用户名: 密码: 验证码:
纳米纤维素超声辅助法制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米纤维素(NCC)以其大量、可再生、可生物降解以及优良的力学性能,不仅在材料合成上展示出了极高的杨氏模量和强度等性能,加之其具有生物材料的轻质、可降解、生物相容及可再生等特性,使其在高性能复合材料中显示出巨大的应用前景。目前,NCC主要由植物原料通过可控的化学、物理或生物的方法制得,一些特殊的微生物或被囊动物也可被用作NCC的制备原料。如何拓展NCC的制备原料,以及通过优化制备方法,制备出生产成本低,高效快速,绿色的NCC对其进一步的应用有着重要的理论及指导意义。
     本文旨在以不同纤维素为原料,采用超声辅助酸水解以及高强超声法制备出不同形貌的NCC。以制备的NCC为增强剂用于制备PVA复合薄膜材料;以制备的长丝状的NCC为模板剂制备磁性纳米纤维材料;以制备的棒状NCC为模板剂制备球形纳米TiO2。研究中采用扫描电子显微镜,透射电子显微镜,X射线衍射,热重分析,低温液氮吸附以及振动样品磁强计分析等手段对制备的NCC以及复合材料进行表征。
     本文首先对NCC的制备以及应用研究进展进行了综述,在此基础上介绍了本课题的研究背景,方案,内容,创新点以及主要的研究方法。
     以漂白硫酸盐针叶浆(BSKP)为原料采用超声辅助酸水解的方法制备出NCC。超声处理能够引起纤维表面的侵蚀、折叠和细纤维化等变化,这样的变化有利于酸分子更好的渗透到纤维内部同时增加了酸分子与纤维的反应点。由超声辅助酸水解制备的NCC的直径为10-20nm、平均长度为96nm。所制备的NCC主要含有三个热降解过程,其热稳定性降低的主要原因是由于NCC的纳米尺寸和表面含有的大量末端链。同时NCC降解初始温度较低,但其整个降解过程覆盖了一个较宽的温度范围。其最终炭残渣量为43%。所制备的NCC与表面化学结构与BSKP相同,其结晶度由BSKP的74.9%提高为82.3%。
     以微晶纤维素(MCC)为原料采用高强超声法制备出棒状NCC,所制备的NCC的直径为10-20nm,长度为20-250nm。随着超声时间的增加,NCC的结晶度呈降低的趋势;但超声功率对结晶度的影响变化不大。纤维素中无定形区和结晶区的结构在超声的作用下能够同时被破坏除去。以NCC为增强剂经不同的填加量所制备的聚乙烯醇(PVA)复合膜材料在各个温度下的存储模量都有了不同程度的增加。填加量为4%复合膜的存储模量在30℃和100℃下分别是纯PVA的1.76和1.54倍;填加量为8%复合材料的存储模量在30℃和100℃下分别是纯PVA的2.4和1.73倍。
     以硫酸盐漂白阔叶浆(BHKP)为原料采用化学预处理结合高强超声法制备出长丝状的NCC。所制备的NCC的直径为20-70nm,长度约500μm。与碱处理后的BHKP相比,NCC的结晶度略有下降,表明结晶区遭到破坏的比例相对较多。与BHKP相比,NCC的热稳定性稍微有所下降,主要是由于NCC表面所含有羟基量的增加。将NCC作为增强剂制备出光透明的PVA复合膜材料,当NCC填加量为4%时,既能够保证复合膜材料的增强效果,同时还保持了良好的透光性。
     以碱性过氧化氢化机浆(APMP)为原料采用化学预处理结合高强超声法制备出长丝状NCC。所制备的NCC直径为20-90nm,长度约500μm。 APMP经过除木素和碱处理过程,其结晶度和热稳定性得到了提高;经过超声处理所制备的NCC的结晶度仍然有一定的升高,证明在处理过程中,无定形区去除的比例更高。采用NCC气凝胶为模板制备出CoFe2O4铁氧体磁性纳米复合材料,随着反应浓度的增加,复合材料中磁性颗粒所占的比例也随着增加,同时磁性也随着增强。
     以棒状NCC为模板剂,经酸催化水解法制备出了球形介孔TiO2(SP-TiO2)。所制备Ti02为直径100-200nm的规整球形颗粒,单个球形颗粒由粒径为10-20nm的Ti02小晶粒组成SP-TiO2平均介孔孔径在8.21-13.48nm之间,随煅烧温度升高而增大。NCC长链结构之间羟基键合所形成的狭小空间构成的微反应器,可有效限制Ti02前躯体的生长和团聚,诱导Ti02前躯体晶粒自组装成球形结构,并抑制由锐钛矿相向金红石相转变。600℃煅烧温度SP-TiO2表现出最高活性,对苯酚降解率达89%。
Nanocrystalline cellulose (NCC) was a hotspot in nanotechnology field for its advantages of abundant, renewable, biodegradable and excellent mechanical properties. It had high Young's modulus and strength, and also the properties of lightweight, biodegradable, biocompatible and renewable had exhibited great application prospects in preparing the high-performance composite materials. NCC was prepared form different plant materials through controlling chemical, mechanical or biologic methods. Some special bacterial and tunicate were also excellent materials to prepare NCC. How to expand raw materials, as well as through optimizing the preparation method to produce low costs, efficient and environmental friendly NCC had great theoretical meaning in further application.
     This paper aimed to preparing NCC with different morphologies through using different cellulose materials via ultrasound assisted method. PVA composites were prepared using rod-shaped and the long web-like NCC as enhanced materials. Magnetic nanomaterials were prepared using long web-like NCC as matrix. Mesoporous TiO2spheres prepared by an acid catalyzed hydrolysis method using rod-shaped NCC as template. SEM, TEM, XRD, DRS, N2adsorption isotherm and VSM were used for characterization of NCC, nanocomposites and SP-TiO2photocatalyst.
     Nanocrystalline cellulose (NCC) with small particle size and high crystallinity was prepared via the combined method of ultrasonication and acid hydrolysis from bleached softwood kraft pulp (BSKP). The analyses revealed that rod-shaped NCC particles with diameter of10to20nm can be obtained. Ultrasonication can induce cellulose folding, surface erosion, and external fibrillation of BSKP, together with the shorter average length of NCC (96nm) than that prepared without ultrasonication (150nm). Due to the smaller size and larger number of free ends of chains, the thermal stability of NCC was lower than BSKP. The degradation of BSKP exhibited one significant pyrolysis stage within the range of300to420℃. In contrast, UH-NCC exhibited three pyrolysis stages within the range of210to450℃. NCC prepared with ultrasonication decomposed at lower temperature and over a wider temperature range, together with higher char yield of43%(compared with27%for that without ultrasonication). The obtained NCC had similar surface chemical structures but higher crystallinity (82.3%) compared with that of the starting BSKP (74.9%).
