用户名: 密码: 验证码:
含分层缺陷复合材料层合板分层扩展行为与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强复合材料层合板由于其优异的力学性能已成为现代飞机工业中最重要的结构材料之一。但是在其制造过程中,常由于诸多不确定因素,使结构发生分层损伤,降低结构件承载能力及使用寿命,对于复合材料层合板结构而言分层损伤是一个不容忽视的安全隐患。本文以飞机实际构件中的典型分层缺陷为研究对象,针对飞机工业中应用较为广泛的碳纤维/环氧树脂材料体系,开展分层缺陷的理论分析、数值模拟及试验研究,旨在预报分层在压缩载荷及疲劳载荷作用下的扩展情况,定量分析分层缺陷对复合材料结构的影响,为工程应用提供评估理论及试验依据。
     针对飞机用复合材料在制造过程中产生的真实分层缺陷,通过统计与分析分层的特征参数,确立了具有工程实际研究价值的典型分层。并以典型分层为研究对象,在ABAQUS平台上以内聚力理论为基础,建立有限元计算模型,对压缩载荷作用下含分层缺陷复合材料层合板的分层屈曲及扩展行为进行预测。并且,通过开展层间力学性能试验及分层屈曲试验,验证了数值模型的有效性。并利用数值分析的方法,对试样长宽比、分层尺寸和分层厚度位置等分层参素对分层行为的影响进行定量分析,形成了分层参数敏感性的评价标准。
     此外,层合板结构的实际制备过程中,常由于不均匀的固化温度场及其固化残余应力以及树脂的不均匀分布,使一定范围的层合板区域内出现若干个分层,其分层间存在的作用关系尚无资料可寻。因此,在单一分层扩展行为研究的基础上,针对层合板制造过程中形成的多分层缺陷,以建立多分层许用容限为目的,在前述的内聚力模型基础上,从数值模拟的角度,首次开展了厚度位置和平面位置上双分层的扩展行为研究。确定了双分层的屈曲模式和分层间存在耦合作用,建立了分层间作用范围的三阶段理论,并从数值模拟的角度,详细讨论了影响分层间耦合作用及分层扩展行为的分层尺寸及厚度位置等因素。
     结构件在经历长期疲劳作用时,由于损伤的累积作用而导致的分层扩展给结构的使用安全带来巨大隐患。针对此问题,在所开展的静载荷基础上,开展了压缩疲劳试验,研究复合材料层合板的分层疲劳扩展特性,包括分层扩展速率和分层稳定长度。并采用有限元方法,计算了分层前缘的应变能释放率,并充分地考虑了各分量的作用,定量地分析载荷水平、分层尺寸和厚度位置等参数对分层疲劳扩展行为的影响。并采用扫描电镜对分层扩展路径的微观形貌进行表征,分析分层扩展行为的微观机制。
     同时,以分层疲劳扩展试验为基础,提出了一种简化的疲劳分层计算模型;通过试验数据的曲线拟合,确定了数值分析所需要的半经验参数。对贯穿分层的疲劳扩展行为进行数值模拟,利用前述试验验证了该简化模型定性预测分层疲劳扩展行为的有效性。此外,基于国际尚无针对复杂工况及实际分层的疲劳扩展计算案例,本文利用该简化模型成功地完成了压缩疲劳作用下的中心分层扩展特性预测,充分证明了该模型所具有的数值计算的可实现性和解决工程问题的实用性。
Fiber reinforced composite laminates have become one of the most importantstructural materials in modern airplane industry because of the excellent mechanicalproperties. However, during the manufacture process, the delamination in laminatedcomposites is unavoidable, which will lower the loading capacity and the fatigue life.Therefore, the delamination existed in laminated composites is a key factor to thestructure security and must be payed full attention. In this paper, aimed at the typicaldelamination existed in actual structures in airplane, theoretical analysis, numericalresearch and experimental study have been put forward to predict the delaminationstatus of carbon fiber reinforced resin composite laminate under both compressiveload and compressive fatigue load, in order to investigate the effect of delaminationon the mechanical property of the composite structure quantificationally and providethe evaluation theory and the experiment foundation ulteriorly.
     Through collecting statistics of the actual delamination existed in compositesduring the airplane manufacturing, we establish the typical delamination parameters,based on which the investigation has practical value in engineering application.Furthermore, we build the numerical model based on the cohesive element theoryand the delamination buckling and growth behavior in laminated composites hasbeen predicted. And by implementing experiments of interfacial mechanicalproperties and delamination buckling, the validation of numerical model has beenproofed. Besides, the effect of specimen length-width ratio, delamination size anddepth position on the delamination behavior has been investigated quantificationallyin order to build evaluation standard of the sensitivity parameters on delaminations.
