [159]Sadowski Z, Polowczyk I. Agglomerate flotation of fine oxide particles [J]. International Journal of Mineral Processing,2004,74(1-4):85-90.
    [160]Englert A H, Rodrigues R T, Rubio J. Dissolved air flotation (DAF) of fine quartz particles using an amine as collector [J]. International Journal of Mineral Processing,2009,90(1-4):27-34.
    [161]Fukui Y, Yuu S. Collection of submicron particles in electro-flotation [J]. Chemical Engineering Science,1980,35(5):1097-1105.
    [162]Rodrigues R T, Rubio J. DAF-dissolved air flotation:Potential applications in the mining and mineral processing industry [J]. International Journal of Mineral Processing,2007,82(1):1-13.
    [163]Rubio J, Souza M L, Smith R W. Overview of flotation as a wastewater treatment technique [J]. Minerals Engineering,2002,15(3):139-155.
    [164]Ramirez J A, Zinchenko A, Loewenberg M, et al. The flotation rates of fine spherical particles under Brownian and convective motion [J]. Chemical Engineering Science,1999,54(2):149-157.
    [165]朱一民 周菁,徐金球,等.高效低毒锡石浮选剂ZJ-3浮选锡石细泥试验研究[J].有色金属:选矿部分,2001,(2):38-41.
    [166]Liu W g, Wei D z, Wang B y, et al. A new collector used for flotation of oxide minerals [J]. Transactions of Nonferrous Metals Society of China,2009,19(5): 1326-1330.
    [167]Ketkar D R, Mallikarjunan R, Venkatachalam S.细粒石英的电浮选[J].江西冶金,1992,12(1):62-64.
    [168]罗德里盖斯R T.气泡尺寸分布检测新方法[J].国外金属矿选矿,2004,39-43.
    [169]Luttrell G H, Yoon R H. A Hydrodynamic Model for Bubble-Particle Attachment [J]. Journal of Colloid and Interface Science,1992,154(1): 129-137.
    [170]Nguyen A V, Nalaskowski J, Miller J D. A study of bubble-article interaction using atomic force microscopy [J]. Minerals Engineering,2003,16(11): 1173-1181.
    [171]Binnig G, Quate C F, Gerber C. Atomic force microscope [J]. Physical Review Letters,1986,56:930-933.
    [172]Butt H J. A technique for measuring the force between a colloidal particle in water and a bubble [J]. Journal of Colloid and Interface Science,1994,166(1): 109-117.
    [173]Ralston J. Controlled flotation processes:Prediction and manipulation of bubble-particle capture [J]. Journal of the South African Institute of Mining and Metallurgy,1999,99(1):27-34.
    [174]Ecke S, Preuss M, Butt H J. Microsphere tensiometry to measure advancing and receding contact angles on individual particles [J]. Journal of Adhesion Science and Technology,1999,13(10):1181-1191.
    [175]Preuss M, Butt H J. Direct measurement of particle-bubble interactions in aqueous electrolyte:Dependence on surfactant [J]. Langmuir,1998,14(12): 3164-3174.
    [176]Preuss M, Butt H J. Direct measurement of forces between particles and bubbles [J]. International Journal of Mineral Processing,1999,56(1-4): 99-115.
    [177]Wangsa-Wirawan N D, Ikai A, O'Neill B K, et al. Measuring the interaction forces between protein inclusion bodies and an air bubble using an atomic force microscope [J]. Biotechnol. Progr.,2001,17(5):963-969.
    [178]Aston D E, Berg J C. Fluid interfacial separations for secondary fiber recovery as probed with atomic force microscopy [J]. Journal of Pulp and Paper Science 1998,24(4):121-124.
    [179]Aston D E, Berg J C. Quantitative Analysis of Fluid Interface-Atomic Force Microscopy [J]. Journal of Colloid and Interface Science,2001,235(1): 162-169.
    [180]Aston D E, Berg J C. Thin-film hydrodynamics in fluid interface--atomic force microscopy [J]. Industrial & Engineering Chemistry Research,2002,41(3): 389-396.
    [181]Connor J N, Horn R G, Miklavcic S J. Measurement of surface forces acting between deformable surfaces [J]. Uzbek Journal of Physics,1999,1(1-2): 99-112.
    [182]Hartley P G, Grieser F, Mulvaney P, et al. Surface forces and deformation at the oil-water interface probed using AFM force measurement [J]. Langmuir, 1999,15(21):7282-7289.
    [183]Mulvaney P, Perera J M, Biggs S, et al. The direct measurement of the forces of interaction between a colloid particle and an oil droplet [J]. Journal of Colloid and Interface Science,1996,183(2):614-616.