     Rod-shaped NCC was prepared from microcrystalline cellulose (MCC) using the purely physical method of high-intensity ultrasonication. The reinforcement capabilities of the obtained NCC were investigated by adding it to poly (vinyl alcohol)(PVA) via the solution casting method. The results revealed that the prepared NCC had a rod-shaped structure, with diameters between10-20nm and lengths between50-250nm. X-ray diffraction results indicated that the NCC had the cellulose I crystal structure similar to that of MCC. The crystallinity of the NCC decreased with increasing ultrasonication time. The ultrasonic effect was non-selective, which means it can remove amorphous cellulose and crystalline cellulose. Because of the nanoscale size and large number of free-end chains, the NCC degraded at a slightly lower temperature, which resulted in increased char residue (9.6%-16.1%), compared with that of the MCC (6.2%). The storage modulus of the nanocomposite films were significantly improved compared with that of pure PVA films. The modulus of PVA with8wt%NCC was2.40×larger than that of pure PVA.
     Optically transparent reinforced poly (vinyl alcohol) composites were prepared using NCC from bleached hard kraft pulp (BHKP) isolated by high-intensity ultrasonication. The obtained NCC was used to reinforce PVA to make nanocomposites via the solution casting method. The results revealed that the prepared NCFs were long web-like structure, with diameters between20-80nm and lengths more than500μm. X-ray diffraction results indicated that the NCFs had the cellulose I crystal structure similar to that of BHKP. The crystallinity of the NCFs increased from77.3%(BHKP) to78.3%. The initial pyrolysis temperature shifted to a lower temperature than that of the Al-CFs, because of increased the number of hydroxyl groups of NCFs. The tensile modulus and Young's modulus of PVA composites were significantly improved with the NCC loading of4%which was1.86×and1.63×that of neat PVA and also retained an excellent transparency.
     NCC aerogels were prepared from poplar alkaline peroxide mechanical pulp (APMP) using physical ultrasonication method. As raw materials, the unique mechanical effects of APMP cause the fiber folding and loose during the pulping process, which was beneficial to further chemical purification and subsequent treatment for long and entangled NCC. The obtained NCC exhibited higher crystallinity (77.8%) compared with that of APMP (72.6%) together with diameters range from20to90nm and self-assembled to network. The primary thermal degradation of NCC occurred at331.5℃. The prepared NCC network aerogels acted as a novel matrix which can prevent the growth and aggregation of ferromagnetic CoFe2O4nanoparticles. The magnetic properties were all increased with increasing the reaction concentration of FeSO4/CoCl2salt.
     Mesoporous nanosize TiO2spheres (SP-TiO2) were prepared using rod-like NCC as template. The results showed that SP-TiO2was uniform in size with a diameter of100-200nm. SP-TiO2was composed of smaller crystal particles (10-20nm). The average mesoporous pore diameter of SP-TiO2was8.2-13.5nm, which increased with increasing calcination temperature. A nano-scale reactor that was formed by bonding between the hydroxyl groups of NCC long-chain can inhibit the growth and aggregation of the TiO2precursor, promote its self-assembly into spherical structure, and inhibit the phase transformation from anatase to rutile. SP-TiO2prepared at600℃exhibited the highest activity with the phenol degradation percentage of89%.
引文
[1]Wegner, T. H. Jones, P. E. Advancing cellulose-based nanotechnology [J]. Cellulose 2006, 13:115-118.
    [2]Hamad, W. On the development and applications of cellulosic nanofibrillar and nanocrystalline materials [J]. The Canadian Journal of Chemical Engineering,2006,84(10): 513-519.
    [3]Lima, M. M. D. S. Borsali, R. Rodlike cellulose microcrystals:structure, properties and applications [J]. Macromolecular Rapid Communications,2004,25:771-787.
    [4]Fink, H. P. Fanter, D. Philipp, B. Wide angle X-ray-investigation on the supermolecular structure at the cellulose-Ⅰ cellulose-Ⅱ phase-transition [J]. Acta Polymerica.1985,36:1-8.
    [5]Polizzi, S. Fagherazzi, G. Benedettii, A. Asano, T. A fitting method for the determination of crystallinity by means of X-ray diffraction [J]. Journal of Applied Crystallography,1990, 23:359-365.
    [6]Ilharco, L. M. Garci, A. R. Lopes da Silva, J. Vieira Ferreira, L. F. Infrared approach to the study of adsorption on cellulose:influence of cellulose crystallinity on the adsorption of benzophenone [J]. Langmuir,1997,13:4126-4132.
    [7]Stubbs, G. The probability distributions of X-ray intensities in fiber diffraction:largest likely values for fiber diffraction R factors [J]. Acta Crystallographica Section A,1989,45: 254-258.
    [8]Jarvis, M. Chemistry:cellulose stacks up [J]. Nature,2003,426:611-612.
    [9]李伟,王锐,刘守新.纳米纤维素的制备[J].化学进展,2010,22(10):2060-2070.
    [10]Kobayshi, S. Ohmae, M. Enzymatic polymerization to polysaccharides [J]. Advanced in Polymer Science,2006,194:159-210.
    [11]Ranby, B.G. The colloidal properties of cellulose micelles [J]. Discussions Faraday Society,1952,11:158-164.
    [12]Araki, J. Wada, M. Kuga, S. Okano, T. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose [J]. Colloids Surface A,1998, 142:75-82.
    [13]Beck-Candanedo, S. Roman, M. Gray, D.G., Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions [J]. Biomacromolecules, 2005,6:1048-1054.
    [14]Marchessault, R. H. Morehead, F. F. Koch, M. J. Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape [J]. Journal of Colloid Science,1961,16:327-344.
    [15]Bondeson, D. Mathew, A. Oksman, K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis [J]. Cellulose,2006,13:171-180.
    [16]Filson, P. B. Dawson-Andoh, B. E. Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials [J]. Bioresource Technology,2009,100:2259-2264.