     Otherwise, during the fabrication of laminated structures, the uneventemperature field and the corresponding residual stress and the uneven distributingresin are always unavoidable which results in several delaminations appearing thesame time in a certain scope of the laminated composites. At present, there is noreference introducing the coupling behavior between those coexisting delaminations.Therefore, based on the research of single delamination, chapter three focuses on themultiple delaminations and the corresponding delamination growth behavior, in orderto build the allowance for multi-delaminations. For the first time, we investigate thedelamination behavior of double delaminations both in depth position and in plane.Using the cohesive element method, we ascertain the buckling mode and thecoupling behavior between the existing delaminations; we put forward a three stagetheory of the coupling scope; and we investigate the effect of delamination size anddepth position on the coupling behavior between coexisting delaminations in detail.
     As the delaminated plate undergoes repeated buckling and unloading, aprogressive accumulation of damage at the delamination front occurs. As a consequence, an existing delamination may grow, even if the static growth criterionis not satisfied. Therefore, in chapter four we implement the compressive fatigueexperiments based on the static experiment and study the delamination fatiguegrowth behavior including the delamination growth rate and the delaminationstabilized length. Otherwise, the components of energy release rate have beencomputed and fully considered by finite element method using VCCT technology.The effect of loading level, delamination size and depth position on delaminationfatigue growth behavior has been analyzed quantificationally. And a SEMfractographic analysis has been performed to investigate the micro mechanics ofdelamination growth behavior.
     In chapter five, we put forward a simplified model on delamination fatigue.Based on the compressive fatigue experiment, the empirical parameters for numericalanalysis have been obtained by curve fit of experimental data, and there exists highsimilarity between numerical results and experimental results proving the validationof this numerical model. Otherwise, using this simplified model we haveaccomplished the prediction of fatigue delamination growth for central delaminationsuccessfully, proofing that the mentioned model is highly computable and applicable.
引文
1杨乃宾.复合材料飞机结构设计.北京航空航天大学出版社.2003
    2贺福,孙微.碳纤维复合材料在大飞机上的应用.高科技纤维与应用.2007,32(6):5~8
    3陈绍杰.浅谈空客A380的复合材料应用.高科技纤维与应用.2008,33(4):1~5
    4MIL-HDBK-17-3F, Military Handbook, Polymer Matrix Composites. U.S.Department of Defense.2002
    5王雪明,谢富原,李敏,王菲,张佐光.热压罐成型复合材料构件分层缺陷影响因素分析.第十五届全国复合材料学术会议.2008
    6N. J. Pagano, G. A. Schoeppner. Delamination of polymer matrix composites:problems and assessment,(Ed.) Anonymous Kelly, A.; Zweben, D., Oxford (UK).2000
    7T. E. Tay, F. Shen. Analysis of delamination growth in laminated composites withconsideration for residual thermal stress effects. Journal of Composite Materials.2002,36(11):1299~1320
    8A. S. Crasto, R. Y. Kim. Hygrothermal influence on the free-edge delaminationof composites under compressive loading, In: Composite Materials: Fatigue andFracture6,(Ed.) Anonymous Armanios, E.A., Philadelphia.1997:381~393
    9V. V. Bolotin. Delaminations in composite structures: Its origin, buckling, growthand stability. Composites Part B-Engineering.1996,27(2):29~145
    10V. V. Bolotin. Mechanics of delaminations in laminate composite structures.Mechanics of Composite Materials.2001,37(5-6):367~380
    11W. L. Bradley, C. R. Corleto, D. P. Goetz. Fracture physics of delamination ofcomposite materials. AFOSR-TR-88-0020.1987
    12N. Blanco. Variable mixed-mode delamination in composite laminates underfatigue conditions: testing and analysis. PhD Thesis, University of Girona.2005
    13I. W. Obreimoff. The splitting strength of mica. Proceedings of the Royal Societyof London A.1930,127:290-297
    14J. M. Whitney, R. J. Nuismer. Stress Fracture Criteria for Laminated CompositeContaining Stress Concentrations. Journal of Composite Materials.1974,8:253-265
