用户名: 密码: 验证码:
多尺度有机硅基纳米材料改性聚合物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
影响聚合物纳米复合材料性能的因素很多,其中纳米粒子在聚合物中的分散和纳米粒子与基体界面处的相互作用强度,以及纳米粒子的形状尺寸等尤为重要。利用不同纳米材料自身的特点,调节其与聚合物基体界面相互作用,进而有针对性去设计和改善相关聚合物,获得高性能的新型聚合物纳米复合材料具有重要的意义。纳米材料的自身特点包括其形状差异如一维管状、二维层状及三维球状或类球状,它们分别具有不同的优势;还包括其表面性质和官能团不同,如表面含有非反应性有机官能团可提高纳米材料与基体的相容性,表面含有反应性官能团能促进纳米材料与聚合物结合更紧密,甚至形成交联网络结构。
     (1)苯胺甲基寡聚笼型倍半硅氧烷(ND42-POSS)是表面含有丰富的可反应性胺基官能团的三维纳米粒子,根据其特点,将其选作纳米交联中心,以化学反应的方式引入到苯乙烯-马来酸酐共聚物中。POSS在所制备的复合材料中添加量达30%时仍无宏观相分离现象。扫面电子显微镜和透射电子显微镜可观察到POSS以纳米尺度分散于基体中。DSC结果表明POSS的引入提高了复合材料的玻璃化转变温度,主要是由于体系中交联网络结构的形成限制了聚合物分子链段的运动。DMA结果揭示复合材料在高温下的储能模量显著提高,尤其是当POSS含量较高时(>18%)体系中形成了完整的三维交联网络结构。TGA数据显示复合材料在发生25%和70%热失重的温度均提高,并且材料最终的残炭也有所提高,综合性热能得到较大改善。
     (2)乙烯基有机硅纳米微球表面含有丰富的有机官能团,与聚合物具有良好的相容性,我们根据其可在聚合物基体中均分分散又无化学键合作用的特点,将其作为新型纳米材料引入到通用工程塑料聚丙烯和可再生材料聚乳酸中。通过SEM表征证实了乙烯基微球在基体中以单个粒子的形式在两种基体中均匀分散。对于聚丙烯,乙烯基纳米微球的加入除了表现无机纳米粒子的增强作用外,还为复合材料引入了新的能量耗散机制。通过拉伸测试和缺口冲击测试等表征发现,乙烯基纳米微球的加入同时提高了材料强度和韧性,并且复合材料的热稳定性也有所改善。对于聚乳酸,均匀分散于基体中的乙烯基纳米微球的加入起到了异相成核剂的作用,促进了聚乳酸结晶度和结晶速度的提高,解决了聚乳酸在应用中结晶慢和结晶度不高的问题。
     (3)石墨烯是具有大比表面积的片层结构纳米材料,但是加入到聚合物中时容易发生团聚和叠加。我们用氨乙基氨丙基三甲氧基硅烷对其进行功能化处理,改善了其在有机溶剂和聚合物中的分散。将该功能化石墨烯引入聚乳酸后,复合材料在聚乳酸进入橡胶态后的储能模量大幅提高。例如,质量比0.5%功能化石墨烯的加入使得聚乳酸在Tg附近储能模量的提高超过了一个数量级(从20MPa提高至300MPa)。同时,复合材料的抗热变形能力也显著提高。这主要是由于经功能化处理后,石墨烯在聚乳酸基体中均匀分散,与聚合物分子形成互相穿透的网络结构。
The properties of nanocomposites were affected by several factors. Of which, dispersion of nanoparticles, interactions between nanoparticles and polymer matrix, dimensions of the nanoparticles were particularly important. By considering the features of different nanoparticles and adjusting the interactions between nanofiller and matrix, nanocomposites with high performance could be obtained. Here the features of the nanoparticles mainly contained the dimensions and the surface functional groups. The dimensions of nanoparticles could be one dimensional nanomaterials like nanotubes, two dimensional nanomaterials like clay or graphene and three dimensional nanomaterials like silica or POSS. The surface functional groups of nanoparticles could be reactive or non-reactive. Research on the interaction of the nanoparticle dimensions and the interactions between nanofiller and matrix could be of great significance.
     (1) N-Phenylamino-methyl POSS was three dimensional reactive nanoparticle. Considering the reactivity, it was incorporated to modify the PSMA resin. A series of crosslinked hybrids were prepared using various amounts of POSS as nano-scale crosslink agent. The hybrids showed no macro-phase separation even when the POSS concentration was up to30wt%. HRTEM measurements showed the POSS was nano scale separated in PSMA matrix. DSC results indicated that Tg increased with the addition of POSS. DMA revealed the storage modulus of the hybrids at high temperature was much improved compared with that of neat PSMA, especially with high POSS loadings. TGA revealed the values of Td,25%to Td,70%of the hybrids were increased and the char yields were much improved. The enhanced properties were ascribed to the synergetic effects of PSMA and POSS. Because of the good compatibility between POSS and PSMA, POSS as a crosslinker could be dispersed into PSMA matrix in nano scale. PSMA chains would be restricted by the nano scale crosslinker, and resulted in the great enhancement of mechanical and thermal properties.
     (2) The vinyl-silica nanoparticles were three dimensional nanoparticles, which had good compatibility with polymers due to the rich surface organic functional groups. Considering the good dispersion of vinyl-silica nanoparticles in polymers and its non-reactivity, we incorporated the nanofillers into polypropylene (PP) and polylactic acid (PLLA). SEM indicated that vinyl-silica nanoparticles were homogeneously dispersed in both polymers. For PP, Vinyl-silica nanoparticles not only worked as rigid particles, but also brought new energy-dissipating mechanisms for the nanocomposites. Simultaneously improved strength and toughness of the nanocomposites was confirmed by tensile test and notched impact test. Also, the enhanced thermostabilization was proved by TGA measurement. For PLLA, the well dispersed vinyl-silica nanoparticles worked as heterogeneous nucleation agent. The improvements of crystallinity and crystallization rate of PLLA were both confirmed by DSC.
     (3) Graphene was a two dimensional nanoparticles with large specific surface area. When composited with polymers, it tended to aggregated. Here we functionalize the graphene with N-(aminoethyl)-aminopropyltrimethoxysilane (KH792) to improve its dispersion in organic solvent and polymer matrix. With the incorporation of the KH792-RGO, the storage modulus of the composite was largely increased in the rubber state.0.5wt%addition of KH792-RGO dramatically increased the storage modulus of PLLA around Tg by one order of magnitude compared with neat PLLA (from20to300MPa). Meanwhile, the heat distortion resistance of PLLA/KH792-RGO was greatly improved as well. Formation of a graphene network in the composites was considered to be the main driving force of the outstanding performance for the nanocomposites.