    [17]Wen, B. James, H. Kaichang, Li. A technique for production of nanocrystalline cellulose with a narrow size distribution [J]. Cellulose,2009,16:455-465.
    [18]Wang, N. Ding, E. Cheng, R. S. Preparation and liquid crystalline properties of spherical cellulose nanocrystals [J]. Langmuir,2008,24(1):5-8.
    [19]Ranby, B. G. Physico-chemical investigations on bacterial cellulose [J]. Ark. Kemi,1952, 4:249-257.
    [20]Araki, J. Kuga, S. Effect of trace electrolyte on liquid crystal type of cellulose microcrystals [J]. Langmuir,2001,17:4493-4496.
    [21]Tokoh, C. Takabe, K. Fujita, M. Saiki, H. Cellulose synthesized by acetobacter xylinum in the presence of acetyl glucomannan [J]. Cellulose,1998,5:249-261.
    [22]Grunert, M., Winter, W. T. Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals [J]. Journal Polymers and the Environment,2002,10:27-30.
    [23]Roman, M. Winter, W. T. Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose [J]. Biomacromolecules,2004,5: 1671-1677.
    [24]Ranby B.G. Physicochemical investigations on animal cellulose (Tunicin) [J]. Ark. Kemi, 1952,4:241-248.
    [25]Favier, V. Chanzy, H. Cavaille, J.Y. Polymer nanocomposites reinforced by cellulose whiskers [J]. Macromolecules,1995,28:6365-6367.
    [26]Terech, P. Chazeau, L. Cavaille', J. Y. A small-angle scattering study of cellulose whiskers in aqueous suspensions [J]. Macromolecules,1999,32:1872-1875.
    [27]Sturcova, A. Davies, G. R. Eichhorn, S. J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers [J]. Biomacromolecules,2005,6:1055-1061.
    [28]Garcia de Rodriguez, N. L. Thielemans, W. Dufresne, A. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites [J]. Cellulose,2006,13:261-270.
    [29]Moran, J. I. Alvarez, V. A. Cyras V. P. Vazquez, A. Extraction of cellulose and preparation of nanocellulose from sisal fibers [J]. Cellulose,2008,15:149-159.
    [30]Zhang, J. G. Elder, T. J. Pu, Y. Q. Ragauskas A. J. Facile synthesis of spherical cellulose nanoparticles [J]. Carbohydrate Polymers,2007,69:607-611.
    [31]Fengel, D. Wegener, G. Wood:chemistry, ultrastructure, reactions [M]. Walter de Gruyter: New York,1984.
    [32]Dong, X. M. Revol, J. F. Gray, D. G. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose [J]. Cellulose,1998,5(1):19-32.
    [33]Noorani, S. Simonsen, J. Atre, S. Nano-enabled microtechnology:polysulfone nanocomposites incorporating cellulose nanocrystals [J]. Cellulose,14,577-584.
    [34]Henriksson, M. Henriksson, G. Berglund, L. A. Lindstrom, T. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers [J]. European Polymer Journal,2007,43(8):3434-3441.
    [35]Janardhnan, S. Sain, M. Isolation of cellulose microfibrils-an enzymatic approach. BioResources [J],2006,1(2):176-188.
    [36]Paakko, M. Ankerfors, M. Kosonen, H. Nykanen, A. Ahola, S. Osterberg, M. Ruokolainen, J. Laine, J. Larsson, P. T. Ikkala, O. Lindstrom, T. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels [J]. Biomacromolecules,2007,8(6):1934-1941.
    [37]Turon, X. Roias, O. J. Deinhammer, R. S. Enzymatic kinetics of cellulose hydrolysis:a QCM-D sdudy [J]. Langmuir,2008,24(8):3880-3887.
    [38]Nakagaito, A. N. Yano, H. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high strength plant fiber based composites [J]. Applied Physics A:Materials Science Processing,2004,78(4):547-552.
    [39]Chakraborty, A. Sain, M. Kortschot, M. Cellulose microfibrils:a novel method of preparation using high shear refining and cryocrushing [J]. Holzforschung,2005,59(1): 102-107.
    [40]Iwamoto, S. Nakagaito, A. N. Yano, H. Nogi, M. Optically transparent composites reinforced with plant fiber-based nanofibers [J]. Appl. Phys. A,2005,81:1109-1112.
    [41]Bruce, D. M. Hobson, R. N. Farrent, J. W. Hepworth, D. G High performance composites from low-cost plant primary cell walls [J]. Composites Part A:Applied Science and Manufacturing,2005,36(11):1486-1493.
    [42]Leitner, J. Hinterstoisser, B. Wastyn, M. Keckes, J. Gindl, W. Sugar beet cellulose nanofibril-reinforced composites [J]. Cellulose,2007,14:419-425.
    [43]Dufresne, A. Cavaille, J-Y. Vignon, M. R. Mechanical behaviour of sheets prepared from sugar beet cellulose microfibrils [J]. Journalof Applied Polymer Science,1997,64:1185-1194.
    [44]Dinand, E. Chanzy, H. Vignon, M.R. Parenchymal cell cellulose from sugar beet pulp: preparation and properties [J]. Cellulose,1996,3:183-188.
    [45]Stenstad, P. Andresen, M. Tanem, B. S. Stenius, P. Chemical surface modification of microfibrillated cellulose [J]. Cellulose,2008,15(1):35-45.
    [46]Wagberg, L. Decher, G. Norgren, M. Lindstrom, T. Ankerfors, M. Axnas, K. The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes [J]. Langmuir,2008,24(3):784-795.
    [47]Bhantnagar, A. Sain, M. Processing of cellulose nanofiber-reinforced composites [J]. Journal of Reinforced Plastics Composites,2005,24(12):1259-1268.
    [48]Alemdar, A. Sain, M. Isolation and characterization of nanofibers from agricultural residues-wheat straw and soy hulls [J]. Bioresource Technology,2008,99(6):1664-1671.
    [49]Wang, B. Sain, M. Dispersion of soybean stock-based nanofiber in a plastic matrix [J]. Polymer International,2007,56(4):538-546.
    [50]Yamanaka, S. Watanabe, K. Kitamura, N. The structure and mechanical properties of sheets prepared from bacterial cellulose [J]. Journal of Material Science,1989,24:3141-3145.