    15R. Y. Kim, S. R. Soni. Experimental and Analytical Studies on the Onset ofDelamination in Laminated Composites. Journal of Composite Materials.1984,18:70-80
    16Z. Petrossian, M. R. Wisnom. Prediction of delamination initiation and growthfrom discontinuous plies using interface elements. Composites Part A.1998,29A:503-515
    17R. Krugger, T. K. O’Brain. A shell/3D modeling technique for the analysis ofdelaminated composite laminates. Composites: Part A.2001,32:25-44
    18O. Bruno, F., Greco, P. Lonetti. A3D delamination modeling technique based onplate and interface theories for laminated structures. European Journal ofMechanics A/Solids.2005,24:127-149
    19G. R. Irwin. Analysis of stresses and strains near the end of a crack transversing aplate. Journal for Applied Mechanics.1957,24:361-366
    20E. F. Rybicki, M. F. Kanninen. A finite element calculation of stress intensityfactors by a modified crack integral. Engineering Fracture Mechanics.1977,9:931-938
    21I. S. Raju. Calculation of strain-energy release rates with higher order andsingular finite elements. Engineering Fracture Mechanics.1987,38(3):251-274
    22Z. Zou, S. R. Reid. S. Li, P. D. Soden. Mode separation of energy release rate fordelamination in composite laminates using sublaminates. International Journal ofSolids and Structures.2001,38:2597-2613
    23R. Krueger. The virtual crack closure technique: history, approach andapplications. NASA/CR-2002-211628.2002
    24J. R. Rice. A path independent integral and the approximate analysis of strainconcentration by notches and cracks. Journal for Applied Mechanics.1968,35:379-386
    25T. K. Hellen. On the method of the virtual crack extension. International Journalfor Numerical Methods in Engineering.1975,9:187-207
    26D. M. Parks. A stiffness derivative finite element technique for determination ofcrack tip stress intensity factors. International Journal of Fracture.1974,10(4):487-502
    27A. A. Griffith. The phenomena of rupture and flow in solids. Philosophicaltransactions of the Royal Society, London, Series A.1921,221:163-198
    28C. G. Dávila, E. R. Johnson. Analysis of delamination initiation in postbuckleddropped-ply laminates. AIAA Journal.1993,31:721-727
    29P. P. Camanho, F. L. Matthews. Delamination onset prediction in mechanicallyfastened joints in composite laminates. Journal of Composite Materials.1999,33:906-927
    30S. Liu. Quasi-impact damage initiation and growth of thick-section andtoughened composite material. International Journal of Solids and Structures.1999,31:3079-3098
    31Z. Zou, S. R. Reid, S. Li, P. D. Soden. Modeling interlaminar and intralaminardamage in filament wound pipes under quasi-static indentation. Journal ofComposite Materials.2002,36:477-499
    32O. Allix, P. Ladeveze, A. Corigliano. Damage analysis of interlaminar fracturespecimens. Composite Structures.1995,31:61-74
    33A. Corigliano, M. Ricci. Rate-dependent interface models: formulation andnumerical applications. International Journal of Solids and Structures.2001.38:547-576
    34A. Corigliano, S. Mariani, A. Pandolfi. Numerical modeling of rate-dependentdebonding processes in composites. Composite Structures.2003,61:39-50
    35S. Y. Lee, D. Y. Park. Buckling analysis of laminated composite plates containingdelaminations using the enhanced assumed strain solid element. InternationalJournal of Solids and Structures.2007,44:8006-8027
    36D. S. Dugdale. Yielding of steel sheets containing slits. Journal of the Mechanicsand Physics of Solids.1960,8:100-104
    37G. Barenblatt. The mathematical theory of equilibrium cracks in brittle fracture.Advances in Applied Mechanics.1962,7:55-129
    38Z. P. Ba ant, M. Jirásek. Nonlocal integral formulations of plasticity and damage:survey of progress. J. Engineering Mechanics.2002,128:1119-1149
    39X. Xu, A. Needleman. Numerical simulations of fast crack growth in brittlesolids. Journal of Mechanics and Physics of Solids.1994,42(9):1397-1434
    40G. T. Camacho, M. Ortiz. Computational modeling of impact damage in brittlematerials. International Journal of Solids and Structures.1996,33:2899-2938
    41O. Allix, A. Corigliano. Modeling and simulation of crack propagation in mixed-mode interlaminar fracture specimens. International Journal of Fracture.1996,77:111-140
