用户名: 密码: 验证码:
碳纳米管增强碳化硅纤维和复合材料的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNT)增强陶瓷材料是CNT应用的主要领域和发展方向之一。但是在CNT增强陶瓷材料制备过程中,存在以下几个问题:CNT的团聚,CNT在陶瓷基体中的不均匀分布,以及CNT在传统陶瓷烧成过程中高温、高压环境下的破坏等。因此,必须对CNT进行化学改性,使其在陶瓷基体中分散良好、均匀分布以及与陶瓷基体的良好相容性,同时尽量避免传统陶瓷烧成工艺的高温、高压环境。本文结合SiC陶瓷先驱体聚碳硅烷(PCS)的化学特性,对本实验室自制的CNT进行了有针对性的化学改性,得到了乙烯基取代的碳纳米管(vCNT),通过溶液共混法将vCNT引入PCS中,然后经过熔融纺丝、预氧化、裂解等工艺制备了CNT/SiC陶瓷纤维。同时通过对CNT/PCS先驱体在惰性气氛下,500~600°C进行预处理,结合球磨-模压-烧结工艺,在不添加其他粘接剂的情况下,在惰性气氛下烧结,制备了具有较高强度的CNT/SiC多孔陶瓷。在此基础上,将vCNT引入SiC陶瓷另一种重要的先驱体A-PMS中,利用PIP工艺制备了CNT/Cf/SiC复合材料。对CNT进行酸化氧化是对其进行化学改性的基础。本论文中,通过在室温下用浓硝
     酸对CNT进行酸化氧化,CNT内部的Fe颗粒、表面的无规碳颗粒以及杂质被清除掉,长度从几十微米减小为8~12μm,表面引入了-COH以及-COOH基团。在此基础上,利用丙烯酰氯与经过酸化氧化的CNT在66°C进行回流反应,CNT表面有包覆物出现,分析测试表明,丙烯酰氯在经过酸化氧化的CNT表面反应形成了聚丙烯酸,从而在CNT表面引入了乙烯基团。将0.1~1wt%的vCNT引入PCS的二甲苯溶液中经回流和超声后,vCNT中的乙烯基与
     PCS中的Si-H发生反应,使CNT与PCS通过共价键连接起来。这样CNT可以在PCS的溶液中长期稳定、均匀地分散和分布,不再发生团聚和沉降。将上述溶液蒸馏后制备的CNT/PCS先驱体即可很好地进行熔融纺丝。在熔融纺丝工艺研究时,发现由此获得的CNT/PCS可以在较宽温度范围内进行熔融纺丝。随着剪切速率的增加,纤维的无断头长度明显增加。单孔纺丝后得到均匀的深灰色的原纤维,纤维表面光滑,直径均匀。而作为对比,原CNT虽亦可混入PCS溶液,但因团聚和沉降,纺丝过程中纤维出现先黑后灰,最后变白的现象,得到的原纤维表面粗糙,直径波动很大。分析表明,由vCNT制得的CNT/PCS原纤维中,CNT的分散良好,分布均匀,而且CNT长度方向沿PCS纤维的轴向取向。对CNT/PCS原纤维进行了预氧化和热失重研究,发现vCNT的引入并不会对PCS纤
     维的预氧化带来本质上的变化;CNT/PCS的热失重行为与PCS没有根本区别,但陶瓷收率略有提高(3wt%左右),其原因为vCNT的引入增加了PCS的交联程度和CNT在纤维烧成过程中稳定而不发生失重。将预氧化后的CNT/PCS纤维在高温下,惰性气氛中烧成即可得到黑色带有金属光泽的较为柔软的CNT/SiC复合陶瓷纤维。对得到的CNT/SiC进行分析表征发现,由于先驱体法烧成温度相对较低,且无高压存在,CNT可以较为完整的保留下来;随着CNT引入量的增加,复合陶瓷纤维的晶粒尺寸逐渐变小,有序碳结构略有增加,得到的复合纤维的强度、模量均增加。当引入的vCNT含量为0.5wt%时,CNT/SiC纤维的抗拉强度、弹性模量分别为1.8GPa和271GPa,较同样条件下不含CNT的SiC纤维分别提高了约35%和91%。当引入的vCNT的含量为1.0wt%时,得到的CNT/SiC纤维的电阻率约为同样条件下制备的SiC纤维的电阻率的10%。
     对CNT/SiC多孔陶瓷的烧结过程、力学性能以及孔结构进行研究发现,随着vCNT含量的增加,烧结过程中预处理先驱体坯体的质量损失率略有减少而其线性收缩率呈逐渐增加趋势,抗弯强度逐渐增加。当引入的vCNT的含量为0.5wt%时,1300°C烧结得到的多孔CNT/SiC陶瓷的抗弯强度达到61MPa,比不含vCNT的多孔SiC提高了76.5%,而得到的多孔SiC的晶粒尺寸减小了约60%。CNT/SiC多孔陶瓷的孔径分布呈单峰分布,并无异常大孔存在,随着vCNT加入的量的增加,得到的CNT/SiC多孔陶瓷的中值孔径从12.7μm减小为10.1μm。
     在使用vCNT增强A-PMS制备CMC的PIP工艺研究时,发现vCNT的结构可以在得到的Cf/SiC复合材料中较为完整的保留,得到的复合材料的抗弯强度、断裂韧性分别为分别为423MPa和23.35MPam1/2,比同样条件下制备的不含vCNT的Cf/SiC复合材料的抗弯强度及断裂韧性分别提高了29.7%和27.9%。
     综合分析CNT在SiC陶瓷纤维、多孔陶瓷以及Cf/SiC复合材料的断裂过程,发现CNT在SiC基体中的拔出、桥接以及引起的裂纹偏转是得到的复合材料的抗弯强度以及断裂韧性提高的主要原因。同时,经过改性的CNT与SiC基体良好的结合,也提高了载荷在SiC基体与CNT之间的传递作用,在复合材料破坏时,部分CNT也被破坏,这同样改善了SiC陶瓷材料的力学性能。
To prepare carbon nanotubes (CNT) reinforced ceramic composites is one of the most important application of CNT. However, several key issues must be considered. Firstly, the CNT should be dispersed uniformly in the matrices without any agglomeration. Secondly, a compatible interface between the CNT and the matrices is needed to achieve an enhanced stress transfer capability from the matrices to the CNT. Thirdly, the harsh conditions required in the traditional preparation of ceramic composites need to be avoided as such high temperature and high pressure may destroy the CNT. Up to date, chemical modification of CNT is one of most effective way to obtain ceramic/CNT composites with uniformly dispersed CNT and compatible interface.