    [51]Ross, P. Mayer, R. Benziman, M. Cellulose biosynthesis and function in bacteria [J]. Microbiological Reviews,1991,55(1):35-58.
    [52]Uraki, Y. Morito, M. Kishimoto, T. Sano, Y. Bacterial cellulose production using monosaccharides derived from hemicellulose in water-soluble fraction of water liquor from atmosphere acetic acid pulping [J]. Holzforschung,2002,56(4):341-347.
    [53]Bae, S. Shoda, M. Bacterial cellulose production by fed-batch fermentation in molasses medium [J]. Biotechnology Progress,2004,20:1366-1371.
    [54]Ishihara, M. Matsunaga, M. Hayashi, N. Tisler, V. Utilization of d-xylose as carbon source for production of bacterial cellulose [J]. Enzyme and Microbial Technology,2002, 31(7):986-991.
    [55]Oksman, K. Mathew, A. P. Bondeson, D. Kvien, I. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites [J]. Composites Science Technology,2006, 66(15):2776-2784.
    [56]Nelson, K. Deng, Y. L. Encapsulation of inorganic particles with nanostructured cellulose [J]. Macromolecular Materials and Engineering,2007,292(10-11):1158-1163.
    [57]Kulpinski, P. Cellulose nanofibers prepared by the N-methylmorpholine-N-oxide method [J]. Journal of Applied Polymer Science,2005,98(4):1855-1859.
    [58]Kim, C. W. Kim, D. S. Kang, S. Y. Marquez, M. Joo, Y. L. Structural studies of electrospun cellulose nanofibers [J]. Polymer,2006,47(14):5097-5107.
    [59]Viswanathan, G. Murugesan, S. Pushparsj, V. Nalamasu, O. Ajayan, P. M. Linhardt, R. J. Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids [J]. Biomacromolecules,2006,7(2):415-418.
    [60]Olivier H. Recent developments in the use of non-aqueous ionic liquids for two-phase catalysis [J]. Journal of Molecular Catalysis A:Chemical,1999,146(1-2):285-289.
    [61]Gindl, W. Keckes, J. All-cellulose nanocomposites [J]. Polymer,2005,46(23):10221- 10225.
    [62]Kilpelainen, I. Xie, H. King, A. Granstrom, M. Heikkinen, S. Argyropoulos, D. S. Dissolution of wood in ionic liquids [J]. Journal of Agricultural Food Chemistry,2007, 55(22):9142-9148.
    [63]Sui, X. F. Yuan, J. Y. Yuan, W. Z. Zhou, M. Preparation of cellulose nanofibers/nanopoarticles via electrospray [J]. Chemistry Letters,2008,37(1):114-115.
    [64]Kadokawa, J. I. Murakami, M. A. Kaneko, Y. A facile method for preparation of composites composed of cellulose and a polystyrene-type polymeric ionic liquid using a polymerizable ionic liquid [J]. Composites Science Technology,2008,68(2):493-498.
    [65]De Rodriguez, N. L. G. Thielemans, W. Dufresne, A. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites [J]. Cellulose,2006,13(3):261-270.
    [66]Montanari, S. Rountani, M. Heux, L. Vignon, M. R. Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation [J]. Macromolecules, 2005,38(5):1665-1671.
    [67]Saito, T. Kimura, S. Nishiyama, Y. Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose [J]. Biomacromolecules,2007,8(8):2485-2491.
    [68]Habibi, Y. Chanzy, H. Vignon, M. R. TEMPO-mediated surface oxidation of cellulose whiskers [J]. Cellulose,2006,13(6):679-687.
    [69]Nakagaito, A. N. Yano, H. Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure [J]. Applied Physics A: Materials Science Processing,2005,80(1):155-159.
    [70]Dufresne, A. Cavaille, J. Y. Helbert, W. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part Ⅱ:Effect of processing and modeling [J]. Polymer Composites,1997,18(2):198-210.
    [71]Helbert, W. Cavaille, J. Y. Dufresne, A. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers Part I:processing and mechanical behavior [J]. Polymer Composites,1996,17 (4):604-611.
    [72]Bhatnagar, A. Sain, M. Processing of cellulose nano fiber-reinforced composites [J]. Journal of Reinforced Plastics composites,2005,24(12):1259-1268.
    [73]Orts, W. J. Shey, J. Imam, S. H. Glenn, G M. Guttman, M. E. Revol, J. F. Application of cellulose micro fibrils in polymer nanocomposites [J]. Journal of Polymers and the Environment,2005,13(4):301-306.
    [74]Nogi, M. Ifuku, S. Abe, K. Handa, K. Nakagaito, A. N. Yano, H. Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites [J]. Applied Physics Letter,2006,88(13), article 133124.
    [75]Cai, X. L. Riedl, B. Ait-Kadi, A. Effect of surface-grafted ionic groups on the performance of cellulose-fiber-reinforced thermoplastic composites [J]. Journal of polymer Science B:Polymer Physics,2003,41(17):2022-2032.
    [76]Stenstad, P. Andresen, M. Tanem, B. S. Stenius, P. Chemical surface modification of microfibrillated cellulose [J]. Cellulose,2008,15(1):35-45.
    [77]Dou, H. J. Yang, W. H. Sun, K. A facile fabrication to cellulose-based nanoparticles with thermo-responsivity and carboxyl functional groups [J]. Chemistry Letters,2006,35(12): 1374-1375.
    [78]Caulfield, D. F. Koutsky, J. A. Quillen, D. T. Cellulose/polypropylene composites:The use of AKD and ASA sizing as compatibilizers in wood fiber/polymer composites, Wolcott, M. P. (ed.) [J]. Forest Products Society,1993,128-134.
    [79]Mwaikambo, L, Y. Ansell, M. P. The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement [J]. Angewandte Makormolekulare Chemie,1999,272:108-116.
    [80]Kim, D. Y. Nishiyama, Y. Kuga, S. Surface acetylation of bacterial cellulose [J]. Cellulose, 2002,9 (3):361-367.
    [81]Li, X. Tabil, L. G Panigrahi, S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites:A review [J]. Journal of Polymers and the Environment,2007, 15:25-33.
    [82]Gousse, C. Chanzy, H. Cerrada, M. L. Fleury, E. Surface silylation of cellulose microfibrils:preparation and rheological properties [J]. Polymer,2004,45(5):1569-1575.
