用户名: 密码: 验证码:
预处理方法对甜高粱茎秆汁液及残渣乙醇发酵的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜高粱作为一种非粮作物,越来越成为各国学者的研究热点。研究以甜高粱为原料制备燃料乙醇对于缓解目前日益短缺的能源危机具有重要的现实意义。
     对于基于甜高粱的燃料乙醇而言,目前甜高粱原料供应无法满足生物乙醇周年生产的需求,发酵效率相对较低严重限制了甜高粱乙醇的产业化。本文以甜高粱为研究对象,研究了添加甲酸和壳聚糖对甜高粱茎秆汁液进行储藏,并验证发酵效果,延长了甜高粱茎秆汁液的储藏周期;对甜高粱茎秆汁液进行澄清处理,以及添加不同的微量元素研究,有效提高了甜高粱茎秆汁液的乙醇发酵效率;对甜高粱籽粒部分进行了糖化条件的优化及糖化醪与甜高粱茎秆汁液混合发酵,从而有效的提高了茎秆汁液与甜高粱籽粒的高效利用;采用五种预处理方法对甜高粱茎秆残渣进行预处理,并结合酶水解制取乙醇,比较得到较好的预处理方法及酶水解效果,预处理后的残渣是甜高粱乙醇的重要补充原料。
     添加甲酸和壳聚糖储存甜高粱茎秆汁液的研究结果表明,甲酸与壳聚糖都有利于甜高粱茎秆汁液中的糖分保存及储藏后汁液的乙醇发酵。甜高粱茎秆汁液中添加体积分数为0.1%的甲酸是文中提到的几种处理中效果最好的处理方法,在该储藏条件下储藏40天后甜高粱茎秆汁液中总可溶性糖的损失率为15.9%,接种固定化酵母粒子发酵30h后,乙醇浓度和乙醇产率分别为39.94g/L和75.49%。
     对甜高粱茎秆汁液采用壳聚糖溶液进行澄清处理,通过响应面方法优化得到最佳的澄清处理效果为壳聚糖用量为0.42g/L,汁液pH值5.4,温度29.6℃。在最优条件下进行验证试验,预处理后汁液澄清度为90.62±0.12%,总可溶性糖含量为130.32±0.22g/L,优化结果真实可信。研究了澄清处理与对照汁液的发酵动力学参数,动力学方程的拟合结果表明,实验数据拟合度较好,拟合得到的动力学相关参数进一步表明,澄清处理提高了酵母细胞的最大比生长速率,增加酵母细胞的数量,加快了甜高粱茎秆汁液中糖分的消耗速度,从而提高乙醇产量。
     采用Plackett-Burman设计方法对供试的8种微量元素进行筛选得到对以甜高粱茎秆汁液为原料发酵制取乙醇具有积极影响的元素,分别为Biotin、CoCl_2·6H_2O和MnCl_2·4H_2O,并采用单因素法确定得到这3中微量元素的添加量的范围以及采用Box-Behken方法进行优化,得到最佳的微量元素的添加量为MnCl_2·4H_2O7.70mg/L, CoCl_2·6H_2O15.74mg/L,Biotin11.97mg/L,在最佳条件下进行发酵验证,相比较不添加微量元素的汁液而言,乙醇产率提高了5.63%,这为未来甜高粱茎秆汁液的中试生产中微量元素的添加提供参考。
     对甜高粱籽粒进行液化和糖化,采用单因素法分别确定了液化和糖化过程参数的水平范围,通过CCD响应面优化得到合适的液化和糖化工艺条件,分别为液化过程:底物浓度20%,液化酶酶活5.0u/g底物,液化pH值为5.5,液化温度为65℃,液化时间30min,糖化酶活浓度为594u/g底物,pH值为4.1,糖化温度为51.4℃,糖化时间为80h。将糖化得到的糖化醪液的澄清液与甜高粱茎秆汁液混合并接种酵母发酵制备乙醇得到的研究结果表明,添加澄清糖化液到甜高粱茎秆汁液中可以增加发酵醪中还原糖含量及自由氨基氮含量并提高发酵速率。混合汁液中澄清糖化液的体积分数越大,发酵速率越快。含有80%澄清糖化液的混合汁液具有最高的乙醇浓度、乙醇生产力和乙醇产率,分别为65.64±0.57gL~(1)、5.47±0.04gL~(1)h~(1)和89.29±0.77%,这比对照纯甜高粱茎秆汁液分别提高了6.8%、33.5%和13.7%。
     对甜高粱茎秆残渣进行了原料分析和预处理,研究结果表明文中所用的五种预处理方法均有利于提高甜高粱茎秆残渣的纤维素水解效率,其中先2%氢氧化钠溶液浸泡并高温高压处理再使用5%双氧水处理甜高粱茎秆残渣是这五种方法中最为合适的预处理方法,这种预处理方法预处理后的残渣具有最高的纤维素水解率、总糖得率和乙醇浓度,分别达到了74.29%、90.94g糖/100g干物质和6.12g/L,这分别是对照的5.88倍、9.54倍和19.13倍。在扫描电镜分析中可以看出预处理后的甜高粱茎秆残渣的显著结构变化,傅立叶红外光谱分析可以推断预处理造成了一些化学键的断裂和变化,甜高粱茎秆残渣的纤维素含量和酶糖化率有关。该预处理方法将为甜高粱茎秆残渣制乙醇提高提供参考。
     综上所述,甲酸储藏可以至少延长甜高粱茎秆汁液的储藏周期至40天,壳聚糖的澄清以及添加Biotin、MnCl_2·4H_2O、CoCl_2·6H_2O可以提高乙醇产率。汁液和糖化液的混合发酵能够提高发酵液中乙醇浓度及发酵速率,稀碱液高温高压处理辅以双氧水浸泡预处理后提高了甜高粱茎秆残渣的水解率,拓宽了甜高粱乙醇的原料来源,为乙醇的周年生产提供充足的原料。
As a kind of non-food crop, sweet sorghum is becoming a worldwideresearch hotspot recently. There are realistic significances to resolve theenergy shortage problems by developing bioethanol production from sweetsorghum. As far as bioethanol production from sweet sorghum concernednowadays, the seasonally harvested raw material can’t meet the requirementof continuous bioethanol production of the whole year. Also, the lowfermentation efficiency severely restricts its industrialization progress.
     The objective in this thesis is to utilize the whole plant of sweetsorghum for bioethanol production. Firstly, storage study applying formicacid and chitosan addition to juice from the stalk was carried out to prolongthe storage period of sweet sorghum juice. And the verification tests to determine the fermentation effect have been done. Then different traceelements were added into the juice which has been clarified. Results showedthat some trace elements could significantly improve the ethanolfermentation efficiency. After that, optimization studies of saccharificationconditions using the grain have been performed. And co-fermentation testsusing the saccharification mash and sweet sorghum juice were conducted inorder to realize the high efficiency utilization of the whole plant forbioenergy production. Finally for the residue of sweet sorghum stalk, fivedifferent pretreatment methods were applied to make this kind oflignocellulosic raw material much easier to be saccharified. The enzymatichydrolysis and ethanol fermentation results showed that the applied range ofbioethanol production from sweet sorghum was greatly broadened.