    42W. Cui, M. Wisnom. A combined stress-based and fracture-mechanics-basedmodel for predicting delamination in composites. Composites.1993,24:467-474
    43J. Schellekens, R. de Borst. A nonlinear finite-element approach for the analysisof mode-I free edge delamination in composites. International Journal of Solidsand Structures.1993,30(9):1239-1253
    44J. L. Chaboche, R. Girard, A. Schaff. Numerical analysis of composite systemsby using interphase/interface models. Composite Mechanics.1997,20:3-11
    45U. Mi, M. Crisfield, G. Davies. Progressive delamination using interfaceelements. Journal of Composite Materials.1998,32:1246-1272
    46J. Chen, M. Crisfield, A. Kinloch, E. Busso, F. Matthews, Y. Qiu. Predictingprogressive delamination of composite material specimens via interface elements.Mechanics of Composite Materials and Structures.1999,6:301-317
    47G. Alfano, M. Crisfield. Finite element interface models for the delaminationanalysis of laminated composites: mechanical and computational issues.International Journal for Numerical Methods in Engineering.2001,77(2):111-170
    48J. Segurado, J. Llorca. A new three-dimensional interface finite element tosimulate fracture in composites. International Journal of Solids and Structures.2004,41(11-12):2977-2993
    49P. P. Camanho, C. G. Dávila, M. de Moura. Numerical simulation of mixed-modeprogressive delamination in composite materials. Journal of Composite Materials.2003,37:1415-1438
    50V. Goyal-Singhal, E. Johnson, C. G. Dávila. Irreversible constitutive law formodeling the delamination process using interfacial surface discontinuities.Composite Structures.2004,64:91-105
    51A. Turon, P. P. Camanho, J. Costa, C. G. Dávila. A damage model for thesimulation of delamination in advanced composites under variable-mode loading.Mechanics of Materials.2006,38(11):1072-1089
    52A. Carpinteri. Post-peak and post-bifurcation analysis of cohesive crackpropagation. Engineering Fracture Mechanics.1998,32:265-278
    53P. Bocca, A. Carpinteri, S. Valente. Mixed mode fracture of concrete.International Journal of Solids and Structures.1991,27:1139-1153
    54T. N. Bittencourt, A. R. Ingraffea, J. Llorca. Simulation of arbitrary cohesivecrack propagation, In: Z. P. Bazant. Fracture Mechanics of Concrete Structures,Amsterdam: Elsevier.1992:339-350
    55V. Tvergaard, J. Hutchinson. The relation between crack growth resistance andfracture process parameters in elastic-plastic solids. Journal of Mechanics andPhysics of Solids.1992,40:1377-1397
    56A. S. Gllerud, X. Gao, R. H. Dodds, R. Haj-Ali. Simulation of ductile crackgrowth using computational cells: numerical aspects. Engineering FractureMechanics.2000,66:65-92
    57J. C. Simo, J. Oliver, F. Armero. An analysis of strong discontinuities induced bystrain-softening in rate-independent inelastic solids. Computational Mechanics.1993,12:277-296
    58J. C. Simo, J. Oliver. A new approach to the analysis and simulation of strongdiscontinuities, In: Z. P. Bazant et al. Fracture and Damage in Quasi-brittleStructures, E&FN spon.1994:25-39
    59F. Armero, K. Garikipati. An analysis of strong discontinuities in multiplicativefinite strain plasticity and their relation with the numerical simulation of strainlocalization in solids. International Journal of Solids and Structures.1996,33:2863-2885
    60J. Oliver. Continuum modeling of strong discontinuities in solid mechanics usingdamage models. Computational Mechanics.1995,17(2):49-61
    61T. Belytschko, T. Black. Elastic crack growth in finite elements with minimalremeshing. International Journal for Numerical Methods in Engineering.1999,45(5):601-620
    62N. M es, J. Dolbow, T. Belytschko. A finite element method for crack growthwithout remeshing. International Journal for Numerical Methods in Engineering.1999,46:131-150
    63N. M es, T. Belytschko. Extended finite element method for cohesive crackgrowth. Engineering Fracture Mechanics.2002,69(7):813-833
    64J. Oliver. On the discrete constitutive models induced by strong discontinuitykinematics and continuum constitutive equations. International Journal of Solidsand Structures.2000,37:7207-7229
