用户名: 密码: 验证码:
氮化硼纳米结构的制备和性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化硼(BN)是由ⅢA族元素B和VA族元素N化合而成的共价半导体材料,晶态氮化硼可分为以下四种:六方氮化硼(h-BN)、立方氮化硼(c-BN)、菱方氮化硼(r-BN)和纤锌矿氮化硼(w-BN)。其中h-BN与石墨结构相似,因此它们具有相似的物理化学性质,如良好的润滑性、高强度、高热导率等。与石墨不同的是,六方氮化硼的带隙能量(Eg)在3.6~7.2eV之间,在氧化气氛中的热稳定性可达900℃,可用于制作高温、高压、绝缘、散热部件,广泛用于化工、机械、电子以及航空航天等高科技领域。
     随着人类对材料研究的不断深入,纳米材料表现出的优良性能引起了学术界的普遍关注,有关BN纳米材料的理论研究和制备技术也得到了大力发展。目前,BN纳米材料的制备存在合成条件苛刻、产量小、纯度低、成本高等问题,严重限制了BN纳米材料的性能研究和实际应用。寻找宏量、结构可控、纯度高以及结晶好的BN纳米材料合成工艺是目前亟待解决的问题。本论文通过改进化学气相沉积法和固相反应法成功制备了产量大、纯度高的BN纳米管、BN微纳米复合结构,并初步研究了相关产物的热性能和发光性能。另外,对这几种BN纳米结构的生长机理进行了详细的探讨,结合晶体生长的基本理论,提出了生长机制。主要内容有:
     1.以无定形硼(B)粉和三氧化二铁(Fe203)为原料,在氨气气氛、1300℃下,通过化学气相沉积(chemical-vapor-deposition, CVD)法在不锈钢基片上成功合成高纯度的BN纳米管。所得纳米管的直径在40-100nm之间,长度可达200μm以上。系统研究了Fe203用量对BN纳米管产量和结构的影响。研究表明,当Fe203用量较少时,纳米管产量较低,但纯度较大,几乎没有颗粒团簇存在,管壁和管腔内的B-O-Si-Mn夹杂物较少;当Fe203用量较多时,纳米管产量较高,但纯度降低,颗粒团簇明显增多,管壁和管内B-O-Si-Mn夹杂物也随之增多。反应温度对BN纳米管的形貌和产量也有重要的影响。当反应温度较低时,纳米管的产量较低,主要形貌为竹节状;当反应温度较高时,纳米管的产量明显增加,主要形貌为圆柱状。除此之外,不同气氛对BN纳米管的制备也有一定的影响。纳米管的生长可归结为气-液-固(vapor-liquid-solid, VLS)生长机理。
     2.提出一种气态氧化物(水蒸气(H20)或氧气(O2))辅助CVD制备BN纳米管的新方法。以无定形B硼粉为硼源,氨气为氮源,水蒸气为辅助氧化物(或氧气),在1300℃下,通过化学气相沉积法在不锈钢基片上成功合成了高纯度的BN纳米管。与固态氧化物辅助CVD法相比,气态氧化物辅助法可在反应过程中持续补充氧化物,使反应连续不断的进行,大大提高了纳米管的产率。与固态金属氧化物辅助CVD法相似,水蒸气流量对纳米管的形态、产量及纯度均有重要影响。BN纳米管的生长可由氧化物辅助生长机理和VLS机理解释。制备的BN纳米管在443、512和703nin处出现三个显著的光致发光峰,这说明BN纳米管是一种潜在的发光材料。
     3.利用固相反应法合成BN纳米管。通过B-C-Fe催化剂物料体系制备BN纳米管,分别考察了单质Fe、Fe2O3、和Fe(NO3)3·9H2O充当催化剂对合成BN纳米管的影响。催化效果为:Fe     4.将B-C混合粉料在催化剂的乙醇溶液中均匀搅拌,得到湿混料,将湿混料高温处理后成功合成大量的BN纳米管。研究表明,与固相混合相比,溶剂分散法极大的提高了催化剂的分散效果,有效的防止粉料团聚,显著的提高纳米管的产量。改变反应参数,如反应温度、反应时间、气体流速等,确定了最佳的合成工艺:B:C:Fe(NO3)3·9H2O摩尔比为1:1:0.05、反应温度为1300℃、氨气流速为50sccm、保温时间为5h。不同铁盐充当催化剂对合成纳米管的影响较小,实验表明,可溶性铁盐具有较好的催化效果:Fe(NO3)3·9H2O≈FeCl3·6H2O≈FeCl2·4H2O>=Fe2(SO4)3·9H2O。BN纳米管的生长可归结为VLS和固-液-固(solid-liquid-solid, SLS)机制。
     5.利用固相反应法,将原料B-Fe(NO3)3·9H2O体系物料在乙醇溶剂中均匀分散,得到湿混料,高温处理后成功合成BN微纳米复合结构-BN纳米片修饰的微米空心球。实验表明,温度对微纳米复合结构的形貌、产量有强烈的影响。1100℃时,得到表面光滑的BN空心球,且产量较小;1300℃时,得到表面具有纳米片修饰的BN空心球且产量较大,热重分析显示其抗氧化能力高达900℃。光滑空心球的形成可归结为VLS生长机制;表面具有纳米片修饰的空心球的形成可归结为VLS和气-固(vapor-solid, VS)生长机制。
     6.合成一种新型BN微纳米复合结构的微米线。将原料B-FeCl3·6H2O在乙醇溶剂中均匀分散,得到湿混料,高温处理后得到大量BN微纳米复合结构的微米线。微米线的直径为3~4μm,长度可达100μm以上;微米线表面布满纳米薄片,纳米片厚度在2-5nm之间,长度可达600nm。这种片状突起,能够大幅增加BN微米线的比表面积,有望成为一种高效的催化剂载体或者高效的储能材料。
Boron nitride (BN) is a covalent semiconductor material which is composed of group IIIA of boron and VA of nitrogen. Crystalline BN has four variants:hexagonal boron nitride (h-BN), rhombohedral boron nitride (r-BN), cubic boron nitride (c-BN) and wurtzite boron nitride (w-BN). As h-BN has a similar structure with graphite, they have very similar excellent physical and chemical properties such as good lubricity, high strength and high heat conductivity, etc. But, unlike graphite, the band gap energy (Eg) of h-BN is widely dispersed in the range from3.6to7.1eV and can be doped for both n-and p-type conductivity. Moreover,h-BN can stay up to900℃in oxidizing atmosphere, which can be used for high temperature, high pressure, insulation, cooling parts, etc. These make h-BN an interesting material for many applications such as chemical industry, machinery, electronics, aerospace and other high-tech fields.