     Results from the storage tests applying formic acid addition andchitosan to preserve sweet sorghum juice showed that both of themcontributes to sugar conservation in juice as well as bioethanol fermentationafter storage. Among the treatments mentioned in the thesis, adding0.1%(v/v) formic acid into the juice was the best method. Under this conditionthe soluble sugar loss rate in sweet sorghum juice after storage for40d is15.90%. And the ethanol content and ethanol yield after fermentation for30h using immobilized yeast was39.94g/L and75.49%, respectively.
     Clarification treatment was applied to sweet sorghum juice usingchitosan solution. The optimal treatment condition was chitosanconcentration0.42g/L, pH value5.4and temperature29.6℃, respectively,which were determined by Respond Surface Method. The verificationexperiments showed that the optimization results bore quite a high degree ofconfidence level. The clarity of juice with optimized conditions was90.62±0.12%and the total soluble sugar content was130.32±0.22g/L,which showed that the optimization results were genuine and believable.Furthermore, fermentation kinetics studies were carried out both ofclarification juice and the control. The results showed that experimental datafitting degree is reasonable. And the kinetic related parameters indicated thatclarification not only increased the maximum specific growth rate andpopulation of yeast cell, but also accelerated the consumption rate of sugarcontent thereby improved the bioethanol yield.
     Plackett-Burman design was carried out to screen3kinds of traceelements (Biotin, CoCl_2·6H_2O and MnCl_2·4H_2O) which would exertpositively impact to bioethanol production from sweet sorghum juice from8trace elements. The addition range was determined by single factorexperiments. After that Box-Behken method was conducted to get theoptimized addition amount of the3trace elements, which were7.70mg/L, 5.74mg/L and11.97mg/L for MnCl_2·4H_2O, CoCl_2·6H_2O and Biotin,respectively. Verification tests were performed under the optimizedconditions. Results showed that the ethanol yield efficiency was5.63%higher than the control, which would offer a reference to the future pilotscale ethanol production with trace elements addition.
     Single factor experiments were brought to determine the extent ofliquefaction and saccharification effects for sweet sorghum grain. CCDmethod was applied to get the applicable technological conditions forliquefaction and saccharification. The optimal conditions for liquefactionwere as follows:20%of substrate concentration,5.0u/g substrate ofenzymatic activity of liquifying enzyme,5.50of pH value,65℃oftemperature, and30min of liquefaction time. And the optimalsaccharification conditions for saccharification were enzymatic activity ofsaccharifying enzyme:594u/g substrate, pH value:4.1, temperature:51.4℃;time:80h. Then the grain saccharification mash after clarification wasco-fermented with sweet sorghum juice to produce ethanol. And the resultsdemonstrated that co-fermentation could increase the reducing sugar contentand free amino nitrogen (FAN) content in the fermentation broth as well asthe fermentation rate. Moreover, the higher the volumetric percent ofclarified saccharification mash was added, the higher the fermentation rate was obtained. The highest ethanol concentration, productivity and yieldwere obtained at the80%volumetric percentage of clarified saccharificationmash in the mixed fermentation liquor, which were65.64±0.57gL~(1)、5.47±0.04gL~(1)h~(1)and89.29±0.77%, respectively. These results were6.8%、33.5%and13.7%higher than the control which using pure sweet sorghumjuice.
     The residue of sweet sorghum stalk was analyzed to determine its maincharacteristic and then was pretreated. The results manifested that the fivedifferent methods mentioned in this thesis all benefited the cellulosehydrolysis efficiency of stalk residue. Preatment with2%NaOH plus hightemperature and pressure and then immersed by5%H_2O2was the mostappropriate pretreatment method, after which the highest glucose and xylosecontent in hydrolyzate were obtained. Besides, the highest cellulosehydrolysis rate (74.29%), enzyme saccharification rate (90.94g sugar/100gdry material) and ethanol concentrate (6.12g/L) was obtained with thismethod, which were5.88,9.54and19.13times higher than the control,respectively. Furthermore, it could be observed by the SEM analysis thatthere were significant structural changes of stalk residue after thepretreatments. Also some certain breakage and changes of the chemicalbonds caused by pretreatment were deduced though FITR analysis. Characteristic analysis after pretreatments dedicated that cellulose contentand total sugar yield were related to each other, so were glucoseconcentration, cellulose hydrolysis yield and ethanol concentration. Thiskind of pretreatment method would offer a reference for the bioethanolproduction from lignocellulosic stalk residue in the future.
     In sum, the storage period of sweet sorghum juice will be extended atleast by40days by adding certain mount of formic acid. And clarification ofthe juice using chitosan as well as adding trace elements including Biotin,MnCl_2·4H_2O and CoCl_2·6H_2O will improve the bioethanol yield effectively.Co-fermentation by applying sweet sorghum juice and saccharification mashfrom grain will increase the ethanol concentration in the fermentation broth.And pretreatment at high temperature and pressure with diluted alkaline plushydrogen peroxide soaking pretreatment will contribute to the hydrolysisrate of residue of sweet sorghum stalk. All of these methods will broadenthe range of raw material source as well as prolonged the industrializedproduction period of bioethanol.