    [83]Panaitescu, D. M. Donescu, D. Brecu, C. Vuluga, D.M. Lorga, M. Ghiurea, M. Polymer composites with cellulose microfibrils [J]. Polymer Engineering Science,2007,47(8): 1228-1234.
    [84]Castellano, M. Gandini, A. Fabbri, P. Belgacem, M. N. Modication of cellulose fibres with organosilanes:Under what conditions does coupling occur [J]. Journal of Colloid Interface Science,2004,273(2):505-511.
    [85]Gradwell, S. E. Renneckar, S. Esker, A. R. Heinze, T. Gatenholm, P. Vaca-Garcia, C. Glasser, W. Surface modification of cellulose fibers:towards wood composites by biomimetics [J]. Comptes Rendus Biologies,2004,327(9-10):945-953.
    [86]Ljungberg, N. Bonini, C. Bortolussi, F. Boisson, L. H. Cavaille, J. Y. New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene:effect of surface and dispersion characterisitics [J]. Biomacromolecules,2005,6(5):2732-2739.
    [87]Ahola, S. Osterberg, M. Laine, J. Cellulose nanofibrils-adsorption with poly (amideamine) epichlorohydrin studies by QCM-D and application as a paper strength additive [J]. Cellulose,2008,15(2):303-314.
    [88]Hubbe, M. A. Dry-strength development by polyelectrolyte complex deposition onto non- bonding glass fibers [J]. Journal of Pulp Paper Science,2005,31(4):159-166.
    [89]Favier, V. Canova, G. R. Cavaille, J. Y. Chanzy, H. Dufresne, A. Gauthier, C. Nanocomposite materials from latex and cellulose whiskers [J]. Polymers Advanced Technology,1995,6(5):351-355.
    [90]Hajji, P. Cavaille, J. Y. Favier, V. Gauthier, C. Vigier, G. Tensile behavior of nanocomposites from latex and cellulose whiskers [J]. Polymer Composites,1996,17(4): 612-619.
    [91]Ruiz, M. M. Cavaille, J. Y. Dufresne, A. Graillat, G Gerard, J.F. New waterborne epoxy coatings based on cellulose nanofillers [J]. Macromolecular Symposia,2001,169:211-222.
    [92]Azizi Samir, M. A. S. Alloin, F. Sanchez, J. Y. Dufresne, A. Cellulose nanocrystals reinforced poly (xyethylene) [J]. Polymer,2004,45(12):4149-4157.
    [93]Liungberg, N. Cavaille, J. Y. Heux, L. Nanocomposite of isotactic polypropylene reinforced with rod-like cellulose whiskers [J]. Polymer,2006,47(18):6285-6292.
    [94]De Rodriguez, N. L. G Thielemans, W. Dufresne, A. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites [J]. Cellulose,2006,13(3):261-270.
    [95]Cao, X. D. Dong, H. Li, C. M. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane [J]. Biomacromolecules,2007,8(3): 899-904.
    [96]Nakagaito, A. N. Yano, H. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high strength plant fiber based composites [J]. Applied Physics A:Materials Science Processing,2004,78(4):547-552.
    [97]Nakagaito, A. N. Iwamoto, S. Yano, H. Bacterial cellulose:the ultimate nano-scalar cellulose morphology for the production of high-strength composites [J]. Applied Physsics A:Materials Science and Processing,2005,80(1):93-97.
    [98]Oksman, K. Mathew, A. P. Bondeson, D. Kvien, I. Mannufacturing process of cellulose whiskers/polylactic acid nanocomposites [J]. Composites Science Technology,2006, 66(15):2776-2784.
    [99]Wu, Q. Henrihsson, M. Liu, X.H. Berglund, L.A. A high strength nanocomposite based on microcrystalline cellulose and polyurethane [J]. Biomacromolecules,2007,8(12):3687-3692.
    [100]Pu, Y. Q. Zhang, J. G. Elder, T. Deng, Y. L. Gatenholm, P. Ragauskas, A. Investigation into nanocellulosics versus acacia reinforced acrylic films [J]. Journal of Cpmposites:Part B,2007,38:360-366.
    [101]Nogi, M. Abe, K. Handa, K. Nakatsubo, F. Ifuku, S. Yano, H. Property enhancement of optically transparent bionanofiber composites by acetylation [J]. Applied Physics Letters, 2006,88(23), article 233123.
    [102]Bochek, A. M. Tenkovtsev, A. V. Dudkina, M. M. Lukoshkin, V. N. Matveeva, G N. Sukhanova, T. E. Nonlinear optically active nanocomposite based on cellulose [J]. Polymer Science Series B,2004,46(3-4):109-112.
    [103]Cranston, E. D. Gray, D. G Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose [J]. Biomacromolecules,2006,7(9): 2522-2530.
    [104]Podsiadlo, P. Sui, L. Elkasabi, Y. Bugardt, P. Lee, J. Miryala, A. Kusumaatmaja, W. Carman, M. R. Shtein, M. Kieffer, J. Lahanm, J. Kotov, N. A. Layer-by-layer assembled films of cellulose nanowires with antireflective properties [J]. Langmuir,2007,23(15): 7901-7906.
    [105]Yi, J. Xu, Q. X. Zhang, X. F. Zhang, H.L. Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly(styrene) in both thermotropic and lyotropic states [J]. Polymer,2008,49:4406-4412.
    [106]Elazzouzi-Hafraoui, S. Putaux, J-L. Heux, L. Self-assembling and Chiral Nematic Properties of Organophilic Cellulose Nanocrystals [J]. Journal of Physics Chemistry B, 2009,113:11069-11075.
    [107]Hirai, A. Inui, O. Horii, F. Ysuji, M. Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment [J]. Langmuir,2009,25: 497-502.
    [108]Paralikar, S. A. Simonsen, J. Lombardi, J. Poly (vinyl alcohol)/cellulose nanocrystal barrier membranes [J]. Journal of Membrane Science,2008,320:248-258.
    [109]Dogan, N. McHugh, T. H. Effects of microcrystalline cellulose on functional properties of hydroxyl propyl methyl cellulose microcomposite films [J]. Journal of Food Science, 2007,72(1):E16-E22.
    [110]Petersson, L. Oksman, K. Biopolymer based nanocomposites:comparing layered silicates and microcrystalline cellulose as nanoreinforcement [J]. Composites Science Technology,2006,66(13):2187-2196.