     In this study, vinyl modified carbon nanotube (vCNT) was made by chemically modifying CNT and used in the preparation of ceramic/CNT composites. The premade CNT was treated with concentrated HNO3at ambient temperature for8h, and then reacted with acryloyl chloride at66℃for12h. The length of the CNT decreased from20-100μm to about8-12μm after the reactions. It was found that the polymerization of acryloyl chloride occurred on the surface of CNT and the product with ethylene groups encapsulated the surface. The chemical modification of CNT effectively promoted its dispersivity in the toluene solution of polycarbosilane (PCS). The vCNT was homogeneously dispersed in the obtained hybrid precursor without any entanglement and agglomeration.
     The vCNT-reinforced SiC ceramic fibers were successfully prepared by mixing vCNT with PCS, followed by melt spinning, curing, and pyrolysis. The vCNT/PCS precursors were melted and spun into continuous green fibers in N2stream at about305-325℃. The vCNT were aligned to the axis-orientation of the fibers after melt spinning. Oxidative cross-linking of the CNT/PCS green fibers was carried out in hot air to make these fibers infusible prior to pyrolysis. Then the cured fibers were heated in N2at1300℃and the CNT/SiC ceramic fibers were obtained. It was observed that the aligned vCNT remained in the ceramic fibers after curing and pyrolysis. Significant improvement in Young's modulus and tensile strength was achieved by incorporating the vCNT into the SiC ceramic fibers. The addition of0.5wt%CNT led to an increase of93.6%in the Young's modulus and an increase of38.5%in the tensile strength.
     Besides, vCNT reinforced porous SiC ceramics were successfully obtained by milling, molding and pyrolyzing the pretreated CNT/PCS precursor through the polymer derived ceramic (PDC) process. The vCNT was dispersed well in the precursors, and the flexural strength of the obtained porous CNT/SiC ceramics was improved. The addition of0.5wt%vCNT resulted in an increase of76.5%in the flexural strength (60.9MPa). The increase in mechanical properties can be attributed to the homogenous dispersion of vCNT within the matrix, the strong interface connections and the enhanced stress transfer capability from the matrix to the vCNT.
     Moreover, the vCNT reinforced Cf/SiC composites were fabricated by PIP method using antimony substituted polymethlysilane (A-PMS) as the precursor. It was found that CNT was well-dispersed in the precursor after ultrasonic treatment, and remain in the obtained ceramic composites after the PIP process. The vCNT embedded in the composites increased the pullout resistance, bridged the crack gaps, and caused crack deflection in the final composites. The vCNT broke in the sword-in-sheath fracture mode, in which the outer shells broke and the inner core was then pulled away, leaving fragments of the outer shells in the matrix. These fragments enabled the vCNT in the composites to have a much higher load carrying capacity. As a result, the mechanical properties of the obtained composites were improved. The addition of1.5wt%of CNT resulted in29.7%and27.9%increases in the flexural strength and the fracture toughness, respectively. Large-scale CNT/Cf/SiC/composites can be conveniently prepared by using this method.
引文
[1]Roewer G, Herzog U, Trommer K.et al. Silicon Carbide-A Survey of synthetic Approaches, Properties and Applications[J]. Struct. Bond.,2002,101:59-135.
    [2]王零森.特种陶瓷[M].长沙:中南工业大学出版社,1994.
    [3]周玉.陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社,1995.