引文
[1]G. Hodes. When Small Is Different:Some Recent Advances in Concepts and Applications of Nanoscale Phenomena. Advanced Materials.2007,19 (5):639-655
    [2]Y. Yang, P. Wang. Preparation and Characterizations of a New Ps/Tio2 Hybrid Membranes by Sol-Gel Process. Polymer.2006,47 (8):2683-2688
    [3]Y. Wang, X. Wang, J. Li, Z. Mo, X. Zhao, X. Jing, F. Wang. Conductive Polyaniline/Silica Hybrids from Sol-Gel Process. Advanced Materials.2001,13 (20): 1582-1585
    [4]C. Sanchez, B. Julian, P. Belleville, M. Popall. Applications of Hybrid Organic-Inorganic Nanocomposites. Journal of Materials Chemistry.2005,15 (35-36): 3559-3592
    [5]X.-L. Xie, Q.-X. Liu, R.K.-Y. Li, X.-P. Zhou, Q.-X. Zhang, Z.-Z. Yu, Y.-W. Mai. Rheological and Mechanical Properties of Pvc/Caco3 Nanocomposites Prepared by in Situ Polymerization. Polymer.2004,45 (19):6665-6673
    [6]H. Zeng, C. Gao, Y. Wang, P.C.P. Watts, H. Kong, X. Cui, D. Yan. In Situ Polymerization Approach to Multiwalled Carbon Nanotubes-Reinforced Nylon 1010 Composites:Mechanical Properties and Crystallization Behavior. Polymer.2006,47 (1):113-122
    [7]F. Leroux, J.-P. Besse. Polymer Interleaved Layered Double Hydroxide:A New Emerging Class of Nanocomposites. Chemistry of Materials.2001,13 (10): 3507-3515
    [8]A. Akelah, A. Moet. Polymer-Clay Nanocomposites:Free-Radical Grafting of Polystyrene on to Organophilic Montmorillonite Interlayers. Journal of Materials Science.1996,31 (13):3589-3596
    [9]W. Chen, B. Qu. Structural Characteristics and Thermal Properties of Pe-G-Ma/Mgal-Ldh Exfoliation Nanocomposites Synthesized by Solution Intercalation. Chemistry of Materials.2003,15 (16):3208-3213
    [10]A.S. Moet, A. Akelah. Polymer-Clay Nanocomposites:Polystyrene Grafted onto Montmorillonite Interlayers. Materials Letters.1993,18 (1-2):97-102
    [11]R.A. Vaia, E.P. Giannelis. Polymer Melt Intercalation in Organically-Modified Layered Silicates:Model Predictions and Experiment. Macromolecules.1997,30 (25):8000-8009
    [12]S. Sinha Ray, M. Okamoto. Polymer/Layered Silicate Nanocomposites:A Review from Preparation to Processing. Progress in Polymer Science.2003,28 (11): 1539-1641
    [13]P.C. LeBaron, Z. Wang, T.J. Pinnavaia. Polymer-Layered Silicate Nanocomposites:An Overview. Applied Clay Science.1999,15 (1-2):11-29
    [14]Z.-M. Liang, J. Yin, H.-J. Xu. Polyimide/Montmorillonite Nanocomposites Based on Thermally Stable, Rigid-Rod Aromatic Amine Modifiers. Polymer.2003,44 (5):1391-1399
    [15]X. Liu, Q. Wu. Polyamide 66/Clay Nanocomposites Via Melt Intercalation. Macromolecular Materials and Engineering.2002,287 (3):180-186
    [16]J.-H. Chang, T.-G. Jang, K.J. Ihn, W.-K. Lee, G.S. Sur. Poly(Vinyl Alcohol) Nanocomposites with Different Clays:Pristine Clays and Organoclays. Journal of Applied Polymer Science.2003,90 (12):3208-3214
    [17]E.P. Giannelis. Polymer Layered Silicate Nanocomposites. Advanced Materials. 1996,8 (1):29-35
    [18]A. Okada, A. Usuki. Twenty Years of Polymer-Clay Nanocomposites. Macromolecular Materials and Engineering.2006,291 (12):1449-1476
    [19]G.G. Roberts. An Applied Science Perspective of Langmuir-Blodgett Films. Advances in Physics.1985,34 (4):475-512
    [20]K. Ariga, J.P. Hill, Q. Ji. Layer-by-Layer Assembly as a Versatile Bottom-up Nanofabrication Technique for Exploratory Research and Realistic Application. Physical Chemistry Chemical Physics.2007,9 (19):2319-2340
    [21]I.A. Aksay, M. Trau, S. Manne, I. Honma, N. Yao, L. Zhou, P. Fenter, P.M. Eisenberger, S.M. Gruner. Biomimetic Pathways for Assembling Inorganic Thin Films. Science.1996,273 (5277):892-898
    [22]R. Misra, A.H. Alidedeoglu, W.L. Jarrett, S.E. Morgan. Molecular Miscibility and Chain Dynamics in Poss/Polystyrene Blends:Control of Poss Preferential Dispersion States. Polymer.2009,50 (13):2906-2918
    [23]A. Dufresne, J.-Y. Cavaille, W. Helbert. New Nanocomposite Materials: Microcrystalline Starch Reinforced Thermoplastic. Macromolecules.1996,29 (23): 7624-7626
    [24]Y. Wang, F.-B. Chen, Y.-C. Li, K.-C. Wu. Melt Processing of Polypropylene/Clay Nanocomposites Modified with Maleated Polypropylene Compatibilizers. Composites Part B:Engineering.2004,35 (2):111-124
    [25]J. Cho, M.S. Joshi, C.T. Sun. Effect of Inclusion Size on Mechanical Properties of Polymeric Composites with Micro and Nano Particles. Composites Science and Technology.2006,66 (13):1941-1952
    [26]A.J. Kinloch, A.C. Taylor. The Mechanical Properties and Fracture Behaviour of Epoxy-Inorganic Micro-and Nano-Composites. Journal of Materials Science.2006, 41 (11):3271-3297
    [27]D.P.N. Vlasveld, M. de Jong, H.E.N. Bersee, A.D. Gotsis, S.J. Picken. The Relation between Rheological and Mechanical Properties of Pa6 Nano- and Micro-Composites. Polymer.2005,46 (23):10279-10289
    [28]L. An, Y. Pan, X. Shen, H. Lu, Y. Yang. Rod-Like Attapulgite/Polyimide Nanocomposites with Simultaneously Improved Strength, Toughness, Thermal Stability and Related Mechanisms. Journal of Materials Chemistry.2008,18 (41): 4928-4941
    [29]T.H. Zhou, W.H. Ruan, M.Z. Rong, M.Q. Zhang, Y.L. Mai. Keys to Toughening of Non-Layered Nanoparticles/Polymer Composites. Advanced Materials.2007,19 (18):2667-2671
    [30]D. Gersappe. Molecular Mechanisms of Failure in Polymer Nanocomposites. Physical Review Letters.2002,89 (5):058301
    [31]G. Choudalakis, A.D. Gotsis. Permeability of Polymer/Clay Nanocomposites:A Review. European Polymer Journal.2009,45 (4):967-984
    [32]Y. Zhong, D. Janes, Y. Zheng, M. Hetzer, D. De Kee. Mechanical and Oxygen Barrier Properties of Organoclay-Polyethylene Nanocomposite Films. Polymer Engineering & Science.2007,47 (7):1101-1107
    [33]H.K. Jeong, W. Krych, H. Ramanan, S. Nair, E. Marand, M. Tsapatsis. Fabrication of Polymer/Selective-Flake Nanocomposite Membranes and Their Use in Gas Separation. Chemistry of Materials.2004,16 (20):3838-3845
    [34]M.-S. Kim, J. Yan, K.-M. Kang, K.-H. Joo, Y.-J. Kang, S.-H. Ahn. Soundproofing Ability and Mechanical Properties of Polypropylene/Exfoliated Graphite Nanoplatelet/Carbon Nanotube (Pp/Xgnp/Cnt) Composite. International Journal of Precision Engineering and Manufacturing.2013,14 (6):1087-1092
    [35]J.-C. Lee, Y.-S. Hong, R.-G. Nan, M.-K. Jang, C. Lee, S.-H. Ahn, Y.-J. Kang. Soundproofing Effect of Nano Particle Reinforced Polymer Composites. Journal of Mechanical Science and Technology.2008,22 (8):1468-1474