引文
[1]孙福来,杨文,朱琴,等.玉米挤压膨化酒精发酵的研究[J].扬州大学学报(农业与生命科学版),1997,18(3):68-72
    [2]白凤武.酒精发酵工业结构调整关键技术及发展燃料酒精的可行性[J].化工科技市场,2001,24(2):14-16
    [3] Chun L H, Overend R P. Biomass and renewable fuels [J]. Fuel ProcessingTechnology,2001,71(1):187-195(9)
    [4] Cakir T, Arga K.Y, Altintasm M M, et al. Flux analysis of recombinantSaccharomyces cerevisiae YPB2G utilizing starch for optimal ethanol production [J].Process Biochemistry,2004,39(12):2097-2108
    [5]谭天伟,王芳,邓利.能源生物技术[J].生物加工过程,2003,1(1):32-36
    [6]张立峰. CO2气提耦合真空闪蒸进行发酵乙醇的在位分离[D].天津:天津大学,2005
    [7]涂振动,王钊英,傅力.甜高粱秸秆燃料乙醇产业化问题与对策的探讨.可再生能源,2009,27(4):106-108
    [8] Gosse G. Overview on the different routes for industrial utilization of sorghum.First European Seminar on Sorghum for Energy and Industry[C]. France: Toulouse1996
    [9] Billa E. Koullas D P, Monties B, et al. Structure and composition of sweetsorghum stalk components[J]. Industrial Crops and Products,1997,6(3/4):297-302
    [10]章克昌.酒精与蒸馏酒工艺学[M].北京:中国轻工业出版社,2001
    [11]任立伟.纤维质酒精发酵的菌种选育及发酵条件的研究[D].长春:吉林农业大学,2003
    [12]康利平,孙君社,张京生,等.甜高粱茎秆汁液发酵生产燃料乙醇的研究[J].食品与发酵工业,2008,34(2):47-50
    [13]金慧,刘荣厚.不同温度条件对甜高粱茎秆汁液酒精发酵的影响[J].安徽农业科学,2007,35(19):5684-5685
    [14] Thomas K C, Hynes S H, Jones A M, et al. Production of fuel alcohol fromwheat by VHG technology. Effect of sugar concentration and fermentation temperature [J].Applied Biochemistry and Biotechnology.1993,43(3):110-226
    [15] Wang S, Thomas K C, Sosulski k, et al, Grain pearling and very highgravity(VHG) fermentation technologies for fuel alcohol production from rye and triticale[J]. Process Biochemistry,1999,34:421-428
    [16] Dragone G,Silva D P,Almeda e Silva J B. Factors influencing ethanolproduction rates at high-gravity brewing [J]. LWTe-Food Science and Technology,2004,37(7):797-802
    [17]吴国锋,赵辉,李盛贤,等.酒精浓醪发酵的计算与分析[J].酿酒,2003,30(4):70-72
    [18] Jacques K A, Lyons T P and Kelsall D R. The Alcohol Textbook [M].Nottingham:Nottingham University Press,1999
    [19]候保朝,杜风光,郭永豪,等.高浓度酒精发酵[J].酿酒科技,2005,4(130):93-96
    [20]吕欣,毛忠贵.高浓度酒精发酵研究进展[J].酿酒科技,2003,5:58-59
    [21]王晓霞,章克昌,张礼星,等.酒精高浓发酵过程中果胶酶应用的研究[J].食品与发酵工业,2001,27(3):44-47
    [22]林建成,杨文杰,朱丽华,等.商品果胶酶(Aspergillus niger)的催化动力学研究[J].甘肃农业大学学报,2006,41(4):81-85
    [23] Casey G P, Magnus C A, Ingledew W M. High gravity brewing:nutrientenhanced production of high concentration of ethanol by brewing yeast[J]. Biotechnologyletters,1983,(5):429-434
    [24] Thomas K C, Ingledew W M. Fuel alcohol production: effects of free aminonitrogen on fermentation of very-high-gravity wheat mashes [J]. Applied andEnvironmental Microbiology,1990,56(7):2046
    [25]钟光祥,李祥麟.固定化酵母发酵糖化醪生产酒精及其动力学研究[J].微生物学通报,1994,21(1):19-22
    [26]白凤武,靳艳,冯朴荪,等.融合株SPSC发酵生产酒精的工艺研究——自絮凝细胞颗粒粒径分布、细胞生长和产物酒精生成动力学[J].生物工程学报,1999,15(4):455-460
    [27] Laopaiboon L, Thanonkeo P, Jaisil P, et al. Ethanol production from sweetsorghum juice in batch and fed-batch fermentations by Ssccharomyces cerevisiae[J].World Journal of Microbiology and Biotechnology,2007,23(10):1497-1501
    [28]吕欣,李永飞,段作营,等.一株产高浓度酒精酵母的流加发酵策略初步研究[J].酿酒,2003,30(3):25-26
    [29]姚少宝,刘文邦.当前酒精生产中存在的问题及对策[J].酿酒,1992,(2):37-39
    [30]朱翠云.甜高粱——大有发展前途的作物[J].国外农学——杂粮作物,1999,19(2):29-32
    [31]黎大爵.制糖及酿造工业的新原料——甜高粱[J].农产品开发,1997,1:44-46
    [32]张扬健,向威达,周涛,等.我国燃料乙醇发展现状和趋势分析[J].中国能源,2009,31(1):31-34
    [33]曹玉瑞,曹文伯,王孟杰.高能作物甜高粱综合利用[J].太阳能,2001,4:30-31
    [34]赵立欣,张艳丽,沈丰菊.能源作物甜高粱及其可供应性研究[J].可再生能源,2005,4:37-40
    [35]熊子书.中国酿酒酵母菌的研究——不同酒类酵母筛选与应用纪实(上)[J].酿酒科技,2002,4:23-27
    [36] Spindler D D, Wyman C.E, Grohmann K. Evaluation of thermotolerant yeasts incontrolled simultaneous saccharifications and fermentations of cellulose to ethanol [J].Biotechnology and Bioengineering,1989,34:189-195
    [37] Singh D, Banat I M, Nigam P, et al. Industrial scale ethanol production using thethermotolerant yeast kluyveromyces marxianus IMB3in an Indian distillery [J].Biotechnology Letters,1998,20(8):753-755
    [38]蒋亚平,蔡金芝,杨宝玉,等.耐高温酵母WVHY8的生物学特性及其应用[J].微生物学通报,1992,19(6):328-331
    [39]董昌金.耐高温酵母的诱变筛选及生理生化特性研究[J].湖北师范学院学报,2002,22(1):69-72
    [40] Chriatison J, Hayes W C. Continuous Production of Ethanol Using TheHyperferm Process[J]. Canada Bioenergy P&R Science(Prcc),1984,5:521-530
    [41]贾树彪,李盛贤,吴国峰.新编酒精工艺学[M].北京:化学工业出版社,2004
    [42]章克昌,吴佩琮.酒精工业手册[M].北京:轻工业出版社,1998:140
    [43]潘明,周永进.微波技术选育啤酒酵母菌种的探讨[J].中国酿造,2008,(6):78-80
    [44]周爱萍.国内外燃料乙醇的生产与研究进展[J].安徽农业科学,2008,36(20):8768-8700
    [45]张丽君,程可可,张建安,等.乙醇发酵在线分离产物耦合的研究现状[J].现代化工,2006,26:48-51
    [46] Walsh P K, Liu C P, Findley M E, et al. Ethanol Separation from Water in aTwo-Stage Adsorption Process[J]. Biotechnology Bioengergy Symp,1983,13:629-647
    [47] Liu H, Hsu H. Analysis of Gas Stripping During Ethanol Fermentation—I.In aContinuous Stirred Tank Reactor [J]. Chemical Engineering Science,1990,45(5):1289-1299
    [48]秦庆军,贾鸿飞,王宇新.乙醇气提发酵与载气蒸馏耦合过程实验[J].过程工程学报,2002,2(1):58-41
    [49]岑沛霖,顾兵,王衍平,等. CO2循环、活性炭吸附酒精发酵的研究[J].化学反应工程与工艺,1988,4(1):30-35
    [50]尚龙安,凌海燕,范代娣,等.固定化酵母乙醇萃取发酵研究[J].化学工程,1997,(6):11
    [51] Gyamerah M, Glover J. Anvances in Fermentation[M]. London: Chelsea College,1983
    [52] Matsumun M, Mark H. Elimination of Ethanol Inhibitation By Penetration[J].Biotechnology and Bioengineering,1986,16:534-541
    [53] Cheryan M, Mehaia M A. Membrane Separations in Biotechnology [M]. MarcelDekker, New York,1986