    [4]Harris G L. Properties of silicon carbide[M]. London:INSPEC, the Institution of Electrical Enginneers,1995.
    [5]Yaiima S, Hayashi J, Omori M. Continuous Silicon Carbide Fiber of High Tensile Strength[J]. Chem. Lett.,1975,9:931-934.
    [6]S Y, J H, M O.et al. Nature,1976,261:683.
    [7]Dong S, Chollon G, Labrugere C.et al. Characterization of nearly stoichiometric SiC ceramic fibres[J]. J. Mater. Sci.,2001,36:2371-2381.
    [8]石南林.高性能CVD法制备SiC纤维的研制[J].材料导报,2000,14(7):53-54.
    [9]Popper D. Special Ceramics[M]. New York:Academic press,1965.
    [10]Yajima S, Okamura K, Hayashi J.et al. Synthesis of Continuous SiC Fibers with High Tensile Strength[J]. J. Am. Ceram. Soc.,1976,59:324-327.
    [11]Okamura K, Shimoo T. SiC-based fibers prepared via organic-to-inorganic conversion process-areview[J]. J.Ceram.Soc.Jpn,2006,114(6):445-454.
    [12]Lewinsohn C, Jones R, Colombo P. Silicon carbide-based materials for joining silicon carbide composites for fusion energy applications[J]. J.Nucl.Mater.,2002,307-311:1232-1236.
    [13]Laine R, Babonneau F. Preceramic polymer routes to silicon carbide[J]. Chem.Mater.,1993,5:260-279.
    [14]楚增勇,冯春祥,宋永才.先驱体法SiC纤维国内外研究与开发现状[J].无机材料学报,2002,17(2):193-201.
    [15]Dicarlo J. Creep limitation of current polycrystalline ceramic fibers[J]. Compos. Sci. Technol.,1994,51(2):213-217.
    [16]Ryu Z, Zheng J, Wang M. Preparation and characterization of silicon-carbide fibers from activated carbon-fibers[J]. Carbon,2002,40(5):715-720.
    [17]赵大方.SA型碳化硅纤维的连续化技术研究[D].长沙:国防科学技术大学,2008.
    [18]Bunsell A, Piant A. A review of the development of three generations of small diameter silicon carbide fibres[J]. J. Mater. Sci.,2006,41:823-839.
    [19]毛仙鹤.碳化硅纤维制备的基础问题研究-聚碳硅烷的高产率合成和低氧含量碳化硅纤维的制备[D].长沙:国防科学技术大学,2007.
    [20]Okamura K, Shimoo T, Suzuya K.et al. SiC-based Ceramic Fibers Prepared via Organic-to-Inorganic Conversion Process-A Review[J]. J. Ceram. Soc. Jpn,2006,114:445-454.
    [21]Suzuki K, Kumagawa K, Kamiyama T.et al. Characterization of the medium-range structure of Si-Al-C-O, Si-Zr-C-0and Si-Al-C Tyranno fibers by small angle X-ray scattering[J]. J. Mater. Sci.,2002,37:949-953.
    [22]Kumagawa K, Yamaoka H, Shibuya M.et al. Fabrication and mechanical propertiesof new improved Si-M-C-O Tyranno fiber[J]. Ceram. Eng. Sci. Proc.,1998,19(3):65-72.
    [23]Ishikawa T, Kohtoku Y, Kumagawa K.et al. High-strength alkali-resistant sintered SiC fibre stable to2,200℃[J]. Nature,1998,391:773-775.
    [24]Gouadec G, Colomban P. Non-destructive mechanical characterization of SiC fibers by Raman spectroscopy[J]. J. Eur. Ceram. Sco.,2001,21:1249-1259.
    [25]Yun H, Dicarlo J. Comparison of the Tensile, Creep, and Rupture Strength Properties of Stoichiometric SiC Fibers[R]. Cocoa Beach, Florida:1999.
    [26]曹峰.耐超高温碳化硅纤维新型先驱体研究及纤维制备[D].长沙:国防科学技术大学,2002.
    [27]陈志彦.连续Si-Fe-C-0纤维及其结构吸波材料的研究[D].长沙:国防科学技术大学,2005.
    [28]王军.含过渡金属的碳化硅纤维的制备及其电磁性能[D].长沙:国防科学技术大学,1997.
    [29]刘军.先驱体转化法制备低电阻率Si-C-0纤维[D].长沙:国防科学技术大学,2000.
    [30]Chollon G, Aldacourrou B, Capes L.et al. Thermal behaviour of a polytitanocarbosilane-derived fiber with a low oxygen conten:the Tyranno Lox-E fiber[J]. J. Mater. Sci.,1998,33:901-911.
    [31]Kakimoto K, Shimoo T, Okamura K. Oxidation-induced microstructural changes of Si-Ti-C-O fibers [J]. J.Am.Ceram.Soc.,1998,81(2):409-412.
    [32]Vahalas C, Monthioux M. On the thermal degradation of Lox-M Tyranno fibers[J]. J. Eur. Ceram. Soc.,1995,15:445-453.