     Along with the further understanding of the materials, the nanomaterials with good performances increasingly become the research focus. Therefore, both theoretical research and preparation technology of BN nanomaterials are rapidly developed. Unfortunately, few reliable methods were reported to produce bulk amounts of BN nanomaterials. The current synthetic methods are usually high cost and low purity and need extreme condition and complicated equipments, which seriously limit the study of their properties and the potential applications. Therefore, it is of great significance to explore simple and efficient routes to synthesize high purity, well crystallized BN nanomaterials with uniform structure in large scales.
     In this dissertation, we successfully prepared BN nanotubes, nanoflake-decorated BN hollow microspheres and nanoflake-decorated BN microwires with high purity and bulk production by improved chemical vapor deposition (CVD) method and solid-state reaction method. The thermal performance and luminescent properties of the related products were preliminary studied. The growth mechanism of these BN nanostructures were studied in detail based on the crystal growth theory. The main contents include:
     1. High purity BN nanotubes were synthesized on stainless-steel substrates through CVD method using amorphous B and iron oxide (Fe2O3) as raw materials at1300℃in ammonia atmosphere. The nanotubes have diameters of40-100nm and lengths of more than200μm. The nanotubes are usually decorated with O-Si-Mn species embedded in the walls or filled within cavities. The influence of Fe2O3on the structure and formation of BN nanotubes were studied systematically. In the case of low Fe2O3addition, the yield of BN nanotubes is low but with relatively high purity. There are nearly no B-N-O-Si-Mn particles in the product and less inclusion of O-Si-Mn species into the growing BN nanotubes. Whereas, in the case of high Fe2O3addition, the reaction between B and Fe2O3could generate more B2O2vapor at a fast rate within a short time, which led to the inclusion of more O-Si-Mn species into the growing BN nanotubes and finally resulted in the formation of BN nanotubes with high yield but more B-N-O-Si-Mn particles in the product. The reaction temperature has great influence on the morphologies and production of BN nanotubes. Lower temperature is favorable for the formation of bamboo-like nanotubes, while higher temperature enhaces the formation of quasi-cylindrical nanotubes and and the yield of nanotubes increases. In addition, the reaction atmosphere also has effect on the formation of BN nanotubes. The growth mechanism of the nanotubes was governed by vapor-liquid-solid (VLS) model.
     2. A new CVD method for synthesizing BN nanotubes was developed, which was assisted with gaseous oxides or oxygen. High purity BN nanotubes were deposited on the surface of stainless-steel substrates by using B powder, ammonia gas and water vapor as the starting materials. It was found that the replacement of metal oxide by water vapor could continuously generate intermediate B2O2vapor and enhance the production of the BN nanotubes. Moreover, the yield and purity of the BN nanotubes could be controlled through the tuning of water vapor amount in this new method. The formation of the BN nanotubes followed a combination of oxide-assisted VLS method. The photoluminescence spectra of the obtained BN nanotubes show three main emission bands centered at443,512and703nm, suggesting that BN nanotubes have excellent luminescent properties and could be a kind of potential luminescent materials.
     3. BN nanotubes were fabricated by solid state reaction method using B powder, carbon powder and iron-based catalyst as raw materials. The catalytic performance of Fe, Fe2O3and Fe(NO3)3·9H2O for the synthesis of BN naotubes was studied. The catalytic efficiency order is:Fe     4. Mixed B-C powder was added into the alcohol solution containing Fe(NO3)3and kept stirring to obtain the wet mixed materials. After annealed at high temperature, a lot of BN nanotubes were obtained. The dispersion behavior of catalyst was greatly improved by solvent dispersion compared with the solid mixed method, which effectively avoided the agglomeration behavior of particles. The effects of the quantity of catalyst, reaction temperature and reaction time on the formation of BN nanotubes were studied and the optimum reaction conditions were obtained:B:C:Fe(NO3)3·9H2O=1:1:0.05(molar ratio), T=1300℃, t=5h, flow ratio of ammonia=50sccm. Different molysite catalysts have similar effect on the formation of the BN nanotubes and they have similar catalytic efficiency order:Fe(NO3)3-9H2O≈FeCl3·6H2O≈FeCl2·4H2O>=Fe2(SO4)3·9H2O. The growth mechanism of the nanotubes is governed by a combination of VLS and solid-liquid-solid (SLS) model.
     5. BN hollow microspheres were fabricated by solid state reaction method using B powder and Fe(NO3)3·9H2O which were mixed in ethanol solution. The reaction temperature has a great influence on the yield and morphology of BN hollow microspheres. It was found that smooth BN hollow microspheres with low yield were formed at a relatively low temperature (1100℃) and the nanoflake-decorated hollow microspheres with high yield were formed at high temperature (1300℃). The BN composite structure exhibits excellent anti-oxidation performance up to900℃. VLS and vapor-solid (VS) mechanisms were suggested to be responsible for the growth of microspheres and nanoflakes, respectively.
     6. A novel BN composite structure composed of nanoflake-decorated microwires were fabricated by solid state reaction method using B powder and FeCl3·6H2O which were mixed in ethanol solution. The microwires have diameters of3-4μm and the lengths of more than100μm, while the nanoflakes have thickness of2-5nm and lengths up to600nm. The nanoflakes can greatly increase the specific surface area of the BN microwires and would be a novel and effective catalyst supporting material and energy storage material.