    65I. Babuska, J. M. Melenk. The partition of unity method. International Journal forNumerical Methods in Engineering.1997,40(4):727-758
    66J. J. C. Remmers, N. G. Wells, R. de Borst. A solid-like shell element allowingfor arbitrary delaminations. International Journal for Numerical Methods inEngineering.2003,58(13):2013-2040
    67B. cotterell, I. Y. W. Mai. Fracture mechanics of cementations materials, London,UK: Blackie Academic&professional, an Imprint of Chapman and Hall.1996
    68P. Brenet, F. Conchin, G. Fantozzo, P. Reynaud, D. rouby, C. Tallaron. Directmeasurement of the crack bridging tractions: a new approach of the fracturebehavior of ceramic-matrix composites. Computational Science Technology.1996,56:817-823
    69E. K. Gamstedt, T. K. Jacobsen, B. F. Sorensen. Determination of cohesive lawsfor materials exhibiting large scale damage zones. Analytical and ComputationalFracture Mechanics of Non-homogeneous Materials, B. L. Karihalov(ed.),Kluwer, Dordrecht.2002:349-353
    70B. F. Sorensen, T. K. Jacobsern. Determination of cohesive laws by the J integralapproach. Engineering Fracture Mechanics.2003,70:1841-1858
    71A. Carpinteri, P. Cornetti, F. Barpi, S. Valente. Cohesive crack model descriptionof ductile to brittle size-scale transition: dimensional analysis vs. renormalizationgroup theory. Engineering Fracture Mechanics.2003,70:1809-1839
    72A. Needleman. A continuum model for void nucleation by inclusion debonding.Journal of Applied Mechanics.1987,54:525-531
    73G. Alfano. On the influence of the shape of the interface law on the application ofcohesive-zone models. Composites Science and Technology.2006,66(6):723-730
    74L. Ye. Role of matrix resin in delamination onset and growth in compositelaminates. Composites Science and Technology.1988,33:257-277
    75M. L. Benzeggagh, M. Kenane. Measurement of mixed-mode delaminationfracture toughness of unidirectional glass/epoxy composites with mixed-modebending apparatus. Composites Science and Technology.1996,49:439-449
    76B. W. Kim, A. H. Mayer. Influence of fiber direction and mixed-mode ratio ondelamination fracture toughness of carbon/epoxy laminates. Composites Scienceand Technology.2003,63:659-713
    77J. Degrieck, W. Van Paepegem. Fatigue damage modeling of fiber-reinforcedcomposite materials: Review, Applied Mechanics Reviews.2001,54(4):279-300
    78R. Talreja. Fatigue of composite materials, Lancaster, PA: Technomic.1987
    79R. Talreja. Damage mechanics and fatigue life assessment of composite materials.International Journal of Damage Mechanics.1999,8(4):339-354
    80K. L. Reifsnider. Fatigue of composite materials, Amsterdam: Elsevier.1991
    81G. P. Sendeckyj. Fitting models to composite materials fatigue data. In: ChamisCC (ed.), Test method and design allowables for fibrous composites, ASTM STP734, American Society for Testing and Materials.1981:245-260
    82J. Andersons. Methods of fatigue prediction for composite laminates: A review.Mechanics of Composite Materials.1994,6:545-554
    83Z. Hashin, A. Rotem. A fatigue failure criterion for fiber reinforced materials.Journal of Composite Materials.1973,7:448-464
    84J. A. Mayugo. Estudio constitutivo de materials compuesto laminados sometidosa cargas cíclicas, PhD Thesis, Universitat Politècnica de Catalunya.2003
    85R. Krueger, I. L. Paris, T. K. O’Brien. Fatigue life methodology for bondedcomposite skin/stringer configurations. Proceedings of the American society forcomposites, Fifteenth Technical Conference, Technomic Publishing.2000:729-736
    86R. Krueger, I. L. Paris, T. K. O’Brien, P. J. Minguet. Fatigue life methodologyfor bonded composite skin/stringer configurations, NASA/TM-2001-21842.2001
    87P. Paris, M. Gomez, W. Anderson. A rational analytical theory of fatigue. Trendin Engineering.1961,13:9-14
    88P. Paris, F. Erdogan. Critical analysis of propagation laws. Journal of BasicEngineering.1963,85:528-534
    89H. L. Ewalds. Fracture Mechanics. Edward Arnold, London.1984
    90R. L. Ramkumar, J. D. Whitcomb. Characterization of mode I and mixed-modedelamination growth in T300/5208graphite/epoxy, In: Delamination andDebonding of Materials.(Ed.) Anonymous Johnson, W. S., Philadelphia (USA).1985:315-335