    [33]欧阳国恩,刘心慰,岳曼君SiC-C纤维有机先驱体流变可纺性研究[J].复合材料学报,1995,12(3):46-52.
    [34]王娟.低电阻率碳化硅纤维的制备与研究[D].长沙:国防科学技术大学,2001.
    [35]刘旭光.异型截面碳化硅纤维制备及其吸波性能[D].长沙:国防科学技术大学,2011.
    [36]Hu T, Li X, Li G.et al. SiC fibers with controllable thickness of carbon layer prepared directly by preceramic polymer pyrolysis routes[J]. Mater. Sci. Eng. B,2010,176(9):706-710.
    [37]Hu T, Li X, Li G.et al. Axial graded carbon fibers and silicon carbide fibers with sinusoidal electrical resistivity [J]. J. Am. Ceram. Soc.,2011,94(9):2808-2811.
    [38]Hu T, Li X, Li G.et al. Axial graded silicon carbide fibers with fluctuating carbon layer and sinusoidal electrical resistivity [J]. Mater. Lett.,65(17-18):2562-2564.
    [39]Okamura K, Seguchi T. Application of radiation curing in the preparation of polycarbosilane derived SiC fibers[J]. J. Inorg. Organomet. P.,1992,2(1):171-179.
    [40]Ishikawa T. Recent developments of the SiC fiber Nicalon and its composites, including properties of the SiC fiber Hi-Nicalon for ultra-high temperature[J]. Compos. Sci. Technol.,1994,51:135-144.
    [41]Seguchi T. New trend of radiation application to polymer modification-irradiation in oxygen free atmosphere and elevated temperature[J]. Radiat. Phys. Chem.,2000,57(3-6):367-371.
    [42]Takeda M, Sakamoto J, Imai Y.et al. Thermal stability of the low-oxygen-content silicon carbide fiber,Hi-NicalonTM[J]. Compos. Sci. Technol.,1999,59:813-819.
    [43]Toreki W, Batich C, Sacks M.et al. Polymer-derived silicon carbide fibers with low oxygen content and improved thermomechanical stability[J]. Compos. Sci. Technol.,1994,59(6):813-819.
    [44]Morishitaw K, Ochiai S, Okuda H.et al. Fracture toughness of a crystalline silicon carbide fiber (Tyranno-SA3)[J]. J. Am. Ceram. Soc.,2006,89(8):2571-2576.
    [45]Lipowitz J, Barnard T, Bujalski D.et al. Fine-diameter polycrystalline SiC fibers[J]. Compos. Sci. Technol.,1994,51(2):167-171.
    [46]Lipowitz J, Rabe J, Zangvil A.et al. Structure and properties of sylramicTM silicon carbide fiber-A polycrystalline, stoichiometricβ-SiC composition[J]. Ceram. Eng. Sci. Proc.,1997,18(3):147-157.
    [47]Kumagawa K, Yamaoka H, Shibuya M.et al. Thermal stability and chemical corrosion resistance of newly developed continuous Si-Zr-C-0Tyranno fiber[J]. Ceram. Eng. Sci. Proc.,1997,18(3):113-118.
    [48]Riedel R, Kienzle A, Dressler W. A siliconboron carbonitride ceramic stable to2000℃[J]. Nature,1996,382:796-798.
    [49]Baldus P, Jansen M, Sporn D. Ceramic fibers for matrix composites in high-temperature engine applications[J]. Science,1999,285:699-703.
    [50]Chu Z, Yong Y, Xu Y.et al. Enhanced irradiation cross-linking of polycarbosilane[J]. J. Mater. Sci. Lett,1999,18:1793-1795.
    [51]Chu Z, Song Y, Xu Y.et al. A model SuC-based fiber with a low oxygen content prepared from a vinyl-containing polycarbosilane precursor[J]. J. Mater. Sci. Lett.,2001,20:585-587.
    [52]李伟.化学气相交联法制备低氧含量碳化硅纤维[D].长沙:国防科学技术大学,2003.
    [53]王亦菲.连续碳化硅纤维高温性能及基于热交联的改进工艺研究[D].长沙:国防科学技术大学,2004.
    [54]范小琳.低氧含量碳化硅纤维的制备[D].长沙:国防科学技术大学,1999.
    [55]薛金根.干法纺丝制备低氧含量碳化硅纤维[D].长沙:国防科学技术大学,2006.
    [56]郑春满.聚铝碳硅烷纤维的无机化及生成碳化硅纤维的连续化过程研究[D].长沙:国防科学技术大学,2006.
    [57]余煜玺.含铝碳化硅纤维的连续化制备与研究[D].长沙:国防科学技术大学,2005.
    [58]朱小龙,苏雪筠.多孔陶瓷材料[J].中国陶瓷,2000,36(4):36-39.
    [59]张宇民,刘殿魁,韩杰才,等.多孔陶瓷材料制备工艺研究进展[J].兵器材料科学与工程,2002,25(2):62-67.