引文
[1]陈翌庆,石瑛,黄伯云.纳米材料学基础[M].长沙:中南大学出版社,2009:3
    [2]顾宁,付德刚,张海黔.纳米技术与应用[M].北京:人民邮电出版社,2002:16-18
    [3]张全勤,张继文.纳米技术新进展[M].北京:国防工业出版社,2005:90-100
    [4]刘吉平,廖丽玲.无机纳米材料[M].北京:科学出版社,2003:22-30
    [5]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(7):56-58
    [6]Kroto H W, Heath S C, O'Brien J R, et al. C60:Buckyminister-fullerene [J]. Nature,1985, 318(14):162-163
    [7]Kratschmer W, Lamb L D, Fostirpoulos K, et al. Solid C6o:a new form of carbon [J]. Nature,1990,347(27):354-358
    [8]Dresselhaus M S, Avouris p. Introduction to carbon materials research [J]. Carbon Nanotubes,2001(80):1-9
    [9]朱宏伟,吴德海,徐才录.碳纳米管[M].北京:机械工业出版社,2003:10-130
    [10]张俊宝,雷廷权,温广武,等.先驱体法合成氮化硼研究进展[J].材料科学与工艺,2000,8(2):1-6
    [11]Robert T P, Chaitanya K N. Synthetic routes to boron nitride [J]. Chemical Reviews, 1990(90):73-91
    [12]顾立德.新兴无机非金属材料-氮化硼陶瓷[M].北京:中国建筑工业出版社,1982:1-14
    [13]王零森,黄培云.特种陶瓷[M].北京:中国工业大学出版社,1994,189-193
    [14]Blase X, Rubio A, Louie SG, et al. Stability and band gap constancy of boron nitride nanotubes [J]. Europhysic Letters,1994(28):335-340
    [15]Rubio A, Corkill JL, Cohen ML, et al. Theory of graphitic boron nitride nanotubes [J]. Physical Review B,1994(49):5081-5084
    [16]Hernandez E, Goze C, Rubio A. Elastic properties of C and B^CyNz composite nanotubes [J]. Physical Review Letters,1998(80):4502-4505
    [17]Kudin KN, Scuseria GE, Yakobson BI. C2F, BN, C nanoshell elasticity from ab initio computations [J]. Physical Review B,2001(64):235406(10pp)
    [18]Chopra NG, Zettle A. Measurement of the elastic modulus of multi-wall boron nitride nanotubes [J]. Solid State Communications,1998(105):297-300
    [19]Suryavanshi AP, Yu MF, Wen J, et al. Elastic modules and resonance behavior of boron nitride nanotubes [J]. Applied Physics Letters,2004(84):2527-2529
    [20]Ghassemi HM, Yassar RS. On the mechanical behavior of boron nitride nanotubes [J]. Applied Mechanics Reviews,2010(63):020804 (7pp)
    [21]Golberg D, Bai XD, Mitome M, et al. Strucutral peculiarities of in situ deformation of a multi-walled BN nanotube inside a high-resolution analytical transmission electron microscope [J]:Acta Materialia,2007(55):1293-1298
    [22]Golberg D, Costa PMFJ, Lourie O, et al. Direct force measurements and kinking under elastic deformation of individual mutiwalled boron nitride nanotubes [J]. Nano Letters, 2007(7):2146-2151
    [23]Wei X, Wang MS, Bando Y, et al. Tensile tests on individual muti-walled boron nitride nanotubes [J]. Advanced Materials,2010(22):4895-4899
    [24]Bettinger HF, Dumitrical T, Scuseria GE, et al. Mechanically induced defects and strength of BN nanotubes [J]. Physical Review B,2002(65):041406(4pp)
    [25]Dumitrica T, Betting HF, Sucuseria GE, et al. Thermodynamics of yield in boron nitride nanotubes [J]. Physical Review B,2003(68):085412(8pp)
    [26]Song J, Jiang H, Wu J, et al. Stone-wale transformation in boron nitride nanotubes [J]. Scripta Materialia,2007(57):571-574
    [27]Zhi CY, Bando Y, Tang CC, et al. Characteristics of boron nitride nanotube-polyaniline composites [J]. Angewandte Chemie International Edition,2005(44):7928-7932
    [28]Zhi CY, Bando Y, Tang CC. Boron nitride nanotube/polystyrene composites [J]. Journal of Materials Research,2006(21):2794-2800
    [29]Bansal NP, Hurst JB, Choi SR. Boron nitride nanotubes-reinforced galss composites [J]. Journal of American Ceramic Society,2006(89):388-390
    [30]Huang Q, Bando Y, Xu X, et al. Enhancing superlasticity of engineering ceramics by introducing BN nanotubes [J]. Nanotechnology,2007(18):485706(7pp)
    [31]Choi SR, Bansal NP, Garg A. Mechanical and microstructural characterization of boron nitride nanotubes-reinforced SOFC seal glass composite [J]. Materials Science and Engineering:A,2007(460-461):509-515
    [32]Lahiri D, Rouzaud F, Richard T, et al. Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite:mechanical properties and cytocompatibility with osteoblastes and macrophages in vitro [J]. Acta Biomaterialia, 2010(6):3524-3533
    [33]Yue CG, Liu WW, Zhang L, et al. Fracture toughess and toughening mechanisms in a (ZrB2-SiC) composite reinforced with boron nitride nanotubes and boron nitride nanoplatelets [J]. Scritpta Materialia,2013(68) 579-582
    [34]Lahiri D, Singh V, Benaduces AP, et al. Boron nitride nanotubes reinforced hydroxyapatite composite:Mechanical and tribological performance and in-vitro biocompatibility to osteoblasts [J]. Journal of the Mechanical Behavior of Biomedical Materials,2011(4):44-56
    [35]Dolberg D, Bando Y, Kurashima K, et al. Synthesis and characterization of ropes made of BN mutiwalled nanotubes [J]. Scripta Materialia,2001(44):1561-1565
    [36]Chen Y, Zou J, Campbell SJ, et al. Boron nitride nanotubes:Pronounced resistance to oxidation [J]. Applied Physics Letters,2004(84):2430-2432
    [37]Golber D, Bando Y, Tang CC, et al. Boron nitride nanotubes [J]. Advanced Materials, 2007(19):2413-2432
    [38]Zobelli A, Ewels CP, Gloter A, et al. Vacancy migration in hexagonal boron nitride [J]. Physical Review B,2007(75):094104(7)
    [39]Xu Z, Golberg D, Bando Y, et al. In situ TEM-STM recorded kinetics of boron nitride nanotubes failure under current flow.2009(9):2251-2254
    [40]Arenal R, Blase X, Loiseau A. Boron-nitride and boron-carbonitride nanotubes:synthesis, characterization and theory [J]. Advances in Physics,2010(59):101-179
    [41]Tsang SC, Harris PJF, Green MLH. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide [J]. Nature,1993(362):520
    [42]Ajayan PM, Ebbesen TW, Ichihashi T, et al. Opening carbon nanotubes with oxygen and implication for filling [J]. Nature,1993(362):522
    [43]Han WQ, Zettl A. GaN nanorods coated with pure BN [J]. Applied Physical Letters, 2002(81):5051-5053
    [44]Jang WS, Kim SY, Lee JY, et al. Triangular GaN-BN core-shell nanocables:Synthesis and field emission [J]. Chemical Physics Letters,2006(422):41-45