    [36]N.N. Ghosh, B. Kiskan, Y. Yagci. Polybenzoxazines-New High Performance Thermosetting Resins:Synthesis and Properties. Progress in Polymer Science.2007, 32(11):1344-1391
    [37]C. Sanchez, B. Lebeau, F. Chaput, J.P. Boilot. Optical Properties of Functional Hybrid Organic-Inorganic Nanocomposites. Advanced Materials.2003,15 (23): 1969-1994
    [38]M.A. Harmer, W.E. Farneth, Q. Sun. High Surface Area Nafion(?) Resin/Silica Nanocomposites:A New Class of Solid Acid Catalyst. Journal of the American Chemical Society.1996,118 (33):7708-7715
    [39]R. Gangopadhyay, A. De. Conducting Polymer Nanocomposites:A Brief Overview. Chemistry of Materials.2000,12 (3):608-622
    [40]C. Sanchez, G.J.d.A.A. Soler-Illia, F. Ribot, T. Lalot, C.R. Mayer, V. Cabuil. Designed Hybrid Organic-Inorganic Nanocomposites from Functional Nanobuilding Blocks. Chemistry of Materials.2001,13 (10):3061-3083
    [41]A.C. Balazs, T. Emrick, T.P. Russell. Nanoparticle Polymer Composites:Where Two Small Worlds Meet. Science.2006,314 (5802):1107-1110
    [42]J.-Z. Zheng, X.-P. Zhou, X.-L. Xie, Y.-W. Mai. Silica Hybrid Particles with Nanometre Polymer Shells and Their Influence on the Toughening of Polypropylene. Nanoscale.2010,2 (10):2269-2274
    [43]X. Sun, H. Sun, H. Li, H. Peng. Developing Polymer Composite Materials: Carbon Nanotubes or Graphene? Advanced Materials.2013:n/a-n/a
    [44]E.T. Kopesky, G.H. McKinley, R.E. Cohen. Toughened Poly(Methyl Methacrylate) Nanocomposites by Incorporating Polyhedral Oligomeric Silsesquioxanes. Polymer.2006,47 (1):299-309
    [45]H. Hu, X. Wang, J. Wang, L. Wan, F. Liu, H. Zheng, R. Chen, C. Xu. Preparation and Properties of Graphene Nanosheets-Polystyrene Nanocomposites Via in Situ Emulsion Polymerization. Chemical Physics Letters.2010,484 (4-6):247-253
    [46]C. Noguez. Surface Plasmons on Metal Nanoparticles:The Influence of Shape and Physical Environment. The Journal of Physical Chemistry C.2007,111 (10): 3806-3819
    [47]X. Peng, S.S. Wong. Functional Covalent Chemistry of Carbon Nanotube Surfaces. Advanced Materials.2009,21 (6):625-642
    [48]曾人泉.塑料加工助剂.1997.9:807
    [49]曾人泉.塑料加工助剂,1997.9:844
    [50]Z.W. Li, Y.F. Zhu. Study on the Surface-Modification of Tio2 Nanoparticles. Acta Chimica Sinica.2003,61 (9):1484-1487
    [51]M.L.C.M. Oosterling, A. Sein, A.J. Schouten. Anionic Grafting of Polystyrene and Poly(Styrene-Block-Isoprene) onto Microparticulate Silica and Glass Slides. Polymer.1992,33 (20):4394-4400
    [52]N. Tsubokawa, A. Kogure. Surface Grafting of Polymers onto Inorganic Ultrafine Particles:Reaction of Functional Polymers with Acid Anhydride Groups Introduced onto Inorganic Ultrafine Particles. Journal of Polymer Science Part A:Polymer Chemistry.1991,29 (5):697-702
    [53]A. Qu, X. Wen, P. Pi, J. Cheng, Z. Yang. Synthesis of Composite Particles through Emulsion Polymerization Based on Silica/Fluoroacrylate-Siloxane Using Anionic Reactive and Nonionic Surfactants. Journal of Colloid and Interface Science. 2008,317(1):62-69
    [54]H. Bai, C. Li, X. Wang, G. Shi. A Ph-Sensitive Graphene Oxide Composite Hydrogel. Chemical Communications.2010,46 (14):2376-2378
    [55]Y. Liu, Y. Ni, S. Zheng. Polyurethane Networks Modified with Octa(Propylglycidyl Ether) Polyhedral Oligomeric Silsesquioxane. Macromolecular Chemistry and Physics.2006,207 (20):1842-1851
    [56]Q. Zhang, H. He, K. Xi, X. Huang, X. Yu, X. Jia. Synthesis of N-Phenylaminomethyl Poss and Its Utilization in Polyurethane. Macromolecules. 2011,44 (3):550-557
    [57]X. Gui, H. Li, L. Zhang, Y. Jia, L. Liu, Z. Li, J. Wei, K. Wang, H. Zhu, Z. Tang, D. Wu, A. Cao. A Facile Route to Isotropic Conductive Nanocomposites by Direct Polymer Infiltration of Carbon Nanotube Sponges. ACS Nano.2011,5 (6):4276-4283
    [58]E.T. Thostenson, T.-W. Chou. Aligned Multi-Walled Carbon Nanotube-Reinforced Composites:Processing and Mechanical Characterization. Journal of Physics D:Applied Physics.2002,35 (16):L77
    [59]Z.-M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Composites Science and Technology.2003,63 (15):2223-2253
    [60]R. Tenne. Doped and Heteroatom-Containing Fullerene-Like Structures and Nanotubes. Advanced Materials.1995,7 (12):965-995
    [61]P.M. Ajayan, O. Stephan, P. Redlich, C. Colliex. Carbon Nanotubes as Removable Templates for Metal Oxide Nanocomposites and Nanostructures. Nature.1995,375 (6532):564-567
    [62]M. Naffakh, C. Marco, M.n.A. Gomez-Fatou. Isothermal Crystallization Kinetics of Novel Isotactic Polypropylene/Mos2 Inorganic Nanotube Nanocomposites. The Journal of Physical Chemistry B.2011,115 (10):2248-2255
    [63]YD. Li, X.L. Li, R.R. He, J. Zhu, Z.X. Deng. Artificial Lamellar Mesostructures to Ws2 Nanotubes. Journal of the American Chemical Society.2002,124 (7): 1411-1416
    [64]B.C. Satishkumar, A. Govindaraj, M. Nath, C.N.R. Rao. Synthesis of Metal Oxide Nanorods Using Carbon Nanotubes as Templates. Journal of Materials Chemistry.2000,10 (9):2115-2119
    [65]W. Bradley. The Structural Scheme of Attapulgite. American Mineralogist.1940, 25 (6):405-410
    [66]L. Wang, J. Sheng. Preparation and Properties of Polypropylene/Org-Attapulgite Nanocomposites. Polymer.2005,46 (16):6243-6249
    [67]S. Wen, C. Gong, Y.-C. Shu, F.-C. Tsai, J.-T. Yeh. Sulfonated Poly(Ether Sulfone)/Phosphotungstic Acid/Attapulgite Composite Membranes for Direct Methanol Fuel Cells. Journal of Applied Polymer Science.2012,123 (2):646-656
    [68]Garci, amp, x, D. a-Lopez, O. Picazo, J.C. Merino, J.M. Pastor. Polypropylene-Clay Nanocomposites:Effect of Compatibilizing Agents on Clay Dispersion. European Polymer Journal.2003,39 (5):945-950
    [69]E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, T.C. Chung. Polypropylene/Montmorillonite Nanocomposites. Review of the Synthetic Routes and Materials Properties. Chemistry of Materials.2001,13 (10):3516-3523
    [70]A.K. Geim. Graphene:Status and Prospects. Science.2009,324 (5934): 1530-1534
    [71]S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff. Graphene-Based Composite Materials. Nature.2006,442 (7100):282-286
    [72]P.V. Kamat. Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support. The Journal of Physical Chemistry Letters.2009,1 (2):520-527
    [73]D. Li, R.B. Kaner. Graphene-Based Materials. Science.2008,320 (5880): 1170-1171
    [74]S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff. Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets. Carbon.2006,44 (15):3342-3347