    [60]马彦.先驱体法制备多孔陶瓷研究[D].长沙:国防科学技术大学,2006.
    [61]林章,曲选辉,段柏华,等.SiC多孔陶瓷的研究进展[J].粉末冶金技术,2007,25(2):139-144.
    [62]Colombo P, Bernardo E. Macro-and micro-cellular porous ceramics from preceramic polymers[J]. Compos. Sci. Technol.,2003,63:2353-2359.
    [63]Colombo P, Hellmann J, Eman D. Mechanical properties of silicon oxycarbide ceramic foams[J]. J. Am. Ceram. Soc.,84(10):2245-2251.
    [64]P C, E B, L B. Novel microcellular ceramics from a silicone resin[J]. J. Am. Ceram.Soc.,2004,87(1):152-154.
    [65]P C, TG R, ERM S. Conductive ceramic foams from preceramic polymers[J]. J. Am. Ceram. Soc.,84(10):2265-2268.
    [66]Colombo P, Modesti M. Silicon oxycarbide foams from a silicone preceramic polymer and polyuret hane[J]. J. Sol-Gel Sci. Technol.,1999,14:103-111.
    [67]Colombo P, Griffoni M. Ceramic foams from a preceramic polymer and polyuret hanes:preparation and morphological investigations[J]. J. Sol-gel Sci. Technol.,1998,13:195-199.
    [68]马彦,马青松,陈朝辉.先驱体转化法制备多孔陶瓷的发展现状[J].材料工程,2007(3):62-66.
    [69]Evans A. Perspective on the development of high toughness ceramics[J]. J. Am. Ceram. Soc.,1990,73(2):187-206.
    [70]郭景坤.陶瓷材料的强化与增韧新途径的探索[J].无机材料学报,1998,13(1):23-26.
    [71]Mah T, Mendiratta M G. Recent developments in fiber-reinforced high temperature ceramic composites[J]. Am Ceram Soc Bull,1987,66(2):304-308.
    [72]张长瑞,郝元恺.陶瓷基复合材料-原理、工艺、性能与设计[M].长沙:国防科学技术大学出版社,2001.
    [73]陈朝辉.先驱体结构陶瓷[M].长沙:国防科学技术大学出版社,2003.
    [74]Ziegler G, Richter I, Suttor D. Fiber-reinforced composites with polymer-derived matrix:processing, matrix formation and properties[J]. Compos:Part A,1999,30:411-417.
    [75]Tanaka T, Tamara N, Kondoh I. Fabrication of three-dimensional Tyranno fiber reinforced SiC composite by the polymer precursor method[J]. Ceram. Int.,1998,24:365-370.
    [76]Tai N, Chen C. Nanofiber fomation in the fabrication of carbon/silicon carbide ceramic matrix nanocomposites by slurry impregation and pulse chemical vapor infiltration[J]. J. Am. Ceram. Soc.,2001,84(8):1683-1688.
    [77]Rovert P. Overlap model for chemical vapor infiltration of fibrous yarns[J]. J.Am.Ceram.Soc.,1990,73(8):2274-2280.
    [78]Zbigniew S. A process for C/SiC composites using liquid polymer infiltration[J]. J. Am. Ceram. Soc.,2001,84(10):2235-2239.
    [79]何新波,张长瑞,周新贵.先驱体转化-热压烧结碳纤维增韧碳化硅复合材料的显微结构[J].航空材料学报,1999,19(3):43-50.
    [80]Zheng G, Sano H, Uchiyama Y. The properties of carbon fiber/SiC composites fabricated through impregnation and pyrolysis of polycarbosilane[J]. J. Mater. Sci.,1999,34:827-834.
    [81]邹武,陈长乐,肖志超.聚碳硅烷浸渍裂解法制备的Cf/SiC材料研究[J].炭素,1997,2:19-23.
    [82]王林山,熊翔,肖鹏.反应熔渗法制备C/C-SiC复合材料及其影响因素的研究进展[J].粉末冶金技术,2003,21(3):37-41.
    [83]张立同,成来飞.连续纤维增韧碳化硅陶瓷基复合材料:全国第十二届复合材料学术会议,天津,2002[C].航空工业出版社.
    [84]简科,陈朝辉,马青松,等.浸渍工艺对先驱体转化制备Cf/SiC复合材料结构与性能的影响[J].航空材料学报,2005,25(5):38-41.
    [85]S I. Microtubules of graphitic carbon[J]. Nature,1991,354:56-58.
    [86]Demczyk B, Wang Y, Cumings J.et al. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes[J]. Mater. Sci. Eng. A.,2002,334:173-178.
    [87]Li C, Chou T. Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces[J]. Compos. Sci. Technol.,2003,63:1517-1524.
    [88]Rodney S. Ruoff, Donald C. Lorents. Mechanical and Thermal Properties of Carbon Nanotubes[J]. Carbon,1995,33(7):925-930.
    [89]Kaleem A, Wei P, Shi S. Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites[J]. Appl. Phys. Lett.,2006,89.