    [45]Yin LW, Bando Y, Zhu YC, et al. A two-stage route to coaxial-aluminum-nitride-boron-nitride composite nanotubes [J]. Advanced Materials, 2004(16):929-933
    [46]Boinovich LB, Emelyanenko, AM, Pashinin AS, et al. Orignins of thermodynamically stable superhydrophobictiy of boron nitride nanotubes coatings [J]. Langmuir,2012(28): 1206-1216
    [47]Mickelson W, Aloni S, Han WQ, et al. Packing C6o in boron nitride nanotubes [J]. Science,2003(300):467-469
    [48]Han W, Redlich P, Ernst F, Ruhle M. Synthesizing boron nitride nanotubes filled with SiC nanowires by using carbon nanotubes as templates [J]. Applied Physical Letters, 1999(75):1875
    [49]Bando Y, Ogawa K, Golberg D. et al. Insulating 'nanocables':Invar Fe-Ni alloy nanorods inside BN nanotubes [J]. Chemical Physics Letters.2001(347):349-354
    [50]Golberg D, Xu FF, Bando Y. et al. Filling boron nitride nanotubes with metals [J]. Applied Physics A,2003(76):479-485
    [51]Xiao Y, Yan XH, Cao JX, et al. Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes [J]. Physics Review B,2004(69):205415(5pp)
    [52]Berber S, Kwon YK, Tomanek D, et al. Unusually high thermal conductivity of carbon nanotubes [J]. Physical Review Letters,2000(84):4613
    [53]Chang CW, Okawa D, Garcia H, et al. Breakdown of Fourier's law in nanotube thermal conductors [J]. Physical Review Letters,2008(101):0759039(4pp)
    [54]Xiao Y, Yan XH, Xiang J. Specific heat of single-walled boron nitride nanotubes [J]. Applied Physics Letters,2004(84):4626
    [55]Stewart DA, Savic I, Mingo N. First-principles calculation of the isotope effect on boron nitride nanotube thermal conductivity [J]. Nano Letters,2009(9):81-84
    [56]Chang CW, Fenninore AM, Afanasiev A, et al. Isotope effect on the thermal conductivity of boron nitride nanotubes [J]. Physical Review Letters,2006(97):085901(4pp)
    [57]Huang Q, Bando Y, Sandanayaka A, et al. Photoinduced charge injection and bandgap-engineeing of high-specific-surface-area BN nanotubes using a Zinc phthalocyanine monolayer [J]. Small 2007(3):1330-1335
    [58]Zhi CY, Bando Y, Terao T, et al. Towards thermoconductive, electrically insulating polymeric composite with boron nitride nanotubes fillers [J]. Functional Materials 2009(19):1857-1862
    [59]Terao T, Zhi CY, Bando Y, et al. Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement [J]. The Journal of Physical Chemistry C,2010(114):4340-4344
    [60]Terao T, Bando Y, Mitome M, et al. Thermal conductivity improvement of polymer films by catechin-modified boron nitride nanotubes [J]. Journal of Physical Chemistry C, 2009(113):13605-13609
    [61]Rubio A, Corkill JL, Cohen M. Theory of graphitic boron nitride nanotubes [J]. Physical Review B,1994(49):5081-5084
    [62]Blase X, Rubio A, Louie SG, et al Stability and band gap constancy of boron nitride nanotubes [J]. Europhysics Letters,1994(28):335-340
    [63]Fuentes GG, Borowiak-Palen E, Pichler T, et al. Electronic structure of multiwall boron nitride nanotubes [J]. Physical Review B,2003(67):035429(6pp)
    [64]Okada S, Saito S, Oshiyama A. Electronic and geometric structures of mliti-walled BN nanotubes [J]. Physica B,2002(323):224-226
    [65]Kim YH, Chang KJ, Louie SG. Electronic structure of radially deformed BN and BC3 nanotubes [J]. Physical Review B,2001(63):205408
    [66]Ju SP, Wang YC, Lien TW et al. Tuning the electronic properties of boron nitride nanotube by mechanical uni-axial deformation:a DFT study [J]. Nanoscal Research Letters,2011(6):160(11pp)
    [67]Jia JF, Wu HS, Jiao HJ. The structure and electronic property of BN nanotube [J]. Phys B 2006(381):90-95
    [68]Chen CW, Lee MH, Clark SJ. Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field [J]. Nanotechnology, 2004(15):1837-1843
    [69]Esfaejani K, Farajian AA, Hashi Y, et al. Electronic and transport properties of N-P doped nanotubes [J]. Applied Physics Letters,1999(74):79-81
    [70]Cumings J, Zettl A. In electronic properties of molecular nanostructures. AIP Conf. Pro. Series, American Insitute of Physics, New York,2001:577
    [71]Dorozhkin P, Golberg D, Bando Y, et al. Field emission from individual B-C-N nanotube rope [J]. Applied Physics Letters,2002(81):1083
    [72]Golberg D, Dorozhkin P, Bando Y, et al. Synthesis, analysis and electrical property measurements of compounds nanotubes in the ceramic B-C-N system. MRS Bull [J]. 2004(29):38-42
    [73]Shelimov KB, Moskovits M. Composite nanostructures based on template-grown boron nitride nanotulbs [J]. Chemistry of Materials,2000(12):250-254
    [74]Wang W, Bando Y, Zhi C, et al. Aqueous noncovalent functionalization and controlled near-surface carbon doping of mutiwalled boron nitride nanotubes [J]. Journal of the American Chemistry Society,2008(130):8144-8145
    [75]Golberg D, Bando Y, Kurashima K, et al. Synthesis, HRTEM and electron diffraction studies of B/N-doped, C and BN nanotubes [J]. Diamond and Related Materials, 2001(10):63-67
    [76]Sen R, Satishkumar BC, Govidaraj A et al. B-C-N, C-N and B-N nanotubes produced by the pyrolysis of Precursor molecules over Co catalysts [J]. Chemical Physics Letters, 1998(287):671-676
    [77]Zhang Y, Gu H, Suenaga K, et al. Heterogeneous growth of B-C-N nanotubes by laser ablation [J]. Chemical Physics Letters,1997(279):264-269
    [78]Dolberg D, Dornzhkin PS, Bando Y, et al. Cables of BN-insulated B-C-N nanotubes [J]. Applied Physics Letters,2003(82):1275-1277
    [79]Luo LJ, Mo LB, Tong ZF, et al. Facile synthesis of ternary boron carbonitride nanotbues [J]. Nanoscale Research Letters,2009(4):834-838
    [80]Mo LB, Chen YJ, Luo LJ. Solid-state reaction synthesis of boron carbonitride nanotubes [J]. Applied Physics A,2010(100):129-134
    [81]Bai XD, Golber D, Bando Y, et al. Deformation-driven electrical transport of individual boron nitride nanotubes [J]. Nano letters,2007(7):632-637