    [75]RamanathanT, A.A. Abdala, StankovichS, D.A. Dikin, M. Herrera Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, ChenX, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud'Homme, L.C. Brinson. Functionalized Graphene Sheets for Polymer Nanocomposites. Nat Nano.2008,3 (6):327-331
    [76]B. Das, K.E. Prasad, U. Ramamurty, C.N.R. Rao. Nano-Indentation Studies on Polymer Matrix Composites Reinforced by Few-Layer Graphene. Nanotechnology. 2009,20 (12):125705 [77] S. Ansari, A. Kelarakis, L. Estevez, E.P. Giannelis. Oriented Arrays of Graphene
    in a Polymer Matrix by in Situ Reduction of Graphite Oxide Nanosheets. Small.2010, 6 (2):205-209
    [78]J.L. Vickery, A.J. Patil, S. Mann. Fabrication of Graphene-Polymer Nanocomposites with Higher-Order Three-Dimensional Architectures. Advanced Materials.2009,21 (21):2180-2184
    [79]S. Sun, C. Li, L. Zhang, H.L. Du, J.S. Burnell-Gray. Effects of Surface Modification of Fumed Silica on Interfacial Structures and Mechanical Properties of Poly(Vinyl Chloride) Composites. European Polymer Journal.2006,42 (7): 1643-1652
    [80]R. Song, D. Yang, L. He. Effect of Surface Modification of Nanosilica on Crystallization, Thermal and Mechanical Properties of Poly(Vinylidene Fluoride). Journal of Materials Science.2007,42 (20):8408-8417
    [81]S.-s. Hwang, P.P. Hsu. Effects of Silica Particle Size on the Structure and Properties of Polypropylene/Silica Composites Foams. Journal of Industrial and Engineering Chemistry.2013,19 (4):1377-1383
    [82]S.-J. Park, J.-S. Jin. Effect of Silane Coupling Agent on Mechanical Interfacial Properties of Glass Fiber-Reinforced Unsaturated Polyester Composites. Journal of Polymer Science Part B:Polymer Physics.2003,41 (1):55-62
    [83]M. Sabzi, S.M. Mirabedini, J. Zohuriaan-Mehr, M. Atai. Surface Modification of Tio2 Nano-Particles with Silane Coupling Agent and Investigation of Its Effect on the Properties of Polyurethane Composite Coating. Progress in Organic Coatings.2009, 65 (2):222-228
    [84]D.B. Cordes, P.D. Lickiss, F. Rataboul. Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chemical Reviews.2010,110 (4):2081-2173
    [85]H. Xu, S.-W. Kuo, J.-S. Lee, F.-C. Chang. Preparations, Thermal Properties, and Tg Increase Mechanism of Inorganic/Organic Hybrid Polymers Based on Polyhedral Oligomeric Silsesquioxanes. Macromolecules.2002,35 (23):8788-8793
    [86]H. Pan, Z. Qiu. Biodegradable Poly(L-Lactide)/Polyhedral Oligomeric Silsesquioxanes Nanocomposites:Enhanced Crystallization, Mechanical Properties, and Hydrolytic Degradation. Macromolecules.2010,43 (3):1499-1506
    [87]O. Monticelli, A. Fina, A. Ullah, P. Waghmare. Preparation, Characterization, and Properties of Novel Psma-Poss Systems by Reactive Blending. Macromolecules.2009, 42 (17):6614-6623
    [88]Y.-G. Lee, J.-H. Park, C. Oh, S.-G. Oh, Y.C. Kim. Preparation of Highly Monodispersed Hybrid Silica Spheres Using a One-Step Sol-Gel Reaction in Aqueous Solution. Langmuir.2007,23 (22):10875-10878
    [1]G. Whitesides, J. Mathias, C. Seto. Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures. Science.1991,254 (5036): 1312-1319
    [2]K. Guido. Concepts for the Incorporation of Inorganic Building Blocks into Organic Polymers on a Nanoscale. Progress in Polymer Science.2003,28 (1):83-114
    [3]H. Zou, S. Wu, J. Shen. Polymer/Silica Nanocomposites:Preparation, Characterization, Properties, and Applications. Chemical Reviews.2008,108 (9): 3893-3957
    [4]Y. Li, W.-B. Zhang, I.F. Hsieh, G. Zhang, Y. Cao, X. Li, C. Wesdemiotis, B. Lotz, H. Xiong, S.Z.D. Cheng. Breaking Symmetry toward Nonspherical Janus Particles Based on Polyhedral Oligomeric Silsesquioxanes:Molecular Design, "Click" Synthesis, and Hierarchical Structure. Journal of the American Chemical Society. 2011,133 (28):10712-10715
    [5]A. Tuteja, W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, R.E. Cohen. Designing Superoleophobic Surfaces. Science.2007,318 (5856):1618-1622
    [6]D.B. Cordes, P.D. Lickiss, F. Rataboul. Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chemical Reviews.2010,110 (4):2081-2173
    [7]W. Zhang, A.H.E. Muller. A "Click Chemistry" Approach to Linear and Star-Shaped Telechelic Poss-Containing Hybrid Polymers. Macromolecules.2010,43 (7):3148-3152
    [8]J. Choi, S.G. Kim, R.M. Laine. Organic/Inorganic Hybrid Epoxy Nanocomposites from Aminophenylsilsesquioxanes. Macromolecules.2003,37 (1):99-109
    [9]K. Pielichowski, J. Njuguna, B. Janowski, J. Pielichowski. Polyhedral Oligomeric Silsesquioxanes (Poss)-Containing Nanohybrid Polymers Supramolecular Polymers Polymeric Betains Oligomers:Springer Berlin/Heidelberg, 2006:225-296
    [10]S.A. Madbouly, J.U. Otaigbe. Recent Advances in Synthesis, Characterization and Rheological Properties of Polyurethanes and Poss/Polyurethane Nanocomposites Dispersions and Films. Progress in Polymer Science.2009,34 (12):1283-1332
    [11]J. Brus, M. Urbanova, A. Strachota. Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes:Structure and Segmental Dynamics as Studied by Solid-State Nmr. Macromolecules.2007,41 (2):372-386
    [12]H. Xu, B. Yang, J. Wang, S. Guang, C. Li. Preparation, Tg Improvement, and Thermal Stability Enhancement Mechanism of Soluble Poly(Methyl Methacrylate) Nanocomposites by Incorporating Octavinyl Polyhedral Oligomeric Silsesquioxanes. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY.2007,45 (22):5308-5317
    [13]F. Wang, X. Lu, C. He. Some Recent Developments of Polyhedral Oligomeric Silsesquioxane (Poss)-Based Polymeric Materials. Journal of Materials Chemistry. 2011,21 (9):2775-2782
    [14]M. Tanahashi. Development of Fabrication Methods of Filler/Polymer Nanocomposites:With Focus on Simple Melt-Compounding-Based Approach without Surface Modification of Nanofillers. Materials.2010,3 (3):1593-1619
    [15]Q. Wu, C. Zhang, R. Liang, B. Wang. Combustion and Thermal Properties of Epoxy/Phenyltrisilanol Polyhedral Oligomeric Silsesquioxane Nanocomposites. Journal of Thermal Analysis and Calorimetry.2010,100 (3):7
    [16]C.-M. Leu, G.M. Reddy, K.-H. Wei, C.-F. Shu. Synthesis and Dielectric Properties of Polyimide-Chain-End Tethered Polyhedral Oligomeric Silsesquioxane Nanocomposites. Chemistry of Materials.2003,15 (11):2261-2265
    [17]T.S. Haddad, J.D. Lichtenhan. Hybrid Organic-Inorganic Thermoplastics: Styryl-Based Polyhedral Oligomeric Silsesquioxane Polymers. Macromolecules.1996, 29 (22):7302-7304