    [90]Mintmire J, White C. Electronic and structural properties of carbon nanotubes[J]. Carbon,1995,33(7):893-902.
    [91]Mishra S, Rawat H, Mehendale S.et al. Optical limiting in single-walled carbon nanotube suspensions[J]. Chem. Phys. Lett.,2000,317:510-514.
    [92]Spyridon G, Vlassis L, Nikolaos G.et al. Magnetic properties of multiwall nanotubes[J]. J. Magn. Magn. Mater.,2004,272-276:1660-1661.
    [93]Dresselhaus M, Samsonidze G, Chou S.et al. Recent advances in carbon nanotube photophysics[J]. Physica E,2006,29:443-446.
    [94]Peigney A, Laurent C, Dumortier O.et al. Carbon Nanotubes-Fe-Alumina Nanocomposites.Part1Influence of the Fe Content on the Synthesis of Powders[J]. J. Eur. Ceram. Soc.,1998,18:1995-2004.
    [95]Peigney A, Flahaut E, Laurent C.et al. Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion[J]. Chem. Phys. Lett.,2002,352:20-25.
    [96]Ahmad I, Unwin M, Cao H.et al. Multi-walled carbon nanotubes reinforced Al2O3nanocomposites:Mechanical properties and interfacial investigations[J]. Compos. Sci. Technol.,2010,70:1199-1206.
    [97]Zhang H, Cao G, Yang Y.et al. Capacitive performance of an ultralong aligned carbonnanotube electrode in an ionic liquid at60℃[J]. Carbon,2008,46:30-34.
    [98]Zhang H, Cao G, Wang Z.et al. Growth of Manganese Oxide Nanoflowers on Vertically-Aligned Carbon Nanotube Arrays for High-Rate Electrochemical Capacitive Energy Storage[J]. Nano. Lett.,2008,8(9):2664-2668.
    [99]Zhao Q, Wood J, Wagner H. Stress fields around defects and fibers in a polymer using carbon nanotubes as sensors[J]. Appl. Phys. Lett.,2001,78(3):1748-1750.
    [100]Su P, Wang C. In situ synthesized composite thin films of MWCNTs/PMMA doped with KOH as a resistive humidity sensor[J]. Sensor. Actuat. B-Chem.,2007,124:303-308.
    [101]Tkac J, Whittaker J, Ruzgas T. The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor[J]. Biosens. Bioelectron.,2007,22:1820-1824.
    [102]Smart S, Cassady A, Lu G.et al. The biocompatibility of carbon nanotubes[J]. Carbon,2006,44:1034-1047.
    [103]Barros E, Jorio A, Samsonidze G.et al. Review on the symmetry-related properties of carbon nanotubes[J]. Phys. Rep.,2006,431:232-261.
    [104]HD. Carbon nanotubes:opportunities and challenges[J]. Surface Science,2002,500:218-241.
    [105]Connell M. Carbon Nanotubes:Properties and Applications[M]. New York:Taylor&Fracncis Group,2006.
    [106]Treacy M, Ebbesen T, Gibson J. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature,1999,381:678-680.
    [107]Falvo M, Clary G, Taylor R.et al. Bending and buckling of carbon nanotubes under large strain[J]. Nature,1997,389:582-584.
    [108]Ebbesen T, Lezec H, Hiura H.et al. Electrical conductivity of individual carbon nanotubes[J]. Nature,1996,382:54-56.
    [109]Krstic V, Wagniere G, Rikken G. Magneto-dynamics of chiral carbon nanotubes[J]. Chem. Phys. Lett.,2004,390:25-28.
    [110]Hossein G, Mechrada P. Thermal conductivity of SWCNT Nanocomposites Determined Using Finite Element Methods[J].2007:1597-1602.
    [111]Xie H, Cai A, Wang X. Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays[J]. Phys. Lett. A,2007,369:120-123.
    [112]马志仁,朱燕秋,魏秉庆.铁-巴基管复合材料的研究[J].复合材料学报,1997,14(2):92-96.
    [113]Xu L, Wei B, Ma R. Fabrication of aluminum-carbon nanotube composites and their electronical properties[J]. Carbon,1999,37:855-858.
    [114]Dong S, Tu P, Zhang X. An invertigetation of the sliding wear behavior of Cu-matrix composite reinforecd by carbon nanotubes[J]. Mater. Sci. Eng. A,2001,313(1-2):83-87.
    [115]Ajayan P, Stephan O, Colliex C.et al. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite[J]. Science,1994,265:1212.
    [116]Schadle L, Giannaris S, Ajayan P. Load transfer in carbon nanotube epoxy composites[J]. Appl. Phys. Lett.,1998,73:3842-3844.
    [117]Haggenmueller R, Gommans H, Rinzler A.et al. Aligned single-wall carbon nanotubes in composites by melt processing methods[J]. Chem. Phys. Lett.,2000(330):219-225.
    [118]Shaffer M, Windle A. Analogies between Polymer solutions and carbon nanotube dispersions[J]. Macromolecules,1999,32(20):6864-6866.