    [82]Zhi C, Bando Y, Tang CC, et al. Boron nitride nanotubes:functionalization and composites [J]. Journal of Materials Chemistry,2008(18):3900-3908
    [83]Zhi CY, Bando Y, Tang CC, et al. Covalent functionalization:towards soluble mutiwalled boron nitride nantubes [J]. Angewandte Chemie-International Edition,2005(44): 7932-7935
    [84]Zhi CY, Bando Y, Tang C, et al. Grafting boron nitride nanotubes:from polymers to amorohous and graphite [J]. Journal of Physical Chemistry C,2007(111):1230-1233
    [85]Ikuno T, Sainsbury T, Okawa D, et al. Amine-founctionalized boron nitride nanotubes [J]. Solid State Communications,2007(142):643-646
    [86]Xie SY, Wang W, Fernanod KAS, et al. Solubilization of boron nitride nanotubes [J]. Chemical Communications 2005(29):3670-3672
    [87]Sainsbury T, Ikuno T, Okawa, et al. Self-assembly of gold nanoparticles at the surface of amine-and thio-founctionalized boron nitride nanotbues [J]. Journal of Physical Chemistry C 2007(111):12992-12999
    [88]Huang Q, Bando Y, Zhi C, et al Chemical peeling and branching of boron nitride nanotubes in dimethyl sulfoxide [J]. Angewandte Chemie-International Edition, 2006(45):2044-2047
    [89]Zhi CY, Bando Y, Terao T, et al. Chemically activated boron nitride nanotubes [J]. Chemistry-An Asian Journal,2009(4):1536-1540
    [90]Zhi CY, Bando Y, Tang CC, et al. Perfectly dissolved boron nitride nanotubes due to polymer wrapping [J]. Journal of the American Chemistry Society,2005(127): 15996-15997
    [91]Zhi CY, Bando Y, Wang W, et al. DNA-mediated assembly of boron nitride nanotubes [J]. Chemsitry-An-Asian Journal,2007(2):1581-1585
    [92]Zhi CY, Bando Y, Tang CC, et al. Purification of boron nitride nanotubes through polymer wrapping [J]. Journal of Physical Chemistry B,2006(110):1525-1528
    [93]Ciofani G, Raffa V, Menciassi A, et al. Folate functionalized boron nitride nanotubes and their selective uptake by glioblastoma multiforme cells:implications for their use as boron carries in clinical boron neutron capture therapy [J]. Nanoscale Research Letters, 2009(4):113-121
    [94]Yu J, Chen Y, Cheng BM. Dispersion of boron nitride nanotubes in aqueous solutions with the help of ionic surfactants [J]. Solid State Communications,2009(149):763-766
    [95]Chen X, Wu P, Rousseas, et al. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cell [J]. Journal of the American Chemical Socity,2009(131):890-891
    [96]Guo CS, Fan WJ, Zhang RQ, et al. Diameter-dependent spin polarization of injected carrier in carbon-doped zigzag boron nitride nanotubes [J]. Applied Physics Letters, 2006(89):123103(3pp)
    [97]He KH, Zheng G, Chen G et al. The electronic structure and ferromagnetism of TM (TM=V, Cr, and Mn)-doped BN(5,5) nanotube:A first-principles study [J]. Physica B 2008(403):4213
    [98]He KH, Zhang G, Chen G, et al. First principles study of the electronic structure and ferromagnetism of the v-doped BN(5,5) nanotube [J]. Modern Physics Letters B, 2008(22):1749
    [99]Wu BJ, Zhang WY. Magnetism in germanium-doped boron-nitride nanotubes [J]. Chemical Physics Letters,2008(457):169-173
    [100]Wu BJ, Zhang WY. Tuning the magnetic and transport properties of boron-nitride nanotubes via oxygen-doping [J]. Solid State Communications,2009(149):486-490
    [101]Rahman G, Hong SC. Possible magnetism of Be-doped boron nitride nanotubes [J. Journal of nanoscience and nanotechnology,2008(8):4711-4713
    [102]Li F, Zhu ZH, Zhao MW, et al. Ab initio calculations on the magnetic properties of hydrogenated boron nitride nanotubes [J].The Journal of Physical Chemistry C, 2008(112):16231-16235
    [103]Li F, Zhu ZG, Yao XD, et al. Fluorination-induced magnetism in boron nitride nanotubes from ab initio calculations [J]. Applied Physics Letters,2008(92): 102515(3pp)
    [104]Wu RQ, Liu L, Peng Gw, et al. Magnetism in BN nanotubes induced by carbon doping [J]. Applied Physics Letters,2005(86):122510(3pp)
    [105]Kang HS. Theoretical study of boron nitride nanotubes with defects in nitrogen-rich synthesis [J]. Journal of Physical Chemistry B,2006(110):4621-4628
    [106]Chen H, Chen Y, Li CP, et al. Eu-doped boron nitride nantubes as nanometer-sized visible-light source [J]. Advanced Materials,2007(19):1845-1848
    [107]Chen H, Chen Y, Liu Y, et al. Rare-earth doped boron nitride nanotubes [J]. Materials Science and Enginerring B,2008(146):189-192
    [108]Tang CC, Bando Y, Huang Y, et al. Fluorination and electrical conductivity of BN nanotubes [J]. Journal of the American Chemical Socitety,2005(127):6552-6553
    [109]Xu S, Fan Y, Luo J, et al. Phonon characteristics and photoluminescen of bamboo structured silicon-doped boron nitride multiwall nanotubes [J]. Applied Physics Letters, 2007(90):013115(3pp)
    [110]Cho YJ, Kim CH, Kim HS, et al. Electronic structure of si-doped BN nanotubes using X-ray photoelectron spectroscopy and first-principles calculation [J]. Chemistry of Materials,2009(21):136-143
    [111]Chen ZG, Zou J, Liu Q, et al. Self-assembly and cathodoluminescence of microbelts from Cu-doped boron nitride nanotubes [J]. ACS Nano,2008(2):1523-1532
    [112]Mpourmpakis G, Froudakis GE. Why boron nitride nanotubes are preferable to carbon nanotubes for hydrogen storage?:An ab initio theoretical study [J]. Catalysis Today, 2007(120):341
    [113]Zhou Z, Zhao JJ, Chen ZF, et al. Comparative study of hydrogen adsorption on carbon and BN nanotubes [J]. Journal of Physical Chemistry B,2006(110):13363-13369
    [114]Ma R, Bando Y, Zhu H, et al. Hydrogen uptake in boron nitride nanotubes at room temperature [J]. Journal of American Chemical Society,2002(124):7672
    [115]Tang CC, Bando Y, Ding XX, et al. Catalyst collapse and enhanced hydrogen storage of BN nanotubes [J]. Journal of the American Chemical Society,2002(124):14550