    [184]Nespolo S A, Chan D Y C, Grieser F, et al. Forces between a rigid probe particle and a liquid interface:Comparison between experiment and theory [J]. Langmuir,2003,19 (6):2124-2133.
    [185]Snyder B A, Aston D E, Berg J C. Particle-drop interactions examined with an atomic force microscope [J]. Langmuir 1997,13 (3):590-593.
    [186]Okada K, Akagi Y, Kogure M, et al. Analysis of Particle Trajectories of Small Particles in Flotation-When the Particles and Bubbles are Both Charged [J]. The Canadian Joural of Chemical Engineering,1990,68:614-621.
    [187]Okada K, Akagi Y, Yoshioka N. Effect of Zeta Potential of Oil Droplets and Bubbles on Flotation of Oil-in-Water Mixtures [J]. Canadian Journal of Chemical Engineering,1988,66(2):276-281.
    [188]Okada K, Akagi Y, Kogure M, et al. Effect of Surface Charges of Bubbles and Fine Particles on Air Flotation Process [J]. Canadian Journal of Chemical Engineering,1990,68(3):393-399.
    [189]Finch J, Dobby G Column flotation [J]. Pergamon Press.,1990, (2):37-48.
    [190]Weber M E. Collision efficiencies for small particles with a spherical collector at intermediate reynolds number [J]. Separation Process Tech,1981, (2): 29-33.
    [191]Yoon R H.矿粒-气泡作用中的流体动力学及表面力[J].国外金属矿选矿,1993,(6):12-15.
    [192]陈炳辰.选矿数学模型[M].沈阳:东北大学出版社,1990:184-186.
    [193]Bhondayi C, Moys M H. Determination of sampling pipe (riser) diameter for a flotation bubble load measuring device [J]. Minerals Engineering,2011, 24(15):1664-1676.
    [194]Sanada T, Watanabe M, Fukano T, et al. Behavior of a single coherent gas bubble chain and surrounding liquid jet flow structure [J]. Chemical Engineering Science,2005,60(17):4886-4900.
    [195]Cao Q, Wang X, Miller J D, et al. Bubble attachment time and FTIR analysis of water structure in the flotation of sylvite, bischofite and carnallite [J]. Minerals Engineering,2011,24(2):108-114.
    [196]Yuan D-W, Pan L-M, Chen D, et al. Bubble behavior of high subcooling flow boiling at different system pressure in vertical narrow channel [J]. Applied Thermal Engineering,2011,31(16):3512-3520.
    [197]Lau R, Mo R, Beverly Sim W S. Bubble characteristics in shallow bubble column reactors [J]. Chemical Engineering Research and Design,2010,88(2): 197-203.
    [198]Sarkar M S K A, Evans G M, Donne S W. Bubble size measurement in electroflotation [J]. Minerals Engineering,2010,23(11-13):1058-1065.
    [199]Ansari M R, Nimvari M E. Bubble viscosity effect on internal circulation within the bubble rising due to buoyancy using the level set method [J]. Annals of Nuclear Energy,2011,38(12):2770-2778.
    [200]Liu S, Wang Q, Ma H, et al. Effect of micro-bubbles on coagulation flotation process of dyeing wastewater [J]. Separation and Purification Technology, 2010,71(3):337-346.
    [201]Busciglio A, Vella G, Micale G, et al. Experimental analysis of bubble size distributions in 2D gas fluidized beds [J]. Chemical Engineering Science,2010, 65(16):4782-4791.
    [202]Couto H J B, Nunes D G, Neumann R, et al. Micro-bubble size distribution measurements by laser diffraction technique [J]. Minerals Engineering,2009, 22(4):330-335.
    [203]Acuna C A, Finch J A. Tracking velocity of multiple bubbles in a swarm [J]. International Journal of Mineral Processing,2010,94(3-4):147-158.
    [204]Li N, Huang J G, Lei K Z, et al. The characteristic of the bubble generated by underwater high-voltage discharge [J]. Journal of Electrostatics,2011,69(4): 291-295.
    [205]Leifer I, Patro R K. The bubble mechanism for methane transport from the shallow sea bed to the surface:A review and sensitivity study [J]. Continental Shelf Research,2002,22(16):2409-2428.
    [206]格劳R A,等.测量浮选机气泡尺寸的光学方法[J].国外金属矿选矿,2002,(9):36-39.
    [207]汪朝晖,廖振方,陈德淑.电浮选过程中气泡行为的研究[J].中南大学学报(自然科学版),2011,42(3):658-663.