    [18]J.D. Lichtenhan, Y.A. Otonari, M.J. Carr. Linear Hybrid Polymer Building Blocks:Methacrylate-Functionalized Polyhedral Oligomeric Silsesquioxane Monomers and Polymers. Macromolecules.1995,28 (24):8435-8437
    [19]J. Choi, J. Harcup, A.F. Yee, Q. Zhu, R.M. Laine. Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Journal of the American Chemical Society. 2001,123(46):11420-11430
    [20]K. Wang, L. Cai, S. Wang. Methacryl-Polyhedral Oligomeric Silsesquioxane as a Crosslinker for Expediting Photo-Crosslinking of Poly(Propylene Fumarate):Material Properties and Bone Cell Behavior. Polymer.2011,52 (13):2827-2839
    [21]D.Z. Chen, S.P. Yi, W.B. Wu, Y.L. Zhong, J. Liao, C. Huang, W.J. Shi. Synthesis and Characterization of Novel Room Temperature Vulcanized (Rtv) Silicone Rubbers Using Vinyl-Poss Derivatives as Cross Linking Agents. Polymer.2010,51 (17): 3867-3878
    [22]Y. Bian, J. Mijovic. Nanonetworks of Multifunctional Polyhedral Oligomeric Silsesquioxane and Polypropylene Oxide. Macromolecules.2008,41 (19):7122-7130
    [23]Y. Ni, S. Zheng, K. Nie. Morphology and Thermal Properties of Inorganic-Organic Hybrids Involving Epoxy Resin and Polyhedral Oligomeric Silsesquioxanes. Polymer.2004,45 (16):5557-5568
    [24]S. Bizet, J. Galy, J.-F. Gerard. Structure-Property Relationships in Organic-Inorganic Nanomaterials Based on Methacryl-Poss and Dimethacrylate Networks. Macromolecules.2006,39 (7):2574-2583
    [25]Y. Liu, S. Zheng, K. Nie. Epoxy Nanocomposites with Octa(Propylglycidyl Ether) Polyhedral Oligomeric Silsesquioxane. Polymer.2005,46 (25):12016-12025
    [26]J.K. Herman Teo, K.C. Teo, B. Pan, Y. Xiao, X. Lu. Epoxy/Polyhedral Oligomeric Silsesquioxane (Poss) Hybrid Networks Cured with an Anhydride:Cure Kinetics and Thermal Properties. Polymer.2007,48 (19):5671-5680
    [27]Y. Lin, J. Jin, M. Song, S.J. Shaw, C.A. Stone. Curing Dynamics and Network Formation of Cyanate Ester Resin/Polyhedral Oligomeric Silsesquioxane Nanocomposites. Polymer.2011,52 (8):1716-1724
    [28]C.U. Pittman Jr, G.-Z. Li, H. Ni. Hybrid Inorganic/Organic Crosslinked Resins Containing Polyhedral Oligomeric Silsesquioxanes. Macromolecular Symposia.2003, 196(1):301-325
    [29]T.F. Baumann, T.V. Jones, T. Wilson, A.P. Saab, R.S. Maxwell. Synthesis and Characterization of Novel Pdms Nanocomposites Using Poss Derivatives as Cross-Linking Filler. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY.2009,47 (10):2589-2596
    [30]L. Zheng, S. Hong, G. Cardoen, E. Burgaz, S.P. Gido, E.B. Coughlin. Polymer Nanocomposites through Controlled Self-Assembly of Cubic Silsesquioxane Scaffolds. Macromolecules.2004,37 (23):8606-8611
    [31]S. Turri, M. Levi. Structure, Dynamic Properties, and Surface Behavior of Nanostructured Ionomeric Polyurethanes from Reactive Polyhedral Oligomeric Silsesquioxanes. Macromolecules.2005,38 (13):5569-5574
    [32]H. Liu, S. Zheng, K. Nie. Morphology and Thermomechanical Properties of Organic-Inorganic Hybrid Composites Involving Epoxy Resin and an Incompletely Condensed Polyhedral Oligomeric Silsesquioxane. Macromolecules.2005,38 (12): 5088-5097
    [33]C.F. Huang, S.W. Kuo, F.J. Lin, W.J. Huang, C.F. Wang, W.Y. Chen, F.C. Chang. Influence of Pmma-Chain-End Tethered Polyhedral Oligomeric Silsesquioxanes on the Miscibility and Specific Interaction with Phenolic Blends. Macromolecules.2006, 39 (1):300-308
    [34]D.B. Drazkowski, A. Lee, T.S. Haddad, D.J. Cookson. Chemical Substituent Effects on Morphological Transitions in Styrene-Butadiene-Styrene Triblock Copolymer Grafted with Polyhedral Oligomeric Silsesquioxanes. Macromolecules. 2006,39(5):1854-1863
    [35]J.W. Xu, X. Li, C.M. Cho, C.L. Toh, L. Shen, K.Y. Mya, X.H. Lu, C.B. He. Polyhedral Oligomeric Silsesquioxanes Tethered with Perfluoroalkylthioether Corner Groups:Facile Synthesis and Enhancement of Hydrophobicity of Their Polymer Blends. Journal of Materials Chemistry.2009,19 (27):4740-4745
    [36]O. Monticelli, A. Fina, A. Ullah, P. Waghmare. Preparation, Characterization, and Properties of Novel Psma-Poss Systems by Reactive Blending. Macromolecules.2009, 42 (17):6614-6623
    [37]A. Tsuchida, C. Bolln, F.G. Sernetz, H. Frey, R. Mulhaupt. Ethene and Propene Copolymers Containing Silsesquioxane Side Groups. Macromolecules.1997,30 (10): 2818-2824
    [38]C.-M. Leu, Y.-T. Chang, K.-H. Wei. Synthesis and Dielectric Properties of Polyimide-Tethered Polyhedral Oligomeric Silsesquioxane (Poss) Nanocomposites Via Poss-Diamine. Macromolecules.2003,36 (24):9122-9127
    [39]R.R. Patel, R. Mohanraj, C.U. Pittman. Properties of Polystyrene and Polymethyl Methacrylate Copolymers of Polyhedral Oligomeric Silsesquioxanes:A Molecular Dynamics Study. Journal of Polymer Science Part B:Polymer Physics.2006,44 (1): 234-248
    [40]H.-S. Ryu, D.-G. Kim, J.-C. Lee. Polysiloxanes Containing Polyhedral Oligomeric Silsesquioxane Groups in the Side Chains; Synthesis and Properties. Polymer.2010,51 (11):2296-2304
    [41]A. Lee, J.D. Lichtenhan. Viscoelastic Responses of Polyhedral Oligosilsesquioxane Reinforced Epoxy Systems. Macromolecules.1998,31 (15): 4970-4974
    [42]J.D. Lichtenhan. Polyhedral Oligomeric Silsesquioxanes-Building-Blocks for Silsesquioxane-Based Polymers and Hybrid Materials. Comments on Inorganic Chemistry.1995,17 (2):115-130
    [43]K. Tanaka, S. Adachi, Y. Chujo. Structure-Property Relationship of Octa-Substituted Poss in Thermal and Mechanical Reinforcements of Conventional Polymers. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY. 2009,47 (21):5690-5697
    [44]A. Dasari, Z.-Z. Yu, Y.-W. Mai, G. Cai, H. Song. Roles of Graphite Oxide, Clay and Poss During the Combustion of Polyamide 6. Polymer.2009,50 (6):1577-1587
    [45]M. Joshi, B.S. Butola, G. Simon, N. Kukaleva. Rheological and Viscoelastic Behavior of Hdpe/Octamethyl-Poss Nanocomposites. Macromolecules.2006,39 (5): 1839-1849
    [46]Y. Zhang, S. Lee, M. Yoonessi, K. Liang, C.U. Pittman. Phenolic Resin-Trisilanolphenyl Polyhedral Oligomeric Silsesquioxane (Poss) Hybrid Nanocomposites:Structure and Properties. Polymer.2006,47 (9):2984-2996
    [47]E.T. Kopesky, G.H. McKinley, R.E. Cohen. Toughened Poly(Methyl Methacrylate) Nanocomposites by Incorporating Polyhedral Oligomeric Silsesquioxanes. Polymer.2006,47 (1):299-309
    [48]Y. Zhao, D.A. Schiraldi. Thermal and Mechanical Properties of Polyhedral Oligomeric Silsesquioxane (Poss)/Polycarbonate Composites. Polymer.2005,46 (25): 11640-11647