    [116]Chen X, Gao XP, Zhang H, et al. Preparation and electrochemical hydrogen storage of boron nitride nanotubes [J]. The Journal of Physiccal Chemistry B,2005(109): 11525-11529
    [117]Li F, Xia YY, Zhao MW, et al. Theoretical study of hydrogen atom adsorbed on carbon-doped BN nanotubes [J]. Physics Letters A,2006(357):369
    [118]Golberg D, Bando Y, Huang Y, et al. Boron nitride nanotubes and nanosheets [J]. ACS Nano,2010(4):2979-2993
    [119]Terrons M, Romo-Herrera JM, Cruz-silva E, er al. Pure and doped boron nitride nanotubes [J]. Materials Today,2007(10):30-38
    [120]Loiseau A, Willaime F, Demoncy N, et al. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge [J]. Physics Review Letters,1996(76): 4737
    [121]Yahachi S, Masatomo M, Takehisa M. Square, pentagon, and heptagon riongs at BN nanotube tips [J]. Journal of Physical Chemistry,1999(103):1291
    [122]Bengu E, Marks LD. Single-walled BN nanostructures [J]. Physical Review Letters, 2001(86):2385-2387
    [123]Bartnitskaya TS, Oleinik GS, Pokropivnyi AV, et al. Synthesis, structure, and formation mechanism of boron nitride nanotubes [J]. Journal of Experimental and Theoretical Physics Letters,1999(69):163-168
    [124]Menon M, Srivastava D. Structure of boron nitide nanotube:tube closing versus chirality [J]. Chemical Physics Letters,1999(307):407-421
    [125]Fowler PW, Rogers KM, Seifert G, et al. Pentagonal rings and nitrogen excess in fullerene-based BN cages and nanotube caps [J]. Chemical Physics Letters,1999(299): 359-367
    [126]Chopra NG, Luyken RJ, Cherrey K, et al. Boron nitride nanotubes [J]. Science, 1995(269):966-967
    [127]Terrones M, Hsu WK, Terrones H, et al. Metal particle catalysed production of nanoscale BN structures [J]. Chemical Physics Letters,1996(259):568-573
    [128]Ishii T, Sato T, Sekikawa Y, et al. Growth of whiskers of hexagonal boron nitride [J]. Journal of Crystal Growth,1981(52):285-334
    [129]Terrons M, Hsu WK, Terrons H, et al. Metal particle catalyzed production of nanoscale BN structures [J]. Chemical Physics Letters,1996(259):568-573
    [130]Terauchi M, Tanaka M, Matsumoto, et al. Electron energy-loss spectroscopy study of the electronicstructure of boron nitride nanotubes [J]. Journal of Electron Microscopy, 1998(47):319-324
    [131]Cumings J, Zettle A. Mass-production of boron nitride double-wall nanotubes and nanococoons [J]. Chemistry Physics Letters,2000(316):211-216
    [132]Altoe MVP, Psprunck J, Gabriel JCP, et al. Nanococoon seeds for BN nanotube growth [J]. Journal of Materials Science,2003(38):4805-4810
    [133]Narita I, Oku T. Synthesis of boron nitride nanotubes by using YB6 powder [J]. Solid State Communications,2002(122):465-468
    [134]Golberg D, Bando Y, Eremets M, et al. Nanotubes in boron nitride laser heated at high pressure [J]. Applied Physics Letters,1996(69):2045
    135] Yu D, Sun XS, Lee CS, et al. Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature [J]. Applied Physics Letters,1998(72):1996-1968
    [136]Lee RS, Cavillet J, Chapelle ML, et al. Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration [J]. Physics Review B, 2001(64):121405-121408
    [137]Arenal R, Stephan O, Cochon JL, et al. Root-growth mechanism for single-walled boron nitride nanotubes in laser vaporization technique [J]. Journal of American Chemistry Society,2007(129):16189-16183
    [138]Smith MW, Jordan KC, Park C, et al. Very long single-and few-walled boron nitride nanotubes via the pressurized vapor/condenser method [J]. Nanotechnology,2009(20): 505604(6pp)
    [140]Lourie OR, Jones CR, Bartlett BM, et al. CVD growth of boron nitride nanotubes [J]. Chemical Materials,2000(12):1808
    [141]Ma RZ, Bando Y, Sato T, et al. Growth, morphology, and structure of boron nitride nanotubes [J]. Chemistry of Materials,2001(13):2965-2971
    [142]Tang CC, Bando Y, Shen GZ, et al. Single-source precursor for chemical vapor deposition of collapsed boron nitride nanotubes [J]. Nanotechnology,2006(17): 5882-5888
    [143]Tang CC, Bando Y, Sato T, et al. A novel precursor for synthesis of pure boron nitride nanotubes [J]. Chemical Communications,2002(12):1290-1291
    [144]Wang JS, Kayastha VK, Yap YK, et al. Low temperature growth of boron nitride nanotubes on substrates [J]. Nano Letters,2005(5):2528-2532
    [145]Lee CH, Xie M, Kayastha V, et al. Patterned growth of boron nitride nanotubes by catalytic chemical vapor deposition [J]. Chemical Materials,2010(22):1782-1787
    [146]Wen G, Zhang T, Huang XX, et al. Synthesis of bulk quantity BN nanotubes with uniform morphology [J]. Scripta Materlia,2010(62):25-28
    [147]Kim MJ, Chatterjee S, Kim SM, et al. Double-walled boron nitride naotubes grown by floating catalyst chemical vapor deposition[J]. Nano Letters,2008(8):3298-3302
    [148]Zhi CY, Bando Y, Tang CC, et al. Effective precursor for high yield synthesis of pure BN nanotubes [J]. Solid State Communications,2005(135):67-70
    [149]Shingu PH, Huang B, Nishitani SR, et al. Nano-meter order crystalline structures of Al/Fe alloys produced by mechanical alloying [J]. Suppl to Trans Japan Institute of Metals,1988(29):3-10
    [150]Chen Y, Fitz Gerald J, Williams JS, et al. Synthesis of boron nitride nanotbues at low temperatures using reactive ball milling [J]. Chemical Physics Letters,1999(299):260
    [151]Chen Y, Chadderton LT, Gerald JDF, et al. A solid-state process for formation of boron nitride nanotubes [J]. Applied Physics Letters,1999(74):2960-2962
    [152]Bae SY, Seo HW, Park J, et al. Boron nitride nanotubes synthesized in the temperature range 1000-1200℃ [J]. Chemical Physics Letters,2003(374):534-541
    [153]Yu J, Chen Y, Wuhrer R, Liu ZW, et al. In situ formation of BN nanotubes during nitriding reactions [J]. Chemistry of Materials,2005(17):5172-5176