    91C. G. Gustafson, M. Hojo. Delamination fatigue crack-growth in unidirectionalgraphite epoxy laminates. Journal of Reinforced Plastics and Composites.1987,6(1):36-52
    92A. J. Russel, K. N. Street. Predicting interlaminar fatigue crack growth rates incompressively loaded laminates, In: Composite Materials: Fatigue and FractureII.(Ed.) P. A. Lagace. American Society for Testing and Materials, Philadelphia(USA).1989:162-178
    93C. Dahlen, G. S. Springer. Delamination growth in composites under cyclic loads.Journal of Composite Materials.1994,28(8):732-781
    94G. A. Kardomateas, A. A. Pelegri, B. Malik. Growth of internal delaminationsunder cyclic compression in composite plates,(Ed.) Anonymous Kardomateas, G.A.; Y. D. S. Rajapakse, New York (USA).1994:13-29
    95G. A. Kardomateas, B. Malik. Fatigue delamination growth under cycliccompression in glass/epoxy composite beam/plates. Polymer Composites.1997,18(2):169-178
    96M. Kenane, M. L. Benzeggagh. Mixed-mode delamination fracture toughness ofunidirectional glass/epoxy composites under fatigue loading. CompositesScience and Technology.1997,57(5):597-605
    97N. Blanco, E. K. Gamstedt, L. E. Asp, J. Costa. Mixed-mode delaminationgrowth in carbon-fiber composite laminates under cyclic loading. InternationalJournal of Solids and Structures.2004,41:4219-4235
    98J. Andersons, M. Hojo, S. Ochiai. Model of delamination propagation in brittle-matrix composites under cyclic loading. Journal of Reinforced Plastics andComposites.2001,20(5):431-450
    99V. Goyal-Singhal, E. Johnson. Cohesive-decohesive interfacial constitutive lawfor the analyses of fatigue crack initiation and growth.44thAIAA/ASME/ASCE/AHS Structures, Structural Dynamics and MaterialsConference AIAA-2003-1678.2003:1-11
    100J. Lemaitre, J. Sermage, R. Desmorat. A two scale damage concept applied tofatigue. International Journal of Fracture.1999,97:67-81
    101Q. Yang, D. Shim, S. Spearing. A cohesive zone model for low cycle fatigue lifeprediction of solder joints. Microelectronic Engineering.2004,75:85-95
    102K. Roe, T. Siegmund. An irreversible cohesive zone model for interface fatiguecrack growth simulation. Engineering Fracture Mechanics.2003,70:209-232
    103O. Nguyen, E. Repetto, M. Ortiz, R. Radovitzky. A cohesive model for fatiguecrack growth. International Journal of Fracture.2001,110:351-369
    104P. Robinson, U. Galvanetto, D. Tumino, G. Bellucci. Numerical simulation offatigue-driven delamination using interface elements. International Journal forNumerical Methods in Engineering.2005,63:1824-1848
    105J. J. Munoz, U. Galvanetto, P. Robinson. On the numerical simulation of fatigue-driven delamination using interface elements. International Journal of Fatigue.2006,28:1136-1146
    106A. Turon, J. Costa, P. P. Camanho, C. G. Davila. Simulation of delamination incomposites under high-cycle fatigue. Composites: Part A.2007,38:2270-2282
    107P. Boisse, P. Bussy, P. Ladevèze. A new approach in nonlinear mechanics-thelarge time increment method. International Journal of for Numerical Methods inEngineering.1990,29:647-663
    108J. Y. Cognard, P. Ladevèze, P. Talbot. A large time increment approach forthermo-mechanical problems. Advances in Engineering Software.1999,20:583-593
    109W. Van Pepegem, J. Degrieck. Fatigue degradation modeling of plain wovenglass/epoxy composites. Composites Part A.2001,32(10):1433-1441
    110J. A. Mayugo. Estudio constitutivo de materials compuestos laminados sometidosa cargas ciclicas. PhD Thesis. Universitat Politecnica de Catalunya.2003
    111D. Cojocaru, A. M. Karlsson. A simple numerical method of cycle jumps forcyclically loaded structures. International Journal of Fatigue.2006,28(12):1677-1689
    112A. Turon, J. Costa, P. P. Camanho, C. G. Dávila. Simulation of delamination incomposites under high-cyclic fatigue. Composites: Part A.2007,38:2270-2282
    113R. Peerling, W. Bredelmans, R. de Borst, M. Geers. Gradient-enhanced damagemodeling of high-cyclic fatigue. International Journal of Numerical Methods inEngineering.2000,9:1547-1569
    114P. Robinson, U. Galvanetto, D. Tumino, G. Bellucci. Numerical simulation offatigue-driven delamination using interface elements. International Joural ofNumerical Methods in Engineering.2005,63:1824-1848