    [49]Z. Wang, S. Leng, Z. Wang, G. Li, H. Yu. Nanostructured Organic-Inorganic Copolymer Networks Based on Polymethacrylate-Functionalized Octaphenylsilsesquioxane and Methyl Methacrylate:Synthesis and Characterization. Macromolecules.2011,44 (3):566-574
    [50]Q. Zhang, H. He, K. Xi, X. Huang, X. Yu, X. Jia. Synthesis of N-Phenylaminomethyl Poss and Its Utilization in Polyurethane. Macromolecules. 2011,44(3):550-557
    [51]J.A. Trejo-O'reilly, J.Y. Cavaille, M. Paillet, A. Gandini, P. Herrera-Franco, J. Cauich. Interfacial Properties of Regenerated Cellulose Fiber/Polystyrene Composite Materials. Effect of the Coupling Agent's Structure on the Micromechanical Behavior. Polymer Composites.2000,21 (1):65-71
    [52]P.A. Song, L.H. Xu, Z.H. Guo, Y. Zhang, Z.P. Fang. Flame-Retardant-Wrapped Carbon Nanotubes for Simultaneously Improving the Flame Retardancy and Mechanical Properties of Polypropylene. Journal of Materials Chemistry.2008,18 (42):5083-5091
    [53]M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, A. Okada. Preparation and Mechanical Properties of Polypropylene-Clay Hybrids. Macromolecules.1997,30 (20):6333-6338
    [54]M. Chen, Y. Xie, Z. Qiao, Y. Zhu, Y. Qian. Synthesis of Short Cds Nanofiber/Poly(Styrene-Alt-Maleic Anhydride) Composites Using [Gamma]-Irradiation. Journal of Materials Chemistry.2000,10 (2):329-332
    [55]J. Choi, R. Tamaki, S.G. Kim, R.M. Laine. Organic/Inorganic Imide Nanocomposites from Aminophenylsilsesquioxanes. Chemistry of Materials.2003,15 (17):3365-3375
    [56]Y. Liu, Z. Shi, H. Xu, J. Fang, X. Ma, J. Yin. Preparation, Characterization, and Properties of Novel Polyhedral Oligomeric Silsesquioxane-Polybenzimidazole Nanocomposites by Friedel-Crafts Reaction. Macromolecules.2010,43 (16): 6731-6738
    [57]B.X. Fu, A. Lee, T.S. Haddad. Styrene-Butadiene-Styrene Triblock Copolymers Modified with Polyhedral Oligomeric Silsesquioxanes. Macromolecules.2004,37 (14):5211-5218
    [58]J Wu, T S. Haddad, Patrick T. Mather. Vertex Group Effects in Entangled Polystyrene-Polyhedral Oligosilsesquioxane (POSS) Copolymers. Macromolecules. 2009,42(4):1142-1152
    [59]A.K. Nanda, D.A. Wicks, S.A. Madbouly, J.U. Otaigbe. Nanostructured Polyurethane/Poss Hybrid Aqueous Dispersions Prepared by Homogeneous Solution Polymerization. Macromolecules.2006,39 (20):7037-7043
    [60]D. Kessler, P. Theato. Synthesis of Functional Inorganic-Organic Hybrid Polymers Based on Poly(Silsesquioxanes) and Their Thin Film Properties. Macromolecules.2008,41 (14):5237-5244
    [1]E.P. Giannelis. Polymer Layered Silicate Nanocomposites. Advanced Materials. 1996,8 (1):29-35
    [2]J.J. Ge, D. Zhang, Q. Li, H. Hou, M.J. Graham, L. Dai, F.W. Harris, S.Z.D. Cheng. Multiwalled Carbon Nanotubes with Chemically Grafted Polyetherimides. Journal of the American Chemical Society.2005,127 (28):9984-9985
    [3]R. Song, D. Yang, L. He. Effect of Surface Modification of Nanosilica on Crystallization, Thermal and Mechanical Properties of Poly(Vinylidene Fluoride). Journal of Materials Science.2007,42 (20):8408-8417
    [4]D. Sun, R. Zhang, Z. Liu, Y. Huang, Y. Wang, J. He, B. Han, G. Yang. Polypropylene/Silica Nanocomposites Prepared by in-Situ Sol-Gel Reaction with the Aid of Co2. Macromolecules.2005,38 (13):5617-5624
    [5]K. Kueseng, K.I. Jacob. Natural Rubber Nanocomposites with Sic Nanoparticles and Carbon Nanotubes. European Polymer Journal.2006,42 (1):220-227
    [6]S.M. Liff, N. Kumar, G.H. McKinley. High-Performance Elastomeric Nanocomposites Via Solvent-Exchange Processing. Nat Mater.2007,6(1):76-83
    [7]D. Gersappe. Molecular Mechanisms of Failure in Polymer Nanocomposites. Physical Review Letters.2002,89 (5):058301
    [8]D. Shah, P. Maiti, D.D. Jiang, C.A. Batt, E.P. Giannelis. Effect of Nanoparticle Mobility on Toughness of Polymer Nanocomposites. Advanced Materials.2005,17 (5):525-528
    [9]T.H. Zhou, W.H. Ruan, M.Z. Rong, M.Q. Zhang, Y.L. Mai. Keys to Toughening of Non-Layered Nanoparticles/Polymer Composites. Advanced Materials.2007,19 (18): 2667-2671
    [10]M.E. Mackay, A. Tuteja, P.M. Duxbury, C.J. Hawker, B. Van Horn, Z. Guan, G. Chen, R.S. Krishnan. General Strategies for Nanoparticle Dispersion. Science.2006, 311 (5768):1740-1743
    [11]J.-Z. Zheng, X.-P. Zhou, X.-L. Xie, Y.-W. Mai. Silica Hybrid Particles with Nanometre Polymer Shells and Their Influence on the Toughening of Polypropylene. Nanoscale.2010,2 (10):2269-2274
    [12]P. Akcora, H. Liu, S.K. Kumar, J. Moll, Y. Li, B.C. Benicewicz, L.S. Schadler, D. Acehan, A.Z. Panagiotopoulos, V. Pryamitsyn, V. Ganesan, J. Ilavsky, P. Thiyagarajan, R.H. Colby, J.F. Douglas. Anisotropic Self-Assembly of Spherical Polymer-Grafted Nanoparticles. Nat Mater.2009,8 (4):354-359
    [13]Z. Meng, C. Xue, Q. Zhang, X. Yu, K. Xi, X. Jia. Preparation of Highly Monodisperse Hybrid Silica Nanospheres Using a One-Step Emulsion Reaction in Aqueous Solution. Langmuir.2009,25 (14):7879-7883
    [14]W. Stober, A. Fink, E. Bohn. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. Journal of Colloid and Interface Science.1968,26 (1): 62-69
    [15]E. Bourgeat-Lami, J. Lang. Silica-Polystyrene Composite Particles. Macromolecular Symposia.2000,151 (1):377-385
    [16]H. Sertchook, D. Avnir. Submicron Silica/Polystyrene Composite Particles Prepared by a One-Step Sol-Gel Process. Chemistry of Materials.2003,15 (8): 1690-1694
    [17]J. Pietrasik, C.M. Hui, W. Chaladaj, H. Dong, J. Choi, J. Jurczak, M.R. Bockstaller, K. Matyjaszewski. Silica-Polymethacrylate Hybrid Particles Synthesized Using High-Pressure Atom Transfer Radical Polymerization. Macromolecular Rapid Communications.2011,32 (3):295-301
    [18]S.-C. Chung, W.-G. Hahm, S.-S. Im, S.-G. Oh. Poly(Ethylene Terephthalate)(Pet) Nanocomposites Filled with Fumed Silicas by Melt Compounding. Macromolecular Research.2002,10 (4):221-229
    [19]D. Bikiaris, V. Karavelidis, G. Karayannidis. A New Approach to Prepare Poly(Ethylene Terephthalate)/Silica Nanocomposites with Increased Molecular Weight and Fully Adjustable Branching or Crosslinking by Ssp. Macromolecular Rapid Communications.2006,27 (15):1199-1205
    [20]S. Kang, S.I. Hong, C.R. Choe, M. Park, S. Rim, J. Kim. Preparation and Characterization of Epoxy Composites Filled with Functionalized Nanosilica Particles Obtained Via Sol-Gel Process. Polymer.2001,42 (3):879-887
    [21]T. Yamauchi, A. Yuuki, G. Wei, K. Shirai, K. Fujiki, N. Tsubokawa. Immobilization of Flame Retardant onto Silica Nanoparticle Surface and Properties of Epoxy Resin Filled with the Flame Retardant-Immobilized Silica. Journal of Polymer Science Part A:Polymer Chemistry.2009,47 (22):6145-6152