    [54] Garcia H M, Malcata F X, Hill C G, et al. Use of Candida Rugosa LipuseImmobilized In a Spiral Wound Membrane Reactor For the Hydrolysis of Milkfat [J].Enzyme and Microbial Technology,1992,14(7):535-544
    [55] Udriot H, Ampuere S, Marison I W, et al. Extractive Fermentation of EthanolUsing Membrane Distillation[J]. Biotechnology Letters,1989,11(7):509-511
    [56]张亚磊,陈砺,严宗诚,等.乙醇发酵分离耦合技术的研究进展[J].广东农业科学,2011,13:86-90
    [57]范立梅.用大网格树脂从发酵液中吸附分离乙醇[J].浙江农业大学学报,1999,25(1):59-61
    [58]张君,刘宏娟,刘德华.不同类型载气对乙醇气提发酵的影响[J].过程工程学报,2006,5(3):349-352
    [59] Jamuna R, Ramakrishna S V. Ethanol fermentation by immobilized cells in atrickle bed reactor [J]. Bioprocess and Biosystem Engineering,1992,8(1-2):61-66
    [60] Tzeng J W, Fan L S, Gan Y R. Ethanol fermentation using immobilized cells in amultistage fluidized bed bioreactor [J]. Biotechnology&Bioengineering,1991,38(10):1253-1258
    [61] Warren R K, Macdonald D G, Hill G A. The design and costing of a continuousethanol process using wheat and cell recycle fermentation [J]. Bioresource Technology,1994,47(2):121-129
    [62] Gilson C D, Thomas A. Ethanol production by alginate immobilized yeast in afluidised bed bioreactor [J] Journal of Chemical Technology&Biotechnology,1994,62(1):38-45
    [63] Kundurn M R, Pometto III A. Continuous ethanol production by Zymomonasmobilize and Saccharomyces cerevisiae in biofilm reactors [J]. Journal of IndustrialMicrobiology&Biotechnology,1996,16(4):249-256
    [64] Sheoran A, Yanav B S, Nigam P, et al. Continuous ethanol production fromsugarcane molasses using a column reactor of immobilized Saccharomyces cerevisiaeHAU-1[J]. Journal of Basic Microbiology,1998,38(2):123-128
    [65] Ulku M. Determination of the effective diffusion coefficients of glucose andethanol in calcium alginate gel by the moment analysis method [J]. Chemical EngineeringScience,1995,50(18):3001-3004
    [66] Kishimoto M, Nitta Y, Kamoshita Y, et al. Ethanol production in an ImmobilizedCell Reactor Coupled with the Recycling of Effluent from the Bottom of a DistillationColumn[J]. Journal of Fermentation and Bioengineering,1997,84(5):449-454
    [67] Viegas M C, Andrietta S R, Andrietta M G S. Using of tower reactors forcontinuous ethanol production[J]. Brazilian Journal of Chemical Engineering,2002,19(2):167-173
    [68] Valach M, Navratil M, Horvathova V, et al. Efficiency of a fixed-bed and agas-lift three column reactor for continuous production of ethanol by pectate-andAlginate-immobilized Saccharomyces cerevisiae cells [J]. Chemical Papers,2006,60(2):154-159
    [69] Kundurn M R, Pometto III A. Evaluation of plastic composite-supports forenhanced ethanol production in biofilm reactors [J]. Journal of Industrial Microbiology&Biotechnology,1996,16(4):241-248
    [70] Demirci A, Pometto III A, Ho K. Ethanol production by Saccharomycescerevisiae in biofilm reactors [J]. Journal of Industrial Microbiology&Biotechnology,1997,19(4):299-304
    [71] Krishnan M S, Nghiem N P, Davison B H. Ethanol production from corn starchin a fluidized-bed bioreactor[J]. Applied Biochemistry and Biotechnology,1999,78(1-3):359-372
    [72]曹玉瑞.固定化酵母流化床生物反应器的设计与实验[J].应用基础与工程科学学报,1996,4(3):307-315
    [73]曹玉瑞,鲁楠.固定化酵母流化床生物反应器的设计方法[J].农业工程学报,1996,12(1):51-55
    [74]曹玉瑞,李轶,周洪斌.固定化酵母流化床生物反应器生产酒精工业性系统的设计[J].沈阳农业大学学报,1995,26(3):293-298
    [75] Gnansounou E, Dauriat A, Wyman C E. Refining sweet sorghum to ethanol andsugar:economic trade-offs in the context of North China [J]. Bioresource Technology,2005,96(9):985-1002
    [76]黎大爵,廖馥荪.甜高粱及其利用[M].上海:科学出版社,1992
    [77]马鸿图,黄瑞冬.甜高粱—欧共体未来能源所在[J].世界农业,1994,(8):13-16
    [78]宁喜斌,马志私,李达.甜高粱茎汁成分的测定[J].沈阳农业大学学报,1995,26(1):45-48
    [79]汪彤彤.防腐剂对甜高粱茎秆汁液贮存及酒精发酵影响的试验研究[D].沈阳农业大学,沈阳,2006
    [80]费立发,赵福升,张鹏,等.甜高粱秸秆榨汁发酵实验研究[J].酿酒科技,2007,5:77-78
    [81] Sommariva C, Converti A, Borghi M D, et al. A theoretical approach to theevaluation of the effectiveness factor in an entrapped yeast cell column [J].The ChemicalEngineering Journal,1992,49(2): B23-B28
    [82] Biol G, Doruker P, Kirdar B. Mathematical description of ethanol fermentationby immobilized Saccharomyces cerevisiae [J]. Process Biochemistry,1998,33(7):763-771
    [83] Prasad B, Mishra I M. On the kinetic and effectiveness of immobilizedwhole-cell batch cultures[J]. Bioresource Technology,1995,53(3):269-275
    [84]张治根,俞俊棠,苏尔馥.固定化酵母反应动力学研究[J].生物工程学报,1989,5(1):77-83
    [85]张立峰,刘振,曾爱武.耐高温酵母乙醇间歇发酵动力学研究[J].生物技术,2005,12(5):72-75
    [86]王莹,刘长江,贾茹珍等.甜高粱茎秆汁酒精分批发酵动力学研究[J].农机化研究.2008,(2):200-203
    [87]孙廷宏,赵长新,金凤燮.几种无机离子对啤酒酵母生理代谢的影响及发酵过程的产酸机制[J].大连轻工业学院学报,2002,21(1):29-32
    [88] Akrida-Demertzi K, Demertzis P G, Koutinas A A. pH and trace-elementscontent in raisin extract industrial-scale alcoholic fermentation[J]. Biotechnology andBioengineering,1988,31(7):666-669
    [89] Stehlik-Tomas V, Zeti V G, Stanzer D, et al. Zinc,Copper and ManganeseEnrichment in Yeast Saccharomyces cerevisiae [J]. Food Technology and Biotechnology,2004,42(2):115-120
    [90]雷晓静,冯少岭,张中举,等.玉米中蛋白质对赖氨酸生产的影响[J].粮油加工与机械,2005,(11):83-85
    [91] Chatterjee S, Chatterjee S, Chatterjee B P, et al. Clarification of fruit juice withchitosan [J]. Process Biochemistry,2004,39(12):2229-2232
    [92]周兆梅,苗立.壳聚糖在苹果汁、山梨汁、山楂汁澄清中的应用研究[J].辽宁食品与发酵,1997,(3):18-21
    [93]蒋挺大.甲壳素[M].北京:中国环境科学出版社,1996
    [94]王琳,岳田利.壳聚糖在桑椹汁澄清中的应用[J].食品科技,2005,(5):51-52
    [95]夏文水,王璋.壳聚糖澄清果汁作用的研究[J].无锡轻工业学院学报,1993,(2):111-117
    [96]王云阳,岳田利.壳聚糖澄清苹果汁工艺的研究[J].中国食品学报,1998,(2):18-21