    115H. Luo, S. Hanagud. Delamination modes in composite plates. Journal ofAerospace Engineering.1996,9(4):106-113
    116Y. J. Lee, C. H. Lee, W. S. Fu. Study on the compressive strength of laminatedcomposite with through-the-width delamination. Composite Structures.1998,41:229-241
    117K. F. Nilsson, L. E. Asp, J. E. Alpman, L. Nystedt. Delamination buckling andgrowth for delaminations at different depths in a slender composite panel.International Journal of Solids and Structures.2001,38(17):3039-3071
    118Y. Pekbey, O. Sayman. A numerical and experimental investigation of criticalbuckling load of rectangular laminated composite plates with strip delamination.Journal of Reinforced Plastics and Composites.2006,25(7):685-697
    119Y. Arman, M. Zor, S. Aksoy. Determination of critical delamination diameter oflaminated composite plates under buckling loads. Composites Science andTechnology.2006,66:2945-2953
    120Z. Aslan, M. Sahin. Buckling behavior and compressive failure of compositelaminates containing multiple large delaminations. Composite Structures.89(3):382-390
    121朱菊芬,郑罡.层合板分层损伤后屈曲分析新型有限元模型.大连理工大学学报.1998,38(5):19-25
    122孙先念,陈浩然,陈绍杰.含分层损伤复合材料层合板前后屈曲行为研究.航空学报.1999,20(3):224-229
    123孙先念,陈浩然,苏长健,刘相斌.含分层损伤复合材料层合板分层扩展研究.力学学报.2000,32(2):223-232
    124L. H. Yam, Z. Wei, L. Cheng, W. O. Wong. Numerical analysis of multi-layercomposite plates with internal delamination. Computers and Structures.2004,82:627-637
    125牛鑫瑞,余寿文,冯西桥.含圆形夹杂两相材料界面变形与损伤特性的数值模拟.机械强度.2005,5:681-686
    126L. Lammerant, E. Verpoest. Modeling of the Interaction between matrix cracksand delamination during impact of composite plates. Composite Science andTechnology.1996,56(10):1171-1178
    127C. Balzani, W. Wagner. An interface element for the simulation of delaminationin unidirectional fiber-reinforced composite laminates. Engineering FractureMechanics.2008,75:2597-2615
    128A. Turon, C. G. Davila., P. P. Camanho, J. Costa. Engineering solution for usingcoarse meshes in the simulation of delamination with cohesive zone models.NASA/TM-2005-213547.2005:1-26
    129P. W. Harper, S. R. Hallett. Cohesive zone length in numerical simulations ofcomposite delamination. Engineering Fracture Mechanics.2008,75:4774-4792
    130C. Fan, P. Y. B Jar, J. J. R. Cheng. Cohesive zone with continuum damageproperties for simulation of delamination development in fiber composites andfailure of adhesive joints. Engineering Fracture Mechanics.2008,75:3866-3880
    131A. Riccio, E. Pietropaoli. Modeling damage propagation in composite plates withembedded delamination under compressive load. Journal of Composite Materials.2008,42(13):1309-1335
    132H. E. Johnson, L. A. Louca, S. Mouring, A. S. Fallah. Modeling impact damagein marine composite panels. International Journal of Impact Engineering.2009,36:25-39
    133R. M. Guedes, M. F. S. F. de Moura, F. J. Ferreira. Failure analysis of quasi-isotropic CFRP laminates under high strain rate compression loading. CompositeStructures.84:362-368
    134Y. Akinori, N. Tomoaki, Y. Shiqeki, T. Nobuo. Improvement on out-of-planeimpact resistance of CFRP laminates due to through-the-thickness stitching.Composites Part A: Applied Science and Manufacturing.2008,39(9):1370-1379
    135Y. Akinori, Y. Shiqeki, O. Tomonage, T. Nobuo. Characterization of tensiledamage progress in stitched CFRP laminates. Advanced Composite Materials:The Official Journal of Japan Society of Composite Materials.2007,16(3):223-244
    136L. F. Kawashita, D. R. Moore, J. G. Wiliarns. The measurement of cohesive andinterfacial toughness for bonded metal joints with epoxy adhesives. CompositeInterfaces.12(8-9):837-852
    137S. Marzi, O. Hesebeck, M. Brede, F. Kleiner. A rate-dependent cohesive zonemodel for adhesively bonded joints loaded in mode I. Journal of AdhesionScience and Technology.2009,23(6):881-898
    138M. G. Andrews, R. Massabo, A. Cavicchi, B. N. Cox. Dynamic interaction effectsof multiple delaminations in plates subject to cylindrical bending. InternationalJournal of Solids and Structures.2009,46:1815-1833
    139K. Shivakumar, H. Chen, F. Abali, D. Le, et al. A total fatigue life model formode I delaminated composites. International Journal of Fatigue.2006,28:33-42