    [22]D.H. Jung, H.M. Jeong, B.K. Kim. Organic-Inorganic Chemical Hybrids Having Shape Memory Effect. Journal of Materials Chemistry.2010,20 (17):3458-3466
    [23]H. Goda, C.W. Frank. Fluorescence Studies of the Hybrid Composite of Segmented-Polyurethane and Silica. Chemistry of Materials.2001,13 (9):2783-2787
    [24]W.H. Ruan, X.B. Huang, X.H. Wang, M.Z. Rong, M.Q. Zhang. Effect of Drawing Induced Dispersion of Nano-Silica on Performance Improvement of Poly(Propylene)-Based Nanocomposites. Macromolecular Rapid Communications. 2006,27 (8):581-585
    [25]L. Xu, H. Nakajima, E. Manias, R. Krishnamoorti. Tailored Nanocomposites of Polypropylene with Layered Silicates. Macromolecules.2009,42 (11):3795-3803
    [26]J.A. Kim, D.G. Seong, T.J. Kang, J.R. Youn. Effects of Surface Modification on Rheological and Mechanical Properties of Cnt/Epoxy Composites. Carbon.2006,44 (10):1898-1905
    [27]M.J. Solomon, A.S. Almusallam, K.F. Seefeldt, A. Somwangthanaroj, P. Varadan. Rheology of Polypropylene/Clay Hybrid Materials. Macromolecules.2001,34 (6): 1864-1872
    [28]G. Galgali, C. Ramesh, A. Lele. A Rheological Study on the Kinetics of Hybrid Formation in Polypropylene Nanocomposites. Macromolecules.2001,34 (4): 852-858
    [29]B. Wong, WE. Baker. Melt Rheology of Graft Modified Polypropylene. Polymer. 1997,38 (11):2781-2789
    [30]H. Gu, S. Tadakamalla, Y. Huang, H.A. Colorado, Z. Luo, N. Haldolaarachchige, D.P. Young, S. Wei, Z. Guo. Polyaniline Stabilized Magnetite Nanoparticle Reinforced Epoxy Nanocomposites. ACS Applied Materials & Interfaces.2012,4 (10):5613-5624
    [31]P. Cassagnau. Melt Rheology of Organoclay and Fumed Silica Nanocomposites. Polymer.2008,49 (9):2183-2196
    [32]M.I. Aranguren, E. Mora, J.J.V. DeGroot, C.W. Macosko. Effect of Reinforcing Fillers on the Rheology of Polymer Melts. Journal of Rheology.1992,36 (6): 1165-1182
    [33]J. Zhu, S. Wei, J. Ryu, M. Budhathoki, G. Liang, Z. Guo. In Situ Stabilized Carbon Nanofiber (Cnf) Reinforced Epoxy Nanocomposites. Journal of Materials Chemistry.2010,20 (23):4937-4948
    [34]L. An, Y. Pan, X. Shen, H. Lu, Y. Yang. Rod-Like Attapulgite/Polyimide Nanocomposites with Simultaneously Improved Strength, Toughness, Thermal Stability and Related Mechanisms. Journal of Materials Chemistry.2008,18 (41): 4928-4941
    [35]C.L. Wu, M.Q. Zhang, M.Z. Rong, K. Friedrich. Tensile Performance Improvement of Low Nanoparticles Filled-Polypropylene Composites. Composites Science and Technology.2002,62 (10-11):1327-1340
    [36]J. Wang, S.J. Severtson, A. Stein. Significant and Concurrent Enhancement of Stiffness, Strength, and Toughness for Paraffin Wax through Organoclay Addition. Advanced Materials.2006,18 (12):1585-1588
    [37]X.-y. Shang, Z.-k. Zhu, J. Yin, X.-d. Ma. Compatibility of Soluble Polyimide/Silica Hybrids Induced by a Coupling Agent. Chemistry of Materials.2001, 14(1):71-77
    [38]J.N. Coleman, M. Cadek, R. Blake, V. Nicolosi, K.P. Ryan, C. Belton, A. Fonseca, J.B. Nagy, Y.K. Gun'ko, W.J. Blau. High Performance Nanotube-Reinforced Plastics: Understanding the Mechanism of Strength Increase. Advanced Functional Materials. 2004,14 (8):791-798
    [39]I. Mora-Barrantes, A. Rodriguez, L. Ibarra, L. Gonzalez, J.L. Valentin. Overcoming the Disadvantages of Fumed Silica as Filler in Elastomer Composites. Journal of Materials Chemistry.2011,21 (20):7381-7392
    [40]L. Schadler. Nanocomposites:Model Interfaces. Nat Mater.2007,6 (4):257-258
    [41]S. Sen, J.D. Thomin, S.K. Kumar, P. Keblinski. Molecular Underpinnings of the Mechanical Reinforcement in Polymer Nanocomposites. Macromolecules.2007,40 (11):4059-4067
    [42]B.B. Johnsen, A.J. Kinloch, R.D. Mohammed, A.C. Taylor, S. Sprenger. Toughening Mechanisms of Nanoparticle-Modified Epoxy Polymers. Polymer.2007, 48 (2):530-541
    [43]J. Suhr, N. Koratkar, P. Keblinski, P. Ajayan. Viscoelasticity in Carbon Nanotube Composites. Nat Mater.2005,4 (2):134-137
    [44]D.A. Norman, R.E. Robertson. Rigid-Particle Toughening of Glassy Polymers. Polymer.2003,44 (8):2351-2362
    [45]B. Fiedler, F.H. Gojny, M.H.G. Wichmann, M.C.M. Nolte, K. Schulte. Fundamental Aspects of Nano-Reinforced Composites. Composites Science and Technology.2006,66 (16):3115-3125
    [46]K. Wang, L. Chen, J. Wu, M.L. Toh, C. He, A.F. Yee. Epoxy Nanocomposites with Highly Exfoliated Clay:Mechanical Properties and Fracture Mechanisms. Macromolecules.2005,38 (3):788-800
    [47]U. Yamamoto, K.S. Schweizer. Theory of Nanoparticle Diffusion in Unentangled and Entangled Polymer Melts. Journal of Chemical Physics.2011,135 (22): 224902-224916
    [48]A. Tuteja, M.E. Mackay, S. Narayanan, S. Asokan, M.S. Wong. Breakdown of the Continuum Stokes-Einstein Relation for Nanoparticle Diffusion. Nano Letters. 2007,7 (5):1276-1281
    [49]V. Pryamitsyn, V. Ganesan. Origins of Linear Viscoelastic Behavior of Polymer-Nanoparticle Composites. Macromolecules.2005,39 (2):844-856
    [1]A.J. Ragauskas, C.K. Williams, B.H. Davison, G. Britovsek, J. Cairney, C.A. Eckert, WJ. Frederick, J.P. Hallett, D.J. Leak, C.L. Liotta, J.R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski. The Path Forward for Biofuels and Biomaterials. Science. 2006,311 (5760):484-489
    [2]H. Lonnberg, K. Larsson, T. Lindstrom, A. Hult, E. Malmstrom. Synthesis of Polycaprolactone-Grafted Microfibrillated Cellulose for Use in Novel Bionanocomposites-Influence of the Graft Length on the Mechanical Properties. ACS Applied Materials & Interfaces.2011,3 (5):1426-1433
    [3]H. Tang, J.-B. Chen, Y. Wang, J.-Z. Xu, B.S. Hsiao, G.-J. Zhong, Z.-M. Li. Shear Flow and Carbon Nanotubes Synergistically Induced Nonisothermal Crystallization of Poly(Lactic Acid) and Its Application in Injection Molding. Biomacromolecules.2012, 13 (11):3858-3867
    [4]S.S. Ray, M. Okamoto. Biodegradable Polylactide and Its Nanocomposites: Opening a New Dimension for Plastics and Composites. Macromolecular Rapid Communications.2003,24 (14):815-840
    [5]S. Sinha Ray. Polylactide-Based Bionanocomposites:A Promising Class of Hybrid Materials. Accounts of Chemical Research.2012,45 (10):1710-1720
    [6]M.L. Di Lorenzo. Crystallization Behavior of Poly(L-Lactic Acid). European Polymer Journal.2005,41 (3):569-575
    [7]T. Miyata, T. Masuko. Morphology of Poly(L-Lactide) Solution-Grown Crystals. Polymer.1997,38 (16):4003-4009