    [97]常津,任晓文,魏民,等.天然絮凝剂对生脉饮提取液的精制研究[J].中国医药学报,1998,13(2):22-25
    [98]丁筑红,王准生,谭书明.壳聚糖、皂土澄清剂对发酵酒澄清作用的研究[J].中国酿造,2005,(1):11-15
    [99]李雪雁,赵华.酒精发酵副产物对酵母菌生长的影响[J].酿酒,2001,28(6):58-60
    [100]姚卫蓉,姚惠源.复合淀粉酶酶解生淀粉机理探讨[J].工业微生物,2005,35(4):15-19
    [101]朱文优,王新惠,张超.糖化酶的结构及催化机制的研究进展[J].酿酒,2009,36(1):21-23
    [102]吴素萍.酶解玉米淀粉发酵酒精工艺条件的研究[J].酿酒科技,2007,11:45-49
    [103]李志平,庞宗文.生木薯淀粉直接发酵生产酒精的发酵条件研究[J].酿酒科技,2005(12):57-59
    [104] Kim H R, Im Y K, Ko H M, et al. Raw starch fermentation to ethanol by anindustrial distiller's yeast strain of Saccharomyces cerevisiae expressing glucoamylase andα-amylase genes[J]. Biotechnology Letters,2011,33(8):1643-1648
    [105] Abouzied M M, Reddy C A. Fermentation of starch to ethanol by acomplementary mixture of an amylolytic yeast and Saccharomy cescerevisiae[J].Biotechnology letters,1987,9(1):59-62.
    [106]王祥和,管于平,赵琼,等.甜高粱茎秆及其籽粒固态发酵酒精的研究[J].酿酒科技,2007,11:48-51
    [107]刘振,王金鹏,张立峰,等.木薯干原料同步糖化发酵生产乙醇[J].过程工程学报,2005,5(3):353-356
    [108] Gibbons W R, Westby C A. Cofermentation of sweet sorghum juice and grainfor production of fuel ethanol and Distillers’ wet grain [J]. Biomass,1989,18(1):43-57
    [109]阎伯旭,齐飞,张颖舒,等.纤维素酶分子结构和功能研究进展[J].生物化学与生物物理进展,1999,26(3):233-239
    [110] Jeffriesa T W, Eveleigha D E, Macmillana J D, et al. Enzymatic hydolysis ofthe walls of yeasts cells and germinated fungal spores[J]. Biochimica et Biophysica Acta(BBA)-General Subjects,1977,499(1):10-23
    [111] Sinnott M L. The cellobiohydrolases of Trichoderma reesei: a review ofindirect and direct evidence that their function is not just glycosidic bond hydrolysis[J].Biochemical Society Transactions,1998,26(2):160-164
    [112]余兴莲,王丽,徐伟民.纤维素酶降解纤维素机理的研究进展[J].宁波大学学报(理工版),2007,2(3):78-82
    [113] Laymon R A, Adney W S. Mohagheghi A, et al. Cloning and expression offull-length Trichoderma reesei cellobiohydrolase I cDNAs in Escherichia coli[J]. AppliedBiochemistry and Biotechnology,1996,57-58(1):389–397
    [114]沈飞.甜高粱茎秆/汁液贮藏及残渣酶水解制取生物乙醇的研究[D].上海交通大学,上海,2010
    [115] Mosier N, Wyman C, Dale B, et al. Features of promising technologies forpretreatment of lignocellulosic biomass[J]. Bioresource Technology,2005,96(6):673-686
    [116] Taherzadeh M J, Karimi K. Prereatment of lignocellulosic waster to improveethanol and biogas production: a review[J]. International Journal of Molecular Sciences,2008,9(9):1621-1651
    [117] Silva A S, Inoue H, Endo T, et al. Milling pretreatment of sugarcane bagasseand straw for enzymatic hydrolysis and ethanol fermentationl [J]. Bioresource Technology,2010,101(19):7402-7409
    [118] Laser M, Schulman D, Allen S G, et al. A comparison of liquid hot water andsteam pretreatments of sugar cane bagasse for bioconversion to ethanol [J]. BioresourceTechnology,2002,81(1):33-34
    [119] Xu J, Cheng J J, Sharma-Shivappa R R, et al. Sodium hydroxide pretreatmentof switchgrass for ethanol production [J]. Energy fuels,2010,24(3):2113-2119
    [120] Zhang J, Ma X, Yu J, Zhang X, et al. The effects of four differentpretreatments on enzymatic hydrolysis of sweet sorghum bagasse [J]. BioresourceTechnology,2011,102(6):4585-4589
    [121] Cara C, Ruiz E, Oliva J M, et al. Conversion of olive tree biomass intofermentable sugars by dilute acid pretreatment and enzymatic saccharification[J].Bioresource Technology,2007,99(6):1869-1876
    [122] Orozco A, Ahmad M,Rooney D,et al. Dilute Acid Hydrolysis of Celluloseand Cellulosic Bio-Waste Using a Microwave Reactor System [J]. Process Safety andEnvironmental Protection,2007,85(5):446–449
    [123] Zhang B, Shahbazi A, Wang L. Alkali Pretreatment and Enzymatic Hydrolysisof Cattails from Constructed Wetlands [J]. American Journal of Engineering and AppliedScience,2010,3(2):328-332
    [124] Zhao X, Zhang L, Liu D. Comparative study on chemical pretreatmentmethods for improving enzymatic digestibility of crofton weed stem [J]. BioresourceTechnology,2007,99(9):3729-3736
    [125] Silverstein R A,Chen Y,Sharma-Shivappa R R, et al. A comparison ofchemical pretreatment methods for improving saccharification of cotton stalks[J].Bioresource Technology,2007,98(16):3000-3011
    [126] Curreli N, Fadda M B, Rescigno A, et al. Mild alkaline/oxidative pretreatmentof wheat straw. Process Biochemistry[J].1997,32(8):665-670
    [127] Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production:A review[J]. Bioresource Technology,2002,83(1):1-11
    [128] Kurakake M. Ide N, Komaki T. Biological pretreatment with two bacterialstrains for enzymatic hydrolysis of office paper [J]. Current Microbiology,2007,54(6):424-428
    [129] Liu R H, Li J X, Shen F. Refining bioethanol from stalk juice of sweetsorghum by immobilized yeast fermentation [J]. Renewable Energy,2008,33(5):1130-1135
    [130] Bryan W L. Solid-state fermentation of sugars in sweet sorghum [J]. Enzymeand Microbial Technology,1990,12(6):437–442
    [131] Liu R, Shen F. Impacts of main factors on bioethanol fermentation from stalkjuice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC1308)[J].Bioresource Technology,2008,99(4):847-854
    [132] Cundiff J S, Vaughan D H. Sweet sorghum for ethanol industry for thePiedmont [J]. Energy in Agriculture,1987,6(2):133-140
    [133] Worley J W, Vaughan D H, Cundiff J S. Energy Analysis of EthanolProduction from Sweet Sorghum[J]. Bioresource Technology,1992,40(3):263-273
