用户名: 密码: 验证码:
轻质配位氢化物晶体结构预测与高压行为的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由轻质元素构成的复杂配位氢化物,如氨基/亚氨基化合物、硼氢化物、铝氢化物等由于具有较高的理论重量储氢密度和价格低廉等优点,被认为是最有应用前景的储氢材料之一,受到了广泛的关注。本文采用从头算进化结构预测与第一性原理计算相结合的方法,以现有实验或理论研究成果为基础,对几种配位氢化物的高压晶体结构、电子结构、晶格振动等特性进行了系统深入的理论研究,主要得到如下结论。
     (1)对LiNH2的高压结构稳定性进行了详细研究。随着压力的增加,发现高压β-LiNH2(正交晶系,空间群为Fddd)和γ-LiNH2(正交晶系,空间群为P21212)比基态α-LiNH2(正交晶系,空间群为I-4)更稳定。β→γ结构转变发生在10.7GPa,与实验观察完全吻合。进一步分析LiNH2所有竞争相的结构特性、电荷密度分布以及计算的声子态密度表明高压相LiNH2中存在着明显的N…H-N氢键作用。氢键的存在拉伸了N-H键长,使得N-H极性共价键被弱化,可能会有利于γ-LiNH2中氢的释放。
     (2) NaNH2的高压行为研究表明:在0-20GPa压力范围内NaNH2将经历两次压力诱导结构转变。基态α-NaNH2首先在2.2GPa转变为空间群为P21212的正交β-NaNH2,然后在9.4GPa进一步转变成空间群为C2/c的单斜γ-NaNH2,且分别伴随产生11.3和1.2%的体积收缩。预测的NaNH2高压结构转变顺序(Fddd→P21212→C2/c)与同族氨基化合物LiNH2的高压行为(I-4→Fddd→P21212)非常相似,表明压力诱导结构转变朝着对称性降低的方向进行可能是碱金属氨基化合物的一个共性。压力作用会使NaNH2中[NH2]-氨基离子的方向有序化且同时缩短相邻两个[NH2]-氨基离子分子间N…H距离,从而致使在β-和γ-NaNH2中出现N…H-N氢键。同时,计算结构分析表明β-ANaNH2中近线性排列的氢键作用应强于γ-NaNH2中弯曲排列的氢键作用。
     (3)探讨了Li2NH的高压晶体结构、电子结构和基态结构的晶格振动特性。总能计算表明:当压力上升到3.2和14.8GPa时,Li2NH将发生Pbca→Cmcm和Cmcm→P63mc结构转变,并且压力致使Li2NH结构有序化尤为明显。详细的电子态密度和电子局域化函数研究揭示Li2NH的三个稳定结构都具有非金属特性,Li+与[NH]2-亚氨基离子间是离子键作用,N与H之间则是共价键合作用。Li2NH的基态Pbca结构不存在虚频,动力学稳定。计算声子态密度主要由两个频率带构成,低于844cm-1的低频带来自于Li、N、H三种原子晶格振动模式的叠加,而高于3172cm-1的高频带则主要归结于N-H的伸缩振动。
     (4)进化模拟结构预测重现了Tekin等最新报道的LiBH4的基态结构(空间群为Pnma;晶格常数为α=8.564A,b=4.352A,c=5.753A)。总能计算发现尽管Tekin等理论预测的Pnma结构与Soulie等实验测定的Pnma结构之间存在显著差异,但两结构之间的总能差值仅有~1meV/f.u.,表明LiBH4的基态结构对能量变化并不敏感,这或许是实验或理论研究LiBH4基态晶体结构一直存在争议的重要原因之一。当压力上升至10GPa,LiBH4从基态的Pnma正交结构转变为四方的P-421c结构,并且预测的转变压力与最近的实验测定结果吻合较好。电子结构分析表明:LiBH4的基态结构和高压相都属于典型的离子型化合物,具有较大的能隙(>5eV),而其中[BH4]'四面体单元内的B与H之间存在较强的极化共价键合作用。
Complex hydrides composed of light weight elements such as amides/imides, borohydrides and alanates have attracted great attention as one of the most promising materials for hydrogen storage due to their high theoretical gravimetric density and low price. Base on the previous experimental or theoretical results, we have investigated systemically and deeply the high-pressure crystal structure, electronic structure, and vibrational properties of some light complex hydrides using first-principles calculations and the ab-initio evolutionary structure prediction simulations. The main conclusions obtained from our theoretical calculations are given as below:
     (1) A detailed study of the high-pressure structural stability in LiNH2is performed. Two high-pressure polymorphs,β-LiNH2(orthorhombic, Fddd) and;γ-LiNH2(orthorhombic, P21212), are found to be more stable than the ground-state a-LiNH2(orthorhombic,1-4) with increasing pressure. The β→γstructural transition occurs at10.7GPa, which is in good agreement with experimental observation. Further analysis of the structural properties, charge density distribution, and calculated phonon density of states for all the competing phases shows the N-H…N hydrogen bond obviously emerges in the high-pressure γ-LiNH2. The existence of hydrogen bond elongates the N-H bond length and weakens the N-H polar covalent bonds within NH2groups, which may be beneficial to the hydrogen release from γ-LiNH2.