    [154]Chen Y, Conway M, Williams JS, et al. Large-quantity production of high-yield boron nitride nanotubes [J]. Journal of Materials Research,2002(17):1896-1899
    [155]Chen H, Chen Y, Liu Y, et al. Over 1.0 mm-the longest boron nitride nanotubes [J]. Chemical Physics Letters,2008(463):130-133
    [156]Singhal SK, Srivastava AK, Mathur RB. Growth of boron nitride nanotubes having large surface area using mechanothermal process [J]. World Journal of Nano Science and Engineering,2011(1):119-128
    [157]Li LH, Li CP, Chen Y, et al. Synthesis of boron nitride nanotubes, bamboos and nanowires [J]. Physica E,2008(40):2513-2516
    [158]Li L, Li LH, Chen Y, et al. Mechanically activated catalyst mixing for high-yield boron nitride nanotubes growth [J]. Nanoscale Research Letters,2012(7):417(8pp)
    [159]Li LH, Chen Y, Glushenkov AM. Synthesis of boron nitride nanotubes by boron ink annealing [J]. Nanotechnology,2010(21):105601(5pp)
    [160]Li LH, Chen Y, Glushenkov AM. Boron nitride nanotubes films grown from boron ink painting [J]. Journal of Materials Chemistry,2010(20):9679-9683
    [161]Han WQ, Bando Y, Kurashima K, et al. Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction [J]. Applied Phsics Letters,1998(73): 3085-3087
    [162]Golberg D, Bando Y, Han W, et al. Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction [J]. Chemical Physics Letters 1999(308):337-342
    [163]Golberg D, Bando Y, Kurashima K, et al. Rope of BN multi-walled nanotubes [J]. solid State Communications,2000(116):1-6
    [164]Wang WL, Bi JQ, Sun WX, et al. Facile synthesis of boron nitride coating on carbon nanotubes [J]. Materials Chemistry and Physics,2010(122):129-132
    [165]Shelimov K, Moskovits M. et al. Compsite nanostructures based on template-grown boron nitride nanotubes [J].2000(12):250-254
    [166]Bechelany M, Bernard S, Brioude A, et al. Synthesis of boron nitride nanotubes by a template-assisted polymer thermolysis process [J]. Journal of Physical Chemistry C, 2007(111):13378-13384
    [167]Iltis A, Maguier C. Amourphous or turbostratic boron nitride, especially with a spherical morphology and process for its preparation [p]. France, European invention patent, EP395448,1990:1-12
    [168]Lindquist DA, Kodas TT, Smith DM, et al. Boron nitride powders formed by aerosol decomposition of poly(borazinylamine) solutions [J]. Journal of the American Ceramic Society,1991(74):3126-3128
    [169]Pruss EA, Wood GL, Kroenke WJ, et al. Aerosol assisted vapor synthesis of spherical boron nitride powders [J]. Chemistry of Materials,2000(12):19-21
    [170]Ishii T, Sato T, Sekikawa, et al. Growth of whiskers of hexagonal boron nitride [J]. Journal of Crystal Growth,1981(52):285-289
    [171]Wood GL, Paine RT. Aerosol synthesis of hollow spherical morphology boron nitride particles [J]. Chemistry of Materials,2006(18):4716-4718
    [172]Tang CC, Bando Y, Golgerg D, et al. Large-scale synthesis and structure of boron nitride sub-micron spherical particles [J]. Chemistry Communications,2002(6): 2826-2827
    [173]Bounlanger L, Andriot B, Cauchetier M, et al. Concentric shelled and plate-like graphitic boron nitride nanoparticels produced by CO2-laser pyrolysis [J]. Chemical Physics Letters,1995(234):227-232
    [174]Banhart F, Zwanger M, Muhr HJ. The formation of curled concentric-shell clusters in boron-nitride under electron-irradiation [J], Chemical Physics Letters,1994(231): 98-104
    [175]Oku T, Hirano T, Kuno M, et al. Synthesis, atomic structures and properties of carbon and boron nitride fullerene materials [J]. Materials Science and Engineering B, 2000(74):206-217
    [176]Zhu YC, Bando Y, Yin LW, et al. Hollow boron nitride(BN) nanocages and BN-nanocage-encapsulated nanocrystals [J]. Chemical Europeans Journal:2004(10): 3667-3772
    [177]Xu LQ, Peng YY, Meng ZY, et al. Fabrication and characterization of hollow spherical boron nitride powders [J]. Chemical Physics Letters,2003(381):74-79
    [178]Xu LQ, Peng YY, Meng ZY, et al. A co-pyrolysis method to boron nitride nanotubes at relative low temperature [J]. Chemistry of Materials,2003(15):2675-2680
    [179]Lian G, Zhang X, Zhang SJ, et al. Controlled fabrication of ultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and wastewater treatment [J]. Energy and Environmental Science,2012(5):7072-7080
    [180]Pacile D, Meyer JC, Girit CO, et al. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended menbranes [J]. Applied Physics Letters, 2008(92):133107(3)
    [181]Yao YG, Lin ZY, Li Zhou, et al. Large-scale production of two-dimensional nansheets [J]. Journal of Materials Chemistry,2012(22):13494-13499
    [182]Chen ZG, Zou J, Liu G, et al. Novel boron nitride hollow nanoribbons [J]. ACS Nano, 2008(2):2183-2191
    [183]Chen LY, Huang MM, Luo T, et al. A low-temperature route to nanocrystalline boron nitride whiskers and flakes [J]. Materials Letters,2004(58):3634-3636
    [184]Yu HM, Huang XX, Wen GW, Synthesis of rose-like boron nitride particles with a high specific surface area [J]. Materials Research Bulletin,2010(45):1013-1-16
    [185]Wen GW, Zhong B, Huang XX, et al. Novel hollow microspheres with open mouths-facile synthesis, growth mechanism, resonant Raman scattering effect, and cathodoluminescence performance [J]. European Journal of Inorganic Chemistry, 2010(35):5538-5544
    [186]Zhong B, Wu Y, Huang XX, et al. Hollow BN microspheres constructed by nanoplates: synthesis, growth mechanism and cathodoluminescence property [J]. CrystEngComm, 2011(13):819-826
    [187]Gao R, Yin LW, Wang CX, et al. High-yield Synthesis of boron nitride nanosheets with strong ultraviolet cathodoluminescence emission [J]. Journal of Physics Chemical C, 2009(113):15160-15165
    [188]Namatsu H, Horiguche S, Nagase M, et al. Fabrication of one-dimensional nanowire structures utilizing crystallographic orientation in silicon and their conductance characteristics [J]. Journal of Vacuum Science and Technology B,1997(15):1688-1696