    [134] Zhao Y L, Dolat A, Steinberger Y, et al. Biomass yield and changes inchemical composition of sweet sorghum cultivars grown for biofuel[J]. Field CropsResearch,2009,111(1-2):55-64
    [135] Berndes G, Hoogwijk M, Van den Broek R.The contribution of biomass in thefuture global energy supply: a review of17studies[J]. Biomass and Bioenergy,2003,25(1):1–28
    [136] Eiland B R, Clayton J E. Bryan W L, et al. Losses of fermentable sugar insweet sorghum during storage[J]. Transactions of the ASAE(American Society ofAgriculture Engineers),1983,26(5):1596-1600
    [137] Linden J C, Henk L L, Murphy V G, et al. Preservation of potentialfermentables in sweet sorghum by ensiling[J]. Biotechnology and Bioengineering,1987,30(7):860-867
    [138] Mamma D, Christakopoulos P, Koullas D, et al. An alternative approach to thebioconversion of sweet sorghum carbohydrates to ethanol [J]. Biomass and Bioenergy,1995,8(2):99–103
    [139] Mei X Y., Liu R H., Shen F, et al. Optimization of Fermentation Conditions forthe Production of Ethanol from Stalk Juice of Sweet Sorghum by Immobilized YeastUsing Response Surface Methdology [J]. Energy&Fuels,2009,23(1):487-491
    [140]梅晓岩,刘荣厚,沈飞.甜高粱茎秆汁液成分分析及浓缩贮藏的试验研究[J].农业工程学报,2008,24(1):218-223
    [141]汪彤彤,刘荣厚,沈飞.防腐剂对甜高梁茎秆汁液贮存及酒精发酵的影响[J].江苏农业科学,2006,(3):159-161
    [142] OH H I., KIM Y J, Chang E J. Antimicrobial Characteristics of Chitosansagainst Food Spoilage Microorganisms in Liquid Media and Mayonnaise[J]. Bioscience,Biotechnology, and Biochemistry,2001,65(11):2378-2383
    [143] Patil S G., Patil B G. Chitin supplement speeds up the ethanol production incane molasses fermentation[J]. Enzyme and Microbial Technology,1989,11(1):38-43
    [144] Narasimhalu P, Halliday L J, Sanderson J B, et al. The composition, intake,and digestibility of timothy silage preserved untreated or treated with formic acid or acellulase-hemicellulase preparation [J]. Canadian Journal of Animal Science,1992,72(2):431-434
    [145] Henk L L., Linden J C. Solid-state production of ethanol from sorghum [J].Applied Biochemistry and Biotechnology,1996,57-58(1):489-501
    [146] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducingsugars [J]. Analytical Chemistry,1959,31(3):426-428
    [147] Bulawayo B, Bvochora J M., Muzondo M I, et al. Ethanol production byfermentation of sweet-stem sorghum juice using various yeast strains [J]. World Journal ofMicrobiology Biotechnology,1996,12(4):357-360
    [148] Duncan D B. Multiple range and multiple F tests[J]. Biometrics,1955,11(1):1-42
    [149] Shen F, Liu R. Storage of Sweet Sorghum Fresh Juice withEthyl-p-Hydroxybenzoate and the Ethanol Fermentation with the Preserved Juice[J].Journal of Biobased Materials and Bioenergy,2010,4(4):324-329
    [150] Lindgren S, Kaspersson A, Rydberg E, et al. Effect of inoculants, grain andformic acid on silage fermentation [J]. Swedish journal of agricultural research,1983,13(2):91-100
    [151] Woods J. Integrating Sweet sorghum and sugarcane for bio-Energy: Modelingthe potential for electricity and ethanol production in SE Zimbabwe [D]. King’s collegeLondon,2000
    [152] Wu X R, Staggenborg S, Propheter J L, et al. Features of sweet sorghum stalkjuice and their performance in ethanol fermentation [J]. Industrial Crops and Products,2010,31(1):164-170
    [153] Schmidt J, Sipocz J, Kaszas I, et al. Preservation of sugar content in ensiledsweet sorghum [J]. Bioresource Technology,1997,60(1):9-13
    [154] Du L, Su Y, Sun D, et al. Formic acid induces Yca1p-independentapoptosis-like cell death in the yeast Saccharomyces cerevisiae [J], FEMS Yeast Research,2008,8(4):531-539
    [155] Birol G, Doruker P, Kirdar B, et al. Mathematical description of ethanolfermentation by immobilised Saccharomyces cerevisiae[J]. Process Biochemistry.1998,33(7):763-771
    [156] Rungsardthong V, Wongvuttanakul N, Kongpien N, Chotiwaranon P.Application of fungal chitosan for clarification of apple juice [J]. Process Biochemistry,2006,41(3):589–593
    [157]蒋挺大.2001,壳聚糖[M].北京:化学工业出版社
    [158] Rwan J and Wu J. Deacidification of grapefruit juice with chitosan[J].FoodScience, Taiwan,1996,23:509-519
    [159]王鸿飞,李和生,黄晓春.壳聚糖对苹果汁澄清效果的研究[J].中国农业科学,2003,36(6):691-695
    [160] Venkata Mohan S. and Karthikeyan J. Removal of Lignin and Tannin Colorfrom Aqueous Soolution by Adsorption onto Activated Charcoal [J]. EnvironmentalPollution.1997,97(1-2):183-187
    [161] Gaden E L. Fermentation process kinetics[J]. Journal of Biochemical andMicrobiological Technology and Engineering,1959,1(4):413–429
    [162] Kademi A and Baratti J. Batch fermentation kinetics of ethanol production byZymomonas mobilis on cellulose hydrolyzate[J]. Biotechnology Letters,1996,18(6):643-648
    [163]刘喜娟,崔凤,杨章民,等.微波处理对苹果汁质量指标的影响[J].陕西师范大学学报:自然科学版,2008,(5):98-100
    [164]王华,管敬喜,杨莹.壳聚糖对桑椹汁澄清度及理化成分的影响[J].酿酒科技,2007,(3):22-24
    [165] Lee Y S, Lee W G, Chang Y K, et al. Modelling of ethanol production bySaccharomyces cerevisiae from a glucose and maltose mixture[J]. Biotechnology Letters,1995,17(8):791-796
    [166]唐振兴,石陆娥,钱俊青.壳聚糖凝胶吸附蛋白质机理研究[J].精细化工,2004,21(11):833-836
    [167] Giovanelli G, Peri C and Parravicini E. Kinetics of grape juice fermentationunder aerobic and anaerobic conditions [J]. American Journal of Enology and Viticulture,1996,47(4):429-434
    [168] Wang D, Xu Y, Hu J, et al. Fermentation Kinetics of Different Sugars by AppleWine Yeast Saccharomyces cerevisiae[J]. Journal of the Institute of Brewing,2004,110(4):340-346