    [111]Dong, S. P. Roman, M. Fluorescently labeled cellulose nanocrystals for bioimaging applications [J]. Journal of American Chemical Sociaty,2007,129(45):13810-13811.
    [112]Bodin, A. Backdahl, H. Risberg, B. Nanocellulose as a scaffold for tissue engineered blood vessels [J]. Tissue Engineering,2007,13(4):885-885.
    [113]Czaja, W. K. Young, D. J. Kawecki, M. Jr, R. M. B. The future prospects of microbial cellulose in biomedical applications [J]. Biomacromolecules,2007,8(1):1-12.
    [114]Millon, L. E. Wan, W. K. The polyvinyl alcohol-bacterial cellulose syetem as a new nanocomposites for biomedical applications [J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2006,79B(2):245-253.
    [115]Liang, D. Hsiao, B. S. Chu, B. Functional electrospun nanofibrous scaffolds for biomedical applications [J]. Advanced Drug Delivery Reviews Journal,2007,59(14): 1392-1412.
    [116]Ivanov, C. Popa, M. Ivanov, M. Popa, A. A. Synthesis of poly (vinyl alcohol)-methyl cellulose hydro gel as possible scaffolds in tissue engineering [J]. Journal of Optoelectronics and Advanced Materials,2007,9(11):3440-3444.
    [117]Michailova, V. Titeva, S. Kotsilkova, R. Rheological characteristics and diffusion processes in mixed cellulose hydrogen matrices [J]. Journal of Drug Delivery Science and Technology,2005,15(6):443-449.
    [118]Lee, K. B. Two-step activation of paper batteries for high power generation:Design and fabrication of bioflued and water-activated paper batteries [J]. Journal of Micromechanics and Microengineering,2006,16(11):2312-2317.
    [119]Agarwal, M. Lvov, Y. Varahramyan, K. Conductive wood microfibres for smart paper through layer-by-layer nanocoating [J]. Nanotechnology,2006,17(21):5319-5325.
    [120]Van den Berg, O. Schroeter, M. Capadona, J. R. Weder, C. Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers [J]. Journal of Materials Chemistry,2007,17(26):2746-2753.
    [121]Kim, J. Yun, S. Discovery of cellulose as a smart material [J]. Macromolecules,2006, 39(12):4202-4206.
    [122]Dujardin, E. Blaseby, M. Mann, S. Synthesis of mesoporous sillca by sol-gel mineralization of cellulose nanorod nematic suspensions [J]. Journal of Materials Chemistry,2003,13(4):696-699.
    [123]Shin, Y. Exarhos, G. J. Template synthesis of porous titania using cellulose nanocrystals [J]. Materials Letters,2007,61(11-12):2594-2597.
    [124]Lahiji, R. R. Reifenberger, R. Raman, A. Rudie, A. Moon, R. J. Characterization of cellulose nanocrystal surfaces by SPM [J]. NSTI Nanotechnology Conference and Trade Show Nanotechnology,2008,2:704-707.
    [125]Revol, J. F. Bradford, H. Giasson, J. Marchessault, R. H. Gray, D. G Helicoidal self-ordering of cellulose microfibrils in aqueous suspension [J]. International Journal of Biological Macromolecules,1992,14:170-172.
    [126]Moran, J. I. Alvarez, V. A. Cyras, V. P. Vazquez, A. Extraction of cellulose and preparation of nanocellulose from sisal fibers [J]. Cellulose.,2008,15:149-159.
    [127]Caruso, M. M. Davis, D. A. Shen, Q. L. Odom, S. A. Sottos, N. R. White, S. R. Moore, J.S. Mechanically-induced chemical changes in polymeric materials [J]. Chemistry Reviews,2009,109(11):5755-5798.
    [128]Cintas, P. Luche, J. L. Green chemistry:the sonochemical approach [J]. Green Chemistry, 1999,1(3):115-125.
    [129]Li, Q. Q. Renneckar, S. Molecularly thin nanoparticles from cellulose:isolation of sub-microfibrillar structures [J]. Cellulose,2009,16(6):1025-1032.
    [130]Tang, A. M. Zhang, H. W. Chen, G. Xie, G. H. Liang, W. Z. Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose [J]. Ultrasonics Sonochemistry,2005,12(6):467-472.
    [131]Wang, N. Ding, E. Y. Cheng, R. S. Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups [J]. Polymer,2007,48(12):3486-3493.
    [132]Kim, D. Y. Nishiyama, Y. Wada, M. Kuga, S. High-yield carbonization of cellulose by sulfuric acid impregnation [J]. Cellulose,2001,8(1):9-33.
    [133]Nishiyama, Y. Sugiyama, J. Chanzy, H. Langan, P. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction [J]. Journal of the American Chemical Society,2003.125(47):14300-14306.
    [134]Habibi, Y. Lucia, L.A. Rojas, O.J. Cellulose nanocrystals:chemistry, self-Assembly, and applications [J]. Chemical Reviews,2010,110:3479-3500.
    [135]Wang, S.Q. Cheng, Q.Z. A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1:process optimization [J]. Journal of Applied Polymer Science,2009,113:1270-1275.
    [136]Chen, W.S. Yu, H.P. Liu, Y.X. Chen, P. Zhang, M.X. Hai, Y.F. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments [J]. Carbohydrate Polymers,2011,83:1804-1811.
    [137]Cheng, Q.Z. Wang, S.Q. Han, Q.Y. Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. fibril characterization [J]. Journal Applied Polymer Science,2010,115:2756-2762.
    [138]Cheng, Q. Z. Wang, S. Q. Rials, T. G. Poly (vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication [J]. Composites Part A., 2009,40:218-224.
    [139]Suslick, K. S. Choe, S. B. Cichowlas, A. A. Grinstaff, M. W. Sonochemical synthesis of amorphous iron [J]. Nature,1991,353:414-416.
    [140]Faria Tischer, P. C. S. Sierakowski, M. R. Harry Westfahl, Jr. Tischer, C. A. Nanostructural reorganization of bacterial cellulose by ultrasonic treatment [J]. Biomacromolecules,2010,11:1217-1224.
    [141]Liu, H. Du, Y. M. Kennedy, J. F. Hydration energy of the 1,4-bonds of chitosan and their breakdown by ultrasonic treatment [J]. Carbohydrate Polymers,2007,68:598-600.