    [119]Spitalsky Z, Tasisb D, Papagelisb K.et al. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties[J]. Prog. Polym. Sci.,2010,35:357-401.
    [120]Qian D, Diceky E, Andrew R. Load transfer and deformation mechanisms in carbon-polystyrene composites[J]. Appl. Phys. Lett.,2000,76(20):2868-2870.
    [121]Stephen C, Ngugen T, Lahr B. Raman spectroscopy and conductivity measurements on polymer-multiwalled carbon nanotube composites[J]. J. Mater. Res.,2002,17(2):396-400.
    [122]沈曾民,杨子芹,赵东林,等CNT/ABS树脂基复合材料的力学性能和雷达波吸收性能的研究[J].复合材料学报,2003,20(2):25-29.
    [123]Jin Z, Sun X, Xu G. Nonlinear optical properties of some polymer/multi-walled carbon nanotube composites[J]. Chem. Phys. Lett,2000,318:505-510.
    [124]Laurent C, Peigney A, Dumortier O.et al. Carbon Nanotubes-Fe-Alumina Nanocomposites.Part2:Microstructure and Mechanical Properties of the Hot-Pressed Mechanical Properties of the Hot-Pressed Composites[J]. J. Eur. Ceram. Soc,1998,18:2005-2013.
    [125]Peigney A, Laurent C, Flahaut E.et al. Carbon nanotubes in novel ceramic matrix nanocomposites[J]. Ceram. Int.,2000,26:677-683.
    [126]Siegel R, Chang S, Ash B.et al. Mechanical behavior of polymer and ceramic matrix nanocomposites[J]. Scripta. Mater.,2001,44:2061-2064.
    [127]An J. Tribological properties of hot-pressed alumina-CNT composites[J]. Wear,2003,255(l-6):677-681.
    [128]Yamamoto G, Omori M, Kenji Y.et al. Mechanical properties and structural characterization of carbon nanotube/alumina composites prepared by precursor method[J]. Diam. Relat. Mater.,2008,17:1554-1557.
    [129]Yamamoto G, Mamoru O, Kenji Y.et al. Structural characterization and frictional properties of carbon nanotube/alumina composites prepared by precursor method[J]. Mater. Sci. Eng. B,2008,148:265-269.
    [130]Yamamoto G, Omori M, Hashida T.et al. A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties[J]. Nanotechnology,2008,19.
    [131]Ma R Z, W J, Wei B Q. Processing and properties of carbon nanotubes-nano-SiC ceramic[J]. J Mater. Sci.,1998,33(21):5234-5246.
    [132]范锦鹏,赵大庆,徐则宁,等.多壁碳纳米管-氧化铝复合材料的制备及其力学、电学性能研究[J].中国科学E辑,2005,35(9):934-945.
    [133]Ye H, Lam H, Titchenal N.et al. Reinforcement and rupture behavior of carbon nanotubes-polymer nanofibers[J]. Appl. Phys. Lett.,2004,85(9):1775-1777.
    [134]Wang C, Mottaghitalab V, Too C.et al. Polyaniline and polyaniline-carbon nanotube composite fibres as battery materials in ionic liquid electrolyte[J]. J. Power Sources,2007,163:1105-1109.
    [135]Mottaghitalab V, Xi B, Spinks G.et al. Polyaniline fibres containing single walled carbon nanotubes:Enhanced performance artificial muscles[J]. Synthetic Met.,2006,156:796-803.
    [136]Mottaghitalab V, Spinks G, Wallace G. The development and characterisation of polyaniline—single walled carbon nanotube composite fibres using2-acrylamido-2methyl-1-propane sulfonic acid (AMPSA) through one step wet spinning process[J]. Polymer,2006,47:4996-5002.
    [137]Bazbouz M, Stylios G. Novel mechanism for spinning continuous twisted composite nanofiberyarns[J]. Eur. Polym. J.,2008,44:1-12.
    [138]杨均平,高绪珊,童俨.碳纳米管增强PA6纤维的性能[J].材料研究学报,2004,18(5):556-560.
    [139]李仲,英哲,成会明.熔融纺丝法制备纳米碳管/聚丙烯复合纤维及其拉伸性能[J].新型碳材料,2005,20(2):108-114.
    [140]王依民,王新鹏.碳纳米管对超高分子量聚乙烯纤维结构与性能的影响[J].金山油化纤,2005:1-7.
    [141]谭惠平,陈建山,王应德.熔融纺丝制备聚碳硅烷有机先驱体纤维[J].化工新型材料,2005,33(9):33-35.
    [142]李晓霞.连续碳化硅纤维的制备工艺与基础研究[D].长沙:国防科学技术大学,1998.
    [143]李公义.碳化硅和氮化硅超长纳米线的制备与性能研究[D].长沙:国防科学技术大学,2010.
    [144]Li G, Li X, Wang H.et al. SiC Nanowires Grown on Activated Carbon in a Polymer Pyrolysis Route[J]. Mater. Sci. Engi. B,2010,166(1):108-112.