    [169] Bisson L F. Stuck and sluggish fermentations[J]. American Journal of Enologyand Viticulture,1999,50(1):107–119
    [170] Stehlik-Tomas V, Grba S, Stanzer D, et al. Uptake of iron by yeast cells and itsimpact on biomass production [J]. Acta Alimentaria,2005,32(3):279-287
    [171] Gadd G M. Metals and microorganisms: a problem of definition [J]. FEMSMicrobiology Letters,1992,100(1-3):197-203
    [172] Azenha M,Vasconcelos M T, Moradas-Ferreira P. The influence of Cuconcentration on ethanolic fermentation by Saccharomyces cerevisiae[J]. Journal ofBioscience and Bioengineering,2000,90(2):163-167
    [173] Collins P J, Dobson A D. Regulation of laccase gene transcription in Trametesversicolor[J]. Applied and Environmental Microbiology,1997,63(9):3444-3450
    [174] Jones R P, Gadd G M. Ionic nutrition of yeast-physiological mechanismsinvolved and implications for biotechnology [J]. Enzyme and Microbial Technology,1990,12(6):402-418
    [175] Wright G D, Honek J F. Effects of iron bingding agents on Saccharomycescerevisiae growth and cytochrome P450content[J]. Canadian Journal of Microbiology,1989,35(10):945-950
    [176] Xue C, Zhao X, Yuan W, Bai F. Improving ethanol tolerance of aself-flocculating yeast by optimization of medium composition [J]. World Journal ofMicrobiology and Biotechnology,2008,24(10):2257-2261
    [177] Kulkarni M K, Kininge P T, Ghasghase N V, et al. Effect of additives onalcohol production and kinetic studies of S.Cerevisiae for sugar cane wine production [J].International Journal of Advanced Biotechnology and Research,2011,2(1):154-158
    [178] Jeppsson H, Yu S, Hahn-H gerdal B. Xylulose and glucose fermentation bySaccharomyces cerevisiae in chemostat culture[J]. Applied and EnvironmentalMicrobiology,1996,62(5):1705–1709
    [179] Arrizon J, Gschaedler A. Increasing fermentation efficiency at high sugarconcentrations by supplementing an additional source of nitrogen during the exponentialphase of the tequila fermentation process [J]. Canadian Journal of Microbiology,2002,48(11):965-970
    [180] Brich R M, Clani M, Walker G M. Magnesium Calcium and FermentativeMetabolism in Wine Yeasts [J]. Journal of Wine Research,2003,14(1):3-15
    [181] Tormen L, Chaves E S, Saint'Pierre T D, et al. Determination of trace elementsin fuel ethanol by ICP-MS using direct sample introduction by a microconcentricnebulizer [J]. Journal of Analytical Atomic Spectrometry,2008,23(9):1300-1304
    [182] Plackett R L, Burman J P. The design of optimum multi-factorialexperiments[J]. Biometrika,1946,33(4):305-325
    [183] Chauhan K, Trivedi U, Patel KC. Statistical screening of medium componentsby Plackett–Burman design for lactic acid production by Lactobacillus sp. KCP01usingdate juice[J]. Bioresource Technology,2007,98(1):98–103
    [184] Ratnam B V, Rao M N, Rao M D, et al. Optimization of fermentationconditions for the production of ethanol from sago starch using response surfacemethodology [J]. World Journal of Microbiology and Biotechnology,2003,19(5):523-526
    [185] Khuri A I, Cornell J A. Response surfaces: Design and analysis[M]. New York:Marcel Dekker,1987
    [186] Aoyama I, Akira K, Veliky IA. Effect of cobalt-magnesium interaction ongrowth of Saccharomyces cerevisiae[J]. Toxicity Accessment,1986,1(1):211-226
    [187] Veliky I, Stefanec J. Effect of cobalt on the multiplication of Saccharomycescerevisiae[J]. Naturwissenschaften,1964,51(21):518-51
    [188] Go¨ksungur Y and Zorlu N. Production of ethanol from beet molasses byCa-alginate immobilized yeast cells in a packed-bed bioreactor [J]. Turk J Biol.2001,25:265–275
    [189] Bvochora J M, Read J S, Zvauya R. Application of very high gravitytechnology to the cofermentation of sweet stem sorghum juice and sorghum grain[J].Industrial Crops and Products,2000,11(1):11–17
    [190] Casey G P, Ingledew W M. Ethanol tolerance in yeasts [J]. Critical Reviews inMicrobiology,1986,13(3):219-280
    [191] GB8276-2006食品添加剂糖化酶制剂[S]
    [192] GB8275-2009食品添加剂α-淀粉酶制剂[S]
    [193] GB/T5514-2008粮油检验粮食、油料中淀粉含量测定[S]
    [194] European Brewery Convention,1987. Free amino nitrogen. In: Analytica-EBC,4th ed. Brauerei-und Getranke-Rundschau, Zurich, pp. E141–E142
    [195] NY/T1600-2008水果、蔬菜及其制品中单宁含量的测定-分光光度法[S]
    [196] GB/T5009.7-2008食品中还原糖的测定[S]
    [197] Garcia H S, Malcata F X, Hill C G, et al. Use of Candidarugosa lipaseimmobilized in a spiral wound membrane reactor for the hydrolysis of milkfat[J]. Enzymeand Microbial Technology,1992,14(7):535–545
    [198] http://www.scuec.edu.cn/smkx/fjgc/syjx.html
    [199] Here L,房玉梅.连续培养时弯假丝酵母D对葡萄糖和木糖的同时利用[J].应用微生物,1989,(2):31-32
    [200] Akrida-Demertzi K, Koutinas A A. Optimization of sucrose ethanolfermentation for K,Na,Ca and Cu metal contents[J]. Applied Biochemistry andBiotechnology,1991,30(1):1-7
    [201] Verstrepen K J, Iserentant D, Malcorps P, et al. Glucose and sucrose:hazardous fast-food for industrial yeast?[J]. Trends in Biotechnology,2004,22(10):531-537
    [202]吕欣,李永飞,段作营,等.不同基质浓度对酒精发酵的影响[J].食品与发酵工业,2003,29(7):21-23
    [203] Lezinou V, Christakopoulos P, Li L W, et al. Study of a single and mixedculture for the direct bio-conversion of sorghum carbohydrates to ethanol [J]. AppliedMicrobiology and Biotechnology,1995,43(3):412-415
    [204] Phisalaphong M, Srirattana N, Tanthapanichakoon W. Mathematical modelingto investigate temperature effect on kinetic parameters of ethanol fermentation[J].Biochemical Engineering Journal,2006,28(1):36-43