    140C. Bathias, A. Laksimi. Delamination threshold and loading effect in fiber glassepoxy composite. In: Johnson WS, editor. Delamination and debonding ofmaterials, ASTM STP876
    141C. Gustafson, M. Hojo. Delamination fatigue crack growth in unidirectionalgraphite/epoxy laminates. Journal of Reinforced Plastics and Composites.1987,6:36-52
    142S. Mall, W. S. Johnson, Jr R. A. Everett. Cyclic debonding of adhesively bondedcomposites. In: Mittal KL, editor. Adhesive joints: their formation,characteristics, and testing. New York: Plenum Press.1984:639-658
    143S. Mall, W. S. Johnson. Characterization of mode I and mixed-mode failure ofadhesive bonds between composite adherends. In: Whitney JM, editor.Composite materials: testing and design. ASTM STP893. Philadelphia:American Society for Testing Materials.1986:322-334
    144T. K. O’Brain. Towards a damage tolerance philosophy for composite materialsand structures. ASTM Special Technical Publication, No.1059.1990
    145Standard test method for mode I fatigue delamination growth onset ofunidirectional fiber-reinforced polymer matrix composites. ASTM StandardD6115-97
    146S. Singh, E. Greenhalgh. Delamination growth in epoxy-matrix composites undercyclic loading: implications for design and certification.8thEuropeanConference on Composite Materials.1998, Italy
    147于志成.复合材料疲劳II型层间裂纹扩展门槛值试验方法研究.固体力学学报.2002,23(4):380-386
    148M. Beghini, L. Bertini, P. Forte. Experimental investigation on the influence ofcrack front to fiber orientation on fatigue delamination growth rate under modeII. Composites Science and Technology.2006,66:240-247
    149K. Shivakumar, H. Chen, F. Abali, D. Le, C. Davis. A total fatigue life model formode I delaminated composite laminates. International Journal of Fatigue.2006,28:33-42
    150H. Chen, K. N. Shivakumar, F. Abali. Application of total fatigue life model toT700carbon/vinyl ester composite. Composites: Part B.2008,39:36-41
    151M. Kenane, S. Benmedakhene, Z. Azari. Fracture and fatigue study ofunidirectional glass/epoxy laminate under different mode of loading. Fatigue andFracture of Engineering Materials and Structures.2010,33:284-293
    152M. Kenane. Delamination growth in unidirectional glass/epoxy composite understatic and fatigue loads. Physics Procedia.2009,2:1195-1203
    153A. Argüelles, J. Vi a, A. F. Canteli, J. Bonhomme. Fatigue delamination,initiation, and growth, under mode I and II of fracture in a carbon-fiber epoxycomposite. Polymer Composites.2010,31:700-706
    154A. A. Pelegri, D. N. Kedlaya. On the energy release rate of fatigued compositessubjected to compressive overloads. Journal of Engineering Materials andTechnology.2000,122:443-449
    155J. Jiang. Delamination formation and delamination propagation of compositelaminates under compressive fatigue loading. Chinese Journal of Aeronautics.2000,13(1):8-13
    156D. G. Katerelos, A. Paipetis, V. Kostopoulos. A simple model for the predictionof the fatigue delamination growth of impacted composite panels. Fatigue andFracture of Engineering Materials and Structures.2004,27:911-922
    157S. Bennati, B. S. Valvo. Delamination growth in composite plates undercompressive fatigue loads. Composites Science and Technology.2006,66:248-254
    158M. de Freitas, R. de Carvalho. Residual strength of a damaged laminated CFRPunder compressive fatigue stresses. Composites Science and Technology.2006,66:373-378
    159R. Butler, D. P. Almond, G. W. Hunt, B. Hu, N. Gathercole. Compressive fatiguelimit of impact damaged composite laminates. Composites: Part A.2007,38:1211-1215
    160N. Uda, K. Ono, K. Kunoo. Compressive fatigue failure of CFRP laminates withimpact damage. Composites Science and Technology.2009,69:2308-2314
    161玻璃纤维增强塑料层合板层间拉伸强度试验方法. GB/T4944-2005,2005
    162单向纤维增强塑料层间剪切强度试验方法. GB3357-82,1982
    163碳纤维复合材料层合板I型层间断裂韧性GIC试验方法. HB7402-96,1996
    164碳纤维复合材料层合板II型层间断裂韧性GIIC试验方法. HB7403-96,1996
    165J. R. Reeder, P. B. Chunchu, K. Song, D. R. Ambur. Postbuckling and growth ofdelaminations in composite plates subjected to axial compression. AIAA Paper.2002-1746,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700