    [142]Kasaai, M. R. Arul, J. Charlet, G. Fragmentation of chitosan by ultrasonic irradiation [J]. Ultrasonics Sonochemistry,2008,15:1001-1008.
    [143]Cote, G. L. Willet, J. L. Thermomechanical depolymerization of dextran [J]. Carbohydrate Polymers,1999,39:119-126.
    [144]Portenlanger, G. Heusinger, H. The influence of frequency on the mechanical and radical effects for the ultrasonic degradation of dextranes [J]. Ultrasonics Sonochemistry,1997,4: 127-130.
    [145]Vodeniaarova, M. Drimalovi, G Hromadkova, Z. Malovikova, A. Ebringerova, A. Xyloglucan degradation using different radiation sources:A comparative study [J]. Ultrasonics Sonochemistry,2006,13:157-164.
    [146]Gronroos, A. Pirkonen, P. Ruppert, O. Ultrasonic depolymerization of aqueous carboxymethylcellulose [J]. Ultrasonics Sonochemistry,2004,11:9-12.
    [147]Aliyu, M. Hepher, M.J. Effects of ultrasound energy on degradation of cellulose material [J]. Ultrasonics Sonochemistry,2000,7:265-268.
    [148]Lange, J. Wyser, Y. Recent innovations in barrier technologies for plastic packaging-a review [J]. Packaging Technology and Science,2003,16:149-158.
    [149]Schmedlen, R. Masters, K. West, J. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for the use in tissue engineering [J]. Biomaterials,2002,23:4325-4332.
    [150]Wan, W. Campbell, G. Zhang, Z. Hui, A. Boughner, D. Optimizing the tensile properties of poly (vinyl alcohol) hydrogel for the construction of a bioprosthetic heart valve stent [J]. Journal of Biomedical Materials Research,2002,63:854-861.
    [151]Cravotto, G. Cintas, P. Forcing and controlling chemical reactions with ultrasound [J]. Angewandte Chemie International Edition,2007,46:5476-5478.
    [152]Glasser, W.G. Taib, R. Jain, R.K. Kander, R. Fiber-Reinforced cellulosic thermoplastic Composites [J]. Journal of Applied Polymer Science,1999,73:1329-1340.
    [153]Zhao, H. Feng, X. Gao, H. Ultrasonic technique for extracting nanofibers from nature materials [J]. Applied Physics Letters,2007,90:073112.
    [154]Li, W. Yue, J. Q. Liu, S. X. Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites [J]. Ultrasonics Sonochemistry, 2012,19:479-485.
    [155]Yang, G. H. Lucia, L. A. Chen, J. C. Cao, X. D. Liu, Y. Effects of enzyme pretreatment on the beatability of fast-grawing poplar APMP pulp [J]. Bioresources,2010,6(3):2568-2580.
    [156]Veverka, M. Veverka, P. Kaman, O. Magnetic heating by cobalt ferrite nanoparticles [J]. Nanotechnology,2007,18(34):1-7.
    [157]Gu, B. X. Magnetic properties and magneto-optical effect of Coo.5Fe2.5O4 nanostructured films [J]. Applied Physics Letters,2003,82(21):3707-3709.
    [158]Mata-Zamora, M. E. Montiel, H. Alvarez, G. Microwave non-resonant absorption in fine cobalt ferrite particles [J]. Journal of Magnetism Magnetic Materials,2007,316(2):532-534.
    [159]Bhame, S. D. Joya, P. A. Tuning of the magnetostrictive properties of CoFe2O4 by Mnsubstitution for Co [J]. Journal of Applied Physics,2006,100,11:3911-3914.
    [160]Gul, I. H. Abbasi, A. Z. Amin, F. Structural, magnetic and electrical proper ties of Co1-xZnx Fe2O4 synthesized by co-precipitation method [J]. Journal of Magnetism Magnetic Materials,2007,311:494-499.
    [161]Mackay, M. E. Tuteja, A. Duxbury, P. M. Hawker, C. J. Horn, B. V. Guan, Z. b. Chen G. H. Krishnan, R. S. General strategies for nanoparticle dispersion [J]. Science,2006,311: 1740-1743.
    [162]Prozorov, T. Prozorov, R. Gedanken, A. Does the self-assembled coating of magnetic nanoparticles cover individual particles or agglomerates [J]. Advanced Materials,1998,10: 1529-1532.
    [163]Zhao, Y. Thorkelsson, K. Mastroianni, A. J. Schiling, T. Luther, J. M. Rancatore, B. J. Matsunaga, K. Jinnai, H. Wu, Y. Poulsen, D. Frechet, J. M. J. Alivisatos, A. P. Xu, T. Small-molecule-directed nanoparticle assembly towards stimuliresponsive nanocomposites [J]. Nature Materials,2009,8:979-985.
    [164]Lin, Y. Boker, A. He, J. B. Sill, K. Xiang, H. Q. Abetz, C. Li, X. F. Wang, J. Emrick, T. Long, S. Wang, Q. Balazs, A. Russell, T. P. Self-directed self-assembly of nanopartidcle/copolymer mixtures [J]. Nature,2005,434:55-59.
    [165]Belford, D. S. Myers, A. Preston, R. D. A study of the ordered adsorption of metal ions on the surface of cellulose microfibrils [J]. Biochimica Biophysica Acta,1959,34:47-57.
    [166]Olsson, R. T. Salazar-Alvarez, G. Hedenqvist, M.S. Gedde, U.W. Lindgerg, F. Savage, S.J. Controlled synthesis of near-stoichiometric cobalt ferrite nanoparticles [J]. Chemistry of Materials,2005,17:5109-5118.
    [167]Salazar-Alvarez, G. Olsson, R. T. Sort, J. Macedo, W. A. A. Ardisson, J. D. Baro, M. D. Gedde, U. W. Nogues, J. Enhanced coercivity in Co-rich near-stoichiometric CoxFe3-xO4+δ nanoparticles prepared in large batches [J]. Chemistry of Materials.2007,19:4957-4963.
    [168]Sain, M. Panthapulakkal, S. Bioprocess preparation of wheat straw fibersand their characterization [J]. Industrial Crops and Products,2006,23(1):1-8.
    [169]Sun, R. C. Tomkinson, J. Wang, Y. X. Xiao, B. Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction [J]. Polymer,2000,41(7):2647-2656.