    [205] zilgen M, Celik M, Bozo lu F. Kinetics of spontaneous wine production[J].Enzyme and Microbial Technology,1991,13(3):252-256
    [206] http://en.wikipedia.org/wiki/Free_Amino_Nitrogen
    [207] Jones A M, Ingledew W M. Fuel ethanol production: appraisal of nitrogenousyeast foods for very high gravity wheat mash fermentation[J].Process Biochemistry,1994,29(6):483-488
    [208] O’Connor-Cox E S, Paik J, Ingledew W M. Improved ethanol yields throughsupplementation with excess assimilable nitrogen[J]. Journal of Industrial Microbiology,1991,8(1):45-52
    [209] Wu X, Jampala B, Robbins A, et al. Ethanol fermentation performance of grainsorghums (sorghum bicolor) with modified endosperm matrices [J]. Journal ofAgricultural and Food Chemistry,2010,58(17):9556-9562
    [210] Lin Y. and Tanaka S. Ethanol fermentation from biomass resources: currentstate and prospects [J]. Applied Microbiology and Biotechnology,2006,69(6):627-642
    [211] Sipos B, Réczey J, Somorai Z, et al. Sweet sorghum as feedstock for ethanolproduction: Enzymatic Hydrolysis of Steam-Pretreated Bagasse [J]. Applied Biochemistryand Biotechnology,2009,153(1-3):151-162
    [212] Mais U, Esteghlalian A R, Saddler J N, et al. Enhancing the enzymatichydrolysis of cellulosic materials using simultaneous ball milling [J]. AppliedBiochemistry and Biotechnology,2002,98(1-9):815-832
    [213] Saha B C, Iten L B, Cotta M A, et al. Diluted acid pretreatment, enzymaticsaccharification and fermentation of wheat straw to ethanol [J]. Process Biochemistry,2005,40(12):3693-3700
    [214] Yamashita Y, Shono M, Sasaki C, et al. Alkaline peroxide pretreatment forefficient enzymatic saccharification of bamboo [J]. Carbohydrate Polymers,2010,79(4):914-920
    [215] Saha B C and Cotta M A. Ethanol Production from Alkaline peroxidePretreated Enzymatically Saccharified wheat straw [J]. Biotechnology Progress,2006,22(2):449-453
    [216] Beukes N and Pletschke B I. Effect of alkaline pre-treatment on enzymesynergy for efficient hemicellulose hydrolysis in sugarcane bagasse [J]. BioresourceTechnology,2011,102(8):5207-5213
    [217] Fan L T, Lee Y, Beardmore D H. Mechanism of the enzymatic hydrolysis ofcellulose: Effect of major structural feratures of cellulose on enzymatic hydrolysis [J].Biotechnology and Bioengineering,1980,22(1):177-199
    [218] Shen F, Saddler J N, Liu R, et al. Evaluation of steam pretreatment on sweetsorghum bagasse for enzymatic hydrohysis and bioethanol production. CarbohydratePolymers,2011,86(4):1542-1548
    [219] Dien B S, Li X L, Iten L B, et al. Enzymatic saccharification of hot-waterpretreated corn fiber production of monosaccharides [J]. Enzyme and MicrobialTechnology,2006,39(5):1137-1144
    [220] Sreenath H K, Koegel R G, Moldes A B, et al. Enzymic saccharification ofalfalfa fiber after liquid hot water pretreatment [J]. Process Biochemistry,1999,35(1-2):33-41
    [221] Mishima D, Tateda M, Ike M, et al. Comparative study on chemicalpretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used inwater purification processes [J]. Bioresource Technology,2006,97(16):2166-2172
    [222] Wu L, Arakane M, Ike M, et al. Low temperature alkali pretreatment forimproving enzymatic digestibility of sweet sorghum bagasse for ethanol production[J].Bioresource Technology,2011,102(7):4793-4799
    [223] Van Soest P J. Use of detergents in the analysis of fibrous feeds.Ⅱ.A rapidmethod for the determination of fiber and lignin [J]. Journal of the Association of OfficialAnalytical Chemists,1963,46:829-835
    [224] Cara C, Moya M, Ballesteros I, et al. Influence of solid loading on enzymatichydrolysis of steam exploded or liquid hot water pretreated olive tree biomass [J]. ProcessBiochemistry,2007,42(6):1003-1009
    [225] Kumar P, Barrett D M, Delwiche M J, et al. Methods for pretreatment oflignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production [J].Electrochemical, Radiational, and Thermal Energy Technology,2009,48(8):3713-3729
    [226] Zhu S, Wu Y, Yu Z, et al. Pretreatment by microwave/alkali of rice straw andits enzymic hydrolysis [J]. Process Biochemistry,2005,40(9):3082-3086
    [227] Millet M A, Baker A J, Scatter L D. Physical and chemical pretreatments forenhancing cellulose saccharification [J]. Biotechnology&Bioengineering Symposium,1976,(6):125-153
    [228] Hendriks A T W M, Zeeman G. Pretreatments to enhance the digestibility oflignocellulosic biomass [J]. Bioresource Technology,2009,100(1):10-18
    [229] Mirahmadi K, Kabir M M, et al. Alkaline pretreatment of spruce and birch toimprove bioethanol and biogas production [J]. Bioresources,2010,5(2):928-938
    [230] Yu Q, Zhuang X,Yuan Z, et al. Two-step liquid hot water pretreatment ofEucalyptus grandis to enhance sugar revpvery and enzymatic digestibility of cellulose [J].Bioresource Technology,2010,101(13):4895-4899
    [231] Oh S Y, Yoo D L, Kim H C, et al. Crystalline structure analysis of cellulosetreated with sodium hydroxide and carbon dioxide by means of X-ray diffraction andFTIR spectroscopy [J]. Carbohydrate Research,2005,340(15):2376-2391
    [232] Cao Y, Tan H. Structural characterization of cellulose with enzymatictreatment [J]. Journal of Molecular Structure,2004,705(1-3):189-193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700