    [208]Karimipour S, Pugsley T. A critical evaluation of literature correlations for predicting bubble size and velocity in gas-solid fluidized beds [J]. Powder Technology,2011,205(1-3):1-14.
    [209]Cai Z Q, Bao Y Y, Gao Z M. Hydrodynamic Behavior of a Single Bubble Rising in Viscous Liquids [J]. Chinese Journal of Chemical Engineering,2010, 18(6):923-930.
    [210]张建生,吕青,孙传东,等.高速摄影技术对水中气泡运动规律的研究[J].光子学报,2000,19(10):952-955.
    [211]代敬龙,谢广元,刘姗姗,等.浮选气泡尺寸影响因素分析[J].选煤技术,2007,(5):7-10.
    [212]李浙昆,张宗华,郭晟,等.微泡浮选射流气泡发生器的研究[J].矿业研究与开发,2007,27(5):54-56.
    [213]张敏,刘焕彬,朱小林,等.浮选柱混合气泡发生器的初步设计和性能分析[J].研究论文,2009,28(2):10-12.
    [214]维杜耶茨基,M.T.,张兴仁,肖力子.乌拉尔选矿研究设计院研制的新型浮选柱[J].国外金属矿选矿,2002,(4):31,34-38.
    [215]George P, Nguyen A V, Jameson G J. Assessment of true flotation and entrainment in the flotation of submicron particles by fine bubbles [J]. Minerals Engineering,2004,17(7-8):847-853.
    [216]Ata S, Jameson G J. The formation of bubble clusters in flotation cells [J]. International Journal of Mineral Processing,2005,76(1-2):123-139.
    [217]邓晓辉,许晶禹,吴应湘,等.动态微气泡浮选除油技术研究[J].工业水处理,2011,31(4):89-90.
    [218]朱友益,张强,王化军.水处理用新型高效浮选柱的研制及应用[C].不同类型油气藏高效开发技术研讨会.2000:41-46.
    [219]张磊,刘平,刘春,等.微气泡及其在环境污染控制中的应用[J].河北工业科技,2011,28(1):59-63.
    [220]张学铭,何北海,李军荣.水性油墨废纸浮选过程气泡特性的研究[J].研究论文,2009,28(6):9-12.
    [221]贝尼文蒂,B,等.表而活性剂浓度对脱墨浮选选择性的影响实验室研究[J].国外金属矿选矿,2008,(10):5、31-37.
    [222]孙广卫,刘焕彬,张健,等.浮选柱脱墨行为参数的分析[J].研究论文,2009,28(7):28-30.
    [223]赫尔兰德兹,H,等.浮选柱中气体分散与废纸脱墨研究[J].国外金属矿选矿,2004,(4):41-44.
    [224]许志华.锡工艺矿物学[J].广东有色金属学报,1999,9(2):79-85.
    [225]Polkin S I, Laptev S F, Matsueb L P, et al.细粒锡石浮选理论和实践[J].国外金属矿选矿,1973,(12):1-10.
    [226]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988:223.
    [227]卢寿慈,戴宗福.矿物微粒在水中的疏水絮凝研究非极性油珠能疏水矿粒间的作用[J].安徽大学学报(自然科学版),1987,(S1):30-38.
    [228]张钦发,田忠诚.混合甲苯肿酸对锡石的浮选作用机理[J].矿冶工程,1989,9(1):19-21.
    [229]Derjaguin B V, Dukhin S S. Theory of flotation of small and medium-size particles [J]. Trans.Inst.Min.Mall,1961,70:221-246.
    [230]Cai Z, Bao Y, Gao Z. Hydrodynamic Behavior of a Single Bubble Rising in Viscous Liquids [J]. Chinese Journal of Chemical Engineering,2010,18(6): 923-930.
    [231]Woodburn E T, King R P, Colborn R P. The Effect of Practicle Size Distribution on the Performance of a Phos phate Flotation Process [J]. Metallurgical and Materials Transactions B,1971,2(11):3163-3174.
    [232]Yoon R H. Hydrodynamic and surface forces in bubble-particle interactions [C].17th IMPC, Preprints II.1991:17-31.
    [233]胡岳华,徐竞,邱冠周,等.异凝聚理论及应用研究-异类颗粒间相互作用及异类矿粒的凝聚[J].矿冶工程,1994,14(3):23-27、31.
    [234]胡岳华,徐竞,邱冠周,等.异凝聚理论及应用研究-矿粒与油相及气泡间的相互作用[J].矿冶工程,1995,15(3):29-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700