    [145]Li G, Li X, Wang H. Long SiC nanowires synthesized from off-gases of the polycarbosilane derived SiC preparation[J]. Appl. Phys. A-Mater.,2010,98(2):293-298.
    [146]Li G, Li X, Chen Z.et al. Large Areas of Centimeters-Long SiC Nanowires Synthesized by Pyrolysis of a Polymer Precursor by a CVD Route[J]. J. Phys. Chem. C.,2009,113:17655-17660.
    [147]Li G, Li X, Wang H.et al. Ultra long SiC nanowires with fluctuating diameters synthesized in a polymer pyrolysis CVD route[J]. Solid State Sci.,2009,11(12):2167-2172.
    [148]Li G, Li X, Wang H. Long silicon nitride nanowires synthesized in a simple route[J]. Appli. Phys. A-Mater.,2008,93:471-475.
    [149]曹英斌.先驱体转化-热压工艺制备Cf/SiC复合材料工艺、结构、性能研究[D].长沙:国防科学技术大学,2001.
    [150]谢征方.活性填料在先驱体转化陶瓷基复合材料及构件中的应用[D].长沙:国防科学技术大学,2001.
    [151]王松.PIP工艺中碳纤维损伤控制及C/SiC复合材料推力室制备技术研究[D].长沙:国防科学技术大学,2003.
    [152]王建方.碳纤维在PIP工艺制备陶瓷基复合材料过程中的损伤机理研究[D].长沙:国防科学技术大学,2003.
    [153]马青松.聚硅氧烷先驱体制备陶瓷基复合材料研究[D].长沙:国防科学技术大学,2003.
    [154]简科.先驱体浸渍裂解工艺制备2DCf/SiC复合材料及构件的研究[D].长沙:国防科学技术大学,2006.
    [155]刘坚,许云书,熊亮萍,等.先驱体聚合物粘结法制备SiC纳米多孔陶瓷[J].无机化学学报,2009,25(5):823-827.
    [156]刘坚,许云书,熊亮萍,等.含先驱体聚合物浆料浇注成型制备SiC多孔陶瓷[J].材料科学与工程学报,2009,27(4):620-622.
    [157]Ma Y, Ma Q, Suo J. Low temperature fabrication and characterization of porous SiC ceramics using silicone resin as binder[J]. Ceram. Int.,2008,34:253-255.
    [158]Ma Q, Yu X. Low temperature fabrication and characterization of porous SiC ceramics using polycarbosilane as binder[J]. Key Eng. Mater.
    [159]刘琳.改性聚甲基硅烷系列SiC陶瓷先驱体的研究[D].长沙:国防科学技术大学,2008.
    [160]Qingling F. Preparation of Ferro-encapsulated Carbon nanotubes and The Preliminary Research on Applications [D]. National University of Defense Technology,2005.
    [161]Esumi K, Ishigami M, Nakajima A.et al. Hemical treatment of carbon nanotubes[J]. Carbon,1999,34:279-281.
    [162]Hamon M, Chen J, Hu H.et al. Dissolution of single-walled carbon nanotubes[J]. Adv Mater,1999,11:834-840.
    [163]Qin Y, Shi J, Wu W. Concise Route to Functionalized Carbon Nanotubes[J]. J Phys Chem B,2003,107(47):12899-12901.
    [164]吴小利,岳涛,陆荣荣,等.碳纳米管的表面修饰及FTIR,Raman和XPS光谱表征[J]. 光谱学与光谱分析,2005,25(10):1595-1598.
    [165]Wang Y, Iqbal Z, Mitra S. Rapidly functionalized, water-Dispersed carbon nanotubes at high concentration[J]. J. Am. Chem. Soc.,2006,128:95-99.
    [166]Okpalugo T, Papakonstantinou P, Murphy H.et al. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs[J]. Carbon,2005,43:153-161.
    [167]Liu Y, Du C, Li C.et al. The preparation of multi-walled carbon nanotubes encapsulated by poly(3-acrylaminopropylsiloxane) with silica nanosphere on the polymer surface[J]. Carbon,2008,46:1670-1677.
    [168]Wei W, Zhang C, Du Z.et al. Assembly of fullerenol particles on carbon nanotubes through poly(acryloyl chloride)[J]. Mater. Lett.,2008,62:4167-4169.
    [169]Liu Y, Du Z, Zhang C.et al. Surface covalent encapsulation of multiwalled carbon nanotubes with poly(acryoyl chloride) grafted poly(ethylene glycol)[J]. J. Polym. Sci. Pol. Chem.,2006,44:6880-6887.
    [170]Liu Y, Du Z, Li Y.et al. Covalent functionalization of multiwalled carbon nanotubes with poly(acry acid)[J]. Chinese J. Chem.,2006,24:563-568.
    [171]Zheng C, Li X, Yu Y.et al. Conversion of polyaluminocarbosilane to Si-Al-C-(O) fibers: evolutions and effect of oxygen [J]. Trans. Nonferrous Met. Soc. China,2006,16:254-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700