    [8]L. Yu, K. Dean, L. Li. Polymer Blends and Composites from Renewable Resources. Progress in Polymer Science.2006,31 (6):576-602
    [9]Z. Xu, Y. Niu, Z. Wang, H. Li, L. Yang, J. Qiu, H. Wang. Enhanced Nucleation Rate of Polylactide in Composites Assisted by Surface Acid Oxidized Carbon Nanotubes of Different Aspect Ratios. ACS Applied Materials & Interfaces.2011,3 (9):3744-3753
    [10]S. Sinha Ray, P. Maiti, M. Okamoto, K. Yamada, K. Ueda. New Polylactide/Layered Silicate Nanocomposites.1. Preparation, Characterization, and Properties. Macromolecules.2002,35 (8):3104-3110
    [11]J. Yu, Z. Qiu. Preparation and Properties of Biodegradable Poly(L-Lactide)/Octamethyl-Polyhedral Oligomeric Silsesquioxanes Nanocomposites with Enhanced Crystallization Rate Via Simple Melt Compounding. ACS Applied Materials & Interfaces.2011,3 (3):890-897
    [12]M.J. McAllister, J.-L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud'homme, I.A. Aksay. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chemistry of Materials.2007,19 (18):4396-4404
    [13]L. He, J. Sun, X. Wang, X. Fan, Q. Zhao, L. Cai, R. Song, Z. Ma, W. Huang. Unzipped Multiwalled Carbon Nanotubes-Incorporated Poly(L-Lactide) Nanocomposites with Enhanced Interface and Hydrolytic Degradation. Materials Chemistry and Physics.2012,134(2-3):1059-1066
    [14]G.Z. Papageorgiou, D.S. Achilias, S. Nanaki, T. Beslikas, D. Bikiaris. Pla Nanocomposites:Effect of Filler Type on Non-Isothermal Crystallization. Thermochimica Acta.2010,511 (1-2):129-139
    [15]H. Pan, Z. Qiu. Biodegradable Poly(L-Lactide)/Polyhedral Oligomeric Silsesquioxanes Nanocomposites:Enhanced Crystallization, Mechanical Properties, and Hydrolytic Degradation. Macromolecules.2010,43 (3):1499-1506
    [16]P. Cassagnau. Payne Effect and Shear Elasticity of Silica-Filled Polymers in Concentrated Solutions and in Molten State. Polymer.2003,44 (8):2455-2462
    [17]L. An, Y. Pan, X. Shen, H. Lu, Y. Yang. Rod-Like Attapulgite/Polyimide Nanocomposites with Simultaneously Improved Strength, Toughness, Thermal Stability and Related Mechanisms. Journal of Materials Chemistry.2008,18 (41): 4928-4941
    [18]M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff. Graphene-Based Ultracapacitors. Nano Letters.2008,8 (10):3498-3502
    [19]C. Lee, X. Wei, J.W. Kysar, J. Hone. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science.2008,321 (5887):385-388
    [20]D.K. Samarakoon, X.-Q. Wang. Twist-Boat Conformation in Graphene Oxides. Nanoscale.2011,3 (1):192-195
    [21]D. Cai, M. Song. Recent Advance in Functionalized Graphene/Polymer Nanocomposites. Journal of Materials Chemistry.2010,20 (37):7906-7915
    [22]N.D. Luong, N. Pahimanolis, U. Hippi, J.T. Korhonen, J. Ruokolainen, L.-S. Johansson, J.-D. Nam, J. Seppala. Graphene/Cellulose Nanocomposite Paper with High Electrical and Mechanical Performances. Journal of Materials Chemistry.2011, 21 (36):13991-13998
    [23]Q. Yang, X. Pan, F. Huang, K. Li. Fabrication of High-Concentration and Stable Aqueous Suspensions of Graphene Nanosheets by Noncovalent Functionalization with Lignin and Cellulose Derivatives. The Journal of Physical Chemistry C.2010, 114 (9):3811-3816
    [24]C. Bao, L. Song, W. Xing, B. Yuan, C.A. Wilkie, J. Huang, Y. Guo, Y. Hu. Preparation of Graphene by Pressurized Oxidation and Multiplex Reduction and Its Polymer Nanocomposites by Masterbatch-Based Melt Blending. Journal of Materials Chemistry.2012,22 (13):6088-6096
    [25]A.M. Pinto, J. Cabral, D.A.P. Tanaka, A.M. Mendes, F.D. Magalhaes. Effect of Incorporation of Graphene Oxide and Graphene Nanoplatelets on Mechanical and Gas Permeability Properties of Poly(Lactic Acid) Films. Polymer International.2013,62 (1):33-40
    [26]M. Sabzi, L. Jiang, F. Liu, I. Ghasemi, M. Atai. Graphene Nanoplatelets as Polylactic Acid Modifier:Linear Rheological Behavior and Electrical Conductivity. Journal of Materials Chemistry A.2013
    [27]J.-Z. Xu, T. Chen, C.-L. Yang, Z.-M. Li, Y.-M. Mao, B.-Q. Zeng, B.S. Hsiao. Isothermal Crystallization of Poly(L-Lactide) Induced by Graphene Nanosheets and Carbon Nanotubes:A Comparative Study. Macromolecules.2010,43 (11):5000-5008
    [28]J.-H. Yang, S.-H. Lin, Y.-D. Lee. Preparation and Characterization of Poly(L-Lactide)-Graphene Composites Using the in Situ Ring-Opening Polymerization of Plla with Graphene as the Initiator. Journal of Materials Chemistry. 2012,22 (21):10805-10815
    [29]H. Yang, F. Li, C. Shan, D. Han, Q. Zhang, L. Niu, A. Ivaska. Covalent Functionalization of Chemically Converted Graphene Sheets Via Silane and Its Reinforcement. Journal of Materials Chemistry.2009,19 (26):4632-4638
    [30]H.J. Salavagione, G. Martinez, G. Ellis. Recent Advances in the Covalent Modification of Graphene with Polymers. Macromolecular Rapid Communications. 2011,32(22):1771-1789
    [31]W.S. Hummers, R.E. Offeman. Preparation of Graphitic Oxide. Journal of the American Chemical Society.1958,80 (6):1339-1339
    [32]S. Park, K.-S. Lee, G. Bozoklu, W. Cai, S.T. Nguyen, R.S. Ruoff. Graphene Oxide Papers Modified by Divalent Ions-Enhancing Mechanical Properties Via Chemical Cross-Linking. ACS Nano.2008,2 (3):572-578
    [33]L. Lai, L. Chen, D. Zhan, L. Sun, J. Liu, S.H. Lim, C.K. Poh, Z. Shen, J. Lin. One-Step Synthesis of Nh2-Graphene from in Situ Graphene-Oxide Reduction and Its Improved Electrochemical Properties. Carbon.2011,49 (10):3250-3257
    [34]H. Cao, X. Wu, G. Yin, J.H. Warner. Synthesis of Adenine-Modified Reduced Graphene Oxide Nanosheets. Inorganic Chemistry.2012,51 (5):2954-2960
    [35]G. Wang, X. Sun, C. Liu, J. Lian. Tailoring Oxidation Degrees of Graphene Oxide by Simple Chemical Reactions. Applied Physics Letters.2011,99 (5):3
    [36]K. Suggs, X.-Q. Wang. Structural and Electronic Properties of Carbon Nanotube-Reinforced Epoxy Resins. Nanoscale.2010,2 (3):385-388
    [37]S.M. Liff, N. Kumar, G.H. McKinley. High-Performance Elastomeric Nanocomposites Via Solvent-Exchange Processing. Nat Mater.2007,6 (1):76-83
    [38]P.J. Carreau, P.-A. Lavoie, M.H. Bagassi. Rheological Properties of Filled Polymers. Macromolecular Symposia.1996,108 (1):111-126
    [39]C. Mao, Y. Zhu, W. Jiang. Design of Electrical Conductive Composites:Tuning the Morphology to Improve the Electrical Properties of Graphene Filled Immiscible Polymer Blends. ACS Applied Materials & Interfaces.2012,4 (10):5281-5286

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700