     (2) The investigations on the high-pressure behavior of NaNH2show that NaNH2undergoes two pressure-induced structural transitions in the pressure range from0to20GPa. The ground-state a-NaNH2first transforms into an orthorhombic β-NaNH2with space group P21212at2.2GPa and then into a monoclinic y-NaNH2with space group C2/c at9.4GPa, accompanied by the volume reductions of11.3%and1.2%, respectively. The predicted transition sequence(Fddd→P21212→C2/c) of NaNH2is very similar to the high-pressure behavior of its counterpart LiNH2(I-4→Fddd→P21212), suggesting that the trend of lowing symmetry induced by high-pressure may be common in alkali metal amides. Pressure not only leads to an increase in the orientational order of the [NH2]-amides anions in NaNH2but also simultaneously shortens the intermolecular N-H distances between the two neighboring [NH2]-amides anions, which yields the emergence of the N-H…N hydrogen bond in β-and γ-NaNH2. Our calculated results also show that the strength of the approximately linear N-H… bond in β-NaNH2is expected to be stronger than that of the bent N-H…N bond in γ-NaNH2.
     (3) The high-pressure crystal structure, electronic structure, and lattice dynamical properties of Li2NH are investigated systematically. The total-energy calculations show that the Pbca→Cmcm and Cmcm→P63mc structural transitions occur respectively at3.2and14.8GPa and the obvious pressure-induced ordering appears under compressing Li2NH. A detailed study on the density of states and electron localization function reveals that all the three stable structures of Li2NH are nonmetallic with the typical ionic bonding between Li+cations and [NH]2-imide anions and the strong N-H covalent bonding prevails in each [NH]2-unit. No imaginary phonon frequencies are found in the ground-state Pbca phase, indicating this structure is dynamically stable. The calculated phonon density of states for the Pbca phase consists of two frequencies bands:the low-frequency band below844cm-1being ascribed to the motion of the Li, N and H atoms and the high-pressure band above3172cm-1resulting from the N-H bond stretching.
     (4) The latest ground-state structure of LiBH4(space group:Pnma; lattice parameters:a=8.564A, b=4.352A, c=5.753A) reported by Tekin et al. has been reproduced by our evolutionary structure prediction simulations. However, our total-energy calculations show that although the Pnma structure predicted by Tekin et al. exhibits a significant structural difference in comparison with the experimental Pnma structure determined by Soulie et al., the difference in their calculated total energies is only about1meV/f.u.. The ground-state structure of LiBH4is insensitive to the variation of energy, which may be one of the important reasons why the structural data of the ground-state phase of LiBH4still remains controversial in experimental or theoretical studies. The ground-state orthorhombic Pnma structure transforms into the tetragonal P-421c structure with increasing pressure to10GPa, which is in good agreement with the recent experiment. The further analysis on electronic structure shows that the ground-state Pnma and high-pressure P-421c structures belong to the typical ionic compounds with a large band gap (>5eV) and the strong polarized covalent exists between B and H atoms in the tetrahedal [BH4]-units.
引文
[1]Akiba E, Nomura K, Ono S. A new hydride phase of LaNi5H3 [J]. J Less-Common Met.,1987,129:159-164.
    [2]胡子龙.储氢材料[M].北京:化学工业出版社,2002.
    [3]陈军,朱敏.高容量储氢材料的研究进展[J].中国材料进展,2009,05:2-10.
    [4]方利国,陈王.能源概述[M].北京:化学工业出版社,2009:196-207.
    [5]Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage:A review [J]. Int. J. Hydrogen Energy,2007,32(9): 1121-1140.
    [6]Irani R S. Hydrogen storage:High-pressure gas containment [J]. Mrs Bulletin, 2002,27(9):680-682.
    [7]钱伯章.新能源-后石油时代的必然选择[M].北京:化学工业出版社,2007:191-192.
    [8]Biniwale R B, Rayalu S, Devotta S, et al. Chemical hydrides:A solution to high capacity hydrogen storage and supply [J].Int. J. Hydrogen Energy,2008, 33(1):360-365.
    [9]Chen P, Xiong Z, Luo J, et al. Interaction of hydrogen with metal nitrides and imides [J]. Nature,2002,420(6913):302-304.
    [10]Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications [J]. Nature,2001,414(6861):353-358.
    [11]Adzic G D, Johnson J R, Reilly J J, et al. Cerium contennt and cycle life of multicomponent AB5 hydride electrodes [J]. J. Electrochem Soc.,1995, 142(10):3429-3433.
    [12]Tan Z, Yang Y, Li Y, et al. The performances of La1-xCexNi5 (0≤x≤1) hydrogen storage alloys studied by powder microelectrode [J]. J. Alloys Compd.,2008,453(1-2):79-86.
    [13]Liu J, Yang Y. Rapid evaluation of LaNi5-xMnx(x=0.1-0.5) by X-ray diffraction and powder microelectrode (PME) techniques [J]. J. Alloys Compd., 2007,429(1-2):285-291.
    [14]Pandey S K, Srivastava A, Srivastava O N. Improvement in hydrogen storage capacity in LaNis through substitution of Ni by Fe [J]. Int. J. Hydrogen Energy, 2007,32(13):2461-2465.
    [15]Luo S, Flanagan T B, Bowman R C. Hydrogen isotherms for LaNi4.6M0.4 alloys where M-group 4A elements [J]. J. Alloys Compd.,2002,330:531-535.
    [16]Asano K, Iijima Y, Okada M. Phase transformation in hydriding and dehydriding of LaCo5-xNix(x=0-2) alloys [J]. J. Alloys Compd.,2005,389(1-2): 215-219.
    [17]Ma J X, Pan H G, Chen C P, et al. The electrochemical properties of Co-free AB5 type MlNi(4.45-x)Mn0.40Al0.15Snx hydride electrode alloys [J]. J. Alloys Compd.,2002,343:164-169.
    [18]Joseph B, Schiavo B. Effects of ball-milling on the hydrogen sorption properties of LaNi5 [J]. J. Alloys Compd.,2009,480(2):912-916.
    [19]Johnson J R, Reilly J J. Reaction of hydrogen with the low-temperature form (C15) of titanium-chromium (TiCr2) [J]. Inorg. Chem.,1978,17(11): 3103-3108.
    [20]Liu B H, Kim D M, Lee K Y, et al. Hydrogen storage properties of TiMn2-based alloys [J]. J. Alloys Compd.,1996,240(1-2):214-218.
    [21]Semboshi S, Masahashi N, Hanada S. Effect of composition on hydrogen absorbing properties in binary TiMn2 based alloys [J]. J. Alloys Compd.,2003, 352(1-2):210-217.
    [22]Wang Q D, Chen C P, Lei Y Q. The recent research, development and industrial applications of metal hydrides in the People's Republic of China [J]. J. Alloys Compd.,1997,253:629-634.
    [23]Reilly J, Wiswall Jr R. Formation and properties of iron titanium hydride [J]. Inorg. Chem.,1974,13(1):218-222.
    [24]Chiang C H, Chin Z H, Perng T P. Hydrogenation of TiFe by high-energy ball milling [J]. J. Alloys Compd.,2000,307:259-265.
    [25]Lee S M, Perng T P. Correlation of substitutional solid solution with hydrogenation properties of TiFe1-xMx (M=Ni, Co, Al) alloys [J]. J. Alloys Compd.,1999,291(1-2):254-261.
    [26]Reilly Jr J J, Wiswall Jr R H. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4 [J]. Inorg. Chem.,1968,7(11): 2254-2256.
    [27]Paik B, Walton A, Mann V, et al. Microstructure of ball milled MgH2 powders upon hydrogen cycling:An electron microscopy study [J]. Int. J. Hydrogen Energy,2010