    [189]Xiong Y, Xie Y, Wu C, et al. Formation of silver nanowires through a sandwiched reduction process [J]. Advanced Materials,2003(15):405-408
    [190]Lee ST, Zhang YF, Wang N, et al. Semiconductor nanowires from oxides [J]. Journal of Materials Research,1999(14):4502-4507
    [191]李永军,刘春燕.一维无机纳米材料的研究进展[J].感光科学与光化学,2003(21):446-468
    [192]Zhang YF, Tang YH, Wang N, et al. One-dimensional growth mechanism of crystalline sillion nanowires [J]. Journal of Crystal Growth,1999(197):136-140
    [193]唐元洪,佩立宅.掺杂硅纳米线的光电特性[J].中国有色金属学报,2004(14):398-403
    [194]方克明.微米-纳米材料微观结构表征[M].北京:冶金工业出版社,2009:188-212
    [195]蓝闽波.纳米材料测试技术[M].上海:华东理工大学出版社,2009:34-123
    [196]黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003:107-324
    [197]Singhal SK, Srivastava AK, et al. Synthesis of boron nitride nanotubes by an oxide-assisted chemical method [J]. Journal of Nanoparticle Research,2010(12): 2405-2413
    [198]Chen YJ, Liu ZW, Ringer SP, et al. Selective oxidation synthesis of MnCr2O4 spinel nanowires from commercial stainless steel foil [J]. Crystal Growth and Design,2007(7): 2279-2281
    [199]Wilson PR, Chen Z. Characterisation of surface grain boundary precipitates formed during annealing of low carbon steel sheets [J]. Scripta Materialia,2005(53):119-123
    [200]Hata K, Futaba DN, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes [J].2004 Science,2004(306):1362-1364
    [201]Wang GW, Chen JL, Tian Y, et al. Water assisted synthesis of double-walled carbon nanotubes with a narrow diameter distribution from methane over a Co-Mo/MgO catalyst [J]. Catalysis Today,2012(183):26-33
    [202]Yamada T, Maigne A, Yudasaka M, et al. Revealing the secret of water-assisted carbon synthesis by microscopic observation of the interaction of water on the catalysts [J]. Nano Letters,2008(8):4288-4292
    [203]Amama PB, Pint CL, Mirri F, et al. Catalyst-support interactions and their influence in water-assisted carbon nanotubes carpet growth [J]. Carbon,2012(50):2396-2406
    [204]郑金标,何念银.高温蒸汽除硼制备太阳能级硅[P].中国:CN 101638231A,2012.2.3
    [205]Cholet V, Vandenbulcke L, Rouan JP, et al. Characterization of boron nitride films deposited from BCl3-NH3-H2 mixtures in chemical vapour infiltration conditions [J]. Journal of Materials Science,1994(29):1417-1435.
    [206]Geick R, Perry CH, Rupprecht G. Normal Modes in Hexagonal Boron Nitride [J]. Physics Review,1966(146):543-547
    [207]Arenal R, Ferrari AC, Reich S, et al. Raman Spectroscopy of Single-wall Boron Nitride Nanotubes [J]. Nano Letters,2006(6):1812-1816.
    [208]Su CY, Juang ZY, Chen KF, et al. Selective Growth of Boron Nitride Nanotubes by Plasma-assisted and Iron Catalytic CVD Methods [J]. The Journal of Physical Chemistry C,2009(113):14681-14688
    [209]Solozhenko VL, Lazarenko AG, Petitet J P, et al. Bandgap energy of graphite-like hexaganal boron nitride [J]. Journal of Physics and Chemistry of Solids,2001(62): 1331-1334
    [210]Chen ZG, Zou J, Liu G, et al. Long wavelength emissions of periodic yard-glass shaped boron nitride nanotubes [J]. Appied Physics Letters,2009(94):023105(3pp)
    [211]Yao B, Liu L, Su WH, et al. Effects of degree of three-dimensional order and Fe impurities on photoluminescence of boron nitride [J]. Journal of Applied Physics, 2004(96):1947(6pp)
    [212]Li XT, Shao CL, Qiu SL, et al. BN and Si nanostructures:preparation and visible photoluminescence properties [J]. Materials Letters,2000(44):341-346
    [213]Wang Y, Herron N. Nanometer-sized semiconductor clusters:marerials synthesis, quantum size effects, and photophsical properties [J].1991(95):525-532
    [214]Zhu YC, Bando Y, Xue D F, et al. New boron nitride whiskers:showing strong ultraviolet and visible light luminescence [J]. The Journal of Physical Chemistry B, 2004(108):6193-6196
    [215]Chen YJ, Chi B, Mahon DC, et al. An effective approach to grow boron nitride nanowires directly on stainless-steel substrates [J]. Nanotechnology,2006(17): 2942-2964
    [216]Jang WS, Bae SY, Park J, et al. Thorn-like BN nanostructures [J]. Solid State Communications; 133 (2005):139-143
    [217]Chen ZG, Zou J, Liu G, et al. Long wavelength emissions of periodic yard-glass shaped boron nitride nanotubes [J].Applied Physics Letters; 94 (2009):023105(3)
    [218]Reddy ALM, Gupta BK, Narayanan TN, et al. Probing of Ni-encapsulated ferromagnetic boron nitride nanotubes by time-resolved and steady-staete photoluminescence spectroscopy [J]. The Journal of Physical Chemistry C; 116 (2012): 12803-12809
    [219]Cofer CG, Economy J. Oxidative and hydrolytic stability of boron nitride-A new approach to improving the oxidation resistance of carbonaceous structures [J]. Carbon, 1995(33):389-395
    [220]Xu LQ, Peng YY, Meng ZY, et al. Fabrication and characterization of hollow spherical boron nitride powders [J]. Chemical Physics Letters,2003(381):74-79
    [221]Sun CH, Guo CL, Ma XJ, et al. A facile route to prepare boron nitride hollow particles at 450℃[J]. Journal of Crystal Growth,2009(311):3682-3686
    [222]Chen LY, Gu YL, Shi L, et al. A room-temperature approach to boron nitride hollow spheres [J]. Solid State Communications,2004(130):537-540
    [223]Narita I, Oku T. Effects of catalytic metals for synthesis of BN fullerene nanomaterials [J]. Diamond Related Materials,2003(12):1146-1150
    [224]Yeadon M, Lin M, Lon KP, et al. Direct observation of boron nitride nanocage growth by molecular beam nitridation and liquid-like motion of Fe-B nanoparticles [J]. Journal of Materials Chemistry,2003(13):2573-2576
    [225]Huo KF, Hu Z, Fu JJ, et al. Chemical synthesis and characterization of boron/boron nitride core-shell nanostructures [J]. Journal of Materials Research,2003(18): 1641-1645
    [226]钟博.以氨硼烷为先驱体制备BN微纳米材料及其机理研究[D].哈尔滨:哈尔滨工业大学,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700