    [170]Cintas, P. Luche, J. L. Green chemistry:The sonochemical approach [J]. Green Chemistry,1999,1:115-125.
    [171]李伟,赵莹,刘守新.以纳米微晶纤维素为模板的酸催化水解法制备球形介孔Ti02[J].催化学报,2012,33:342-347.
    [172]Sakurada, I. Nukushina, Y. Ito, T. Experimental determination of the elastic modulus of crystalline regions in oriented polymers [J]. Journal of Polymer Science,1962,57(165): 651-660.
    [173]Pan, J. H. Zhao, X. S. Lee, W. I. Block copolymer-templated synthesis of highly organized mesoporous TiO2-based films and their photoelectrochemical applications [J]. Chemical Engineering Journal,2011,170:363-380.
    [174]Zhang, Q. Li, W. Liu, S. X. Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydro thermal treatment [J]. Powder Technology, 2011,212:145-150.
    [175]沈俊,田从学,张昭.介孔二氧化钛的非有机模板剂法合成[J].催化学报,2006,11:949-951.
    [176]Zhao, L. L. Yu, Y. Song, L. X. Ruan, M. L. Hu, X. F. Larbot, A. Preparation of mesoporous titania film using nonionic triblock copolymer as surfactant template [J]. Applied Catalysis A:General,2004,263:171-177.
    [177]Tian, C. X. Zhang, Z. Hou, J. Luo, N. Surfactant/co-polymer template hydrothermal synthesis of thermally stable mesoporous TiO2 from TiOSO4[J]. Materials Letters,2008, 62:77-80.
    [178]Antonelli, D. Ying, J. Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified Sol-Gel method [J]. Angewandte Chemie International Edition,1995,34:2014-2017.
    [179]Yang, P. D. Zhao, D. Y. Margolese, D. I. Chmelka, B. F. Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature,1998,396:152-155.
    [180]Yusuf, M. Imai, H. HirashimaI, H. Preparation of mesoporous titania by templating with polymer and surfactant and its characterization [J]. Journal of Sol-Gel Science Technology, 2003,28:97-104.
    [181]Zhao, J. Q. Wan, P. Xiang, J. Tong, T. Dong, L. Gao, Z. N. Shen, X. Y. Tong, H. Synthesis of highly ordered macro-mesoporous anatase TiO2 film with high photocatalytic activity [J]. Microporous and Mesoporous Materials,2011,138:200-206.
    [182]Sheng, Q. Cong, Y. Yuan, S. Zhang, J. Anpo, M. Synthesis of bi-porous TiO2 with crystalline framework using a double surfactant system [J]. Microporous and Mesoporous Materials,2006,95:220-225.
    [183]Shamaila, S. Sajjad, A. K. L. Chen, F. Zhang, J. L. Mesoporous titania with high crystallinity during synthesis by dual template system as an efficient photocatalyst [J]. Catalysis Today,2011,175:568-575.
    [184]Chen, D. H. Huang, F. Z. Cheng, Y. B. Caruso, R. A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes:a superior candidate for high-performance dyesensitized solar cells [J]. Advanced Materials,2009,21:2206-2210.
    [185]Marques, P. A. A. P. Trindade, T. Neto, C.P. Titanium dioxide/cellulose nanocomposites prepared by a controlled hydrolysis method [J]. Composites Science and Technology,2006, 66:1038-1044.
    [186]Lu, Q. Y. Gao, F. Komarneni, S. Cellulose-directed growth of selenium nanobelts in solution [J]. Chemistry of Materials,2006,18:159-163.
    [187]Hou, Y. Ding, E. Y. Li, W. D. Synthesis of TiO2 nanocubes induced by cellulose nanocrystal (CNC) at low temperature [J]. Materials Letters,2007,61:5050-5052.
    [188]Ihara, T. Miyoshi, M. Iriyama, Y. Matsumoto, O. Sugihara, S. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping [J]. Applied Catalysis B:Environmental,2003,42:403-409.
    [189]刘守新,陈孝云,陈曦.酸催化水解法制备可见光响应N掺杂纳米TiO2催化剂[J].催化学报,2006,8:697-702.
    [190]Parida, K. M. Naik, B. Synthesis of mesoporous TiO2-xNx spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination [J]. Journal of Colloid Interface Science,2009,333:269-276.
    [191]Yu, J. G. Wang, G H. Cheng, B. Zhou, M. H. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders [J]. Applied Catalysis B:Environmental,2007,69:171-180.
    [192]Yu, J. G Yu, J. C. Ho, W. K. Leung, M. K. P. Cheng, B. Zhang, G K. Zhao, X. J. Effects of alcohol content and calcination temperature on the textural properties of bimodally mesoporous titania [J]. Applied Catalysis A:General,2003,255:309-320.
    [193]Kumar, K. N. P. Kumar, J. Keizer, K. Effect of peptization on densification and phase-transformation behavior of Sol-Gel-Derived nanostructured titania [J]. Journal of the American Ceramic Society,1994,77:1396-1400.
    [194]Yu, J. C. Yu, J. G Ho, W. K. Jiang, Z. T. Zhang, L. Z. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders [J]. Chemistry of Mateialsr,2002,14:3808-3816.
    [195]Liu, S. X. Chen, X. Y Chen, X. A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method [J]. Journal of Hazard Materials, 2007,143:257-263.
    [196]陈孝云,刘守新,陈曦.活性炭修饰对TiO2形态结构及光催化活性的影响[J].应用 化学,2006,11:1218-1222.
    [197]张青红,高濂,郭景坤.量子尺寸氧化钛纳米晶的制备及其光谱研究[J].无机材料学报,2000,10:929-934.
    [198]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2003:60.
    [199]李晓辉,陈孝云,刘守新,陈曦,王海亮,刘正峰.纳米TiO2光催化剂的酸催化水解合成与表征[J].应用化学,2007,11:1279-1283.
    [200]Gao, F. Lu, Q. Y. Meng, X. K. Komarneni, S. Synthesis of nanorods and nanowires using biomolecules under conventional- and microwave-hydrothermal conditions [J]. Journal of Materials Science,2008,43:2377-2386.
    [201]Olsson, R. T, Azizi Samir, M. A. S, Salazar-Alvarez, G. S, Belova, L. Strom, V. Berglund, L. A. Ikkala, O. Nogues, J. Gedde, U. W. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates [J]. Nature Nanotechnology, 2010,5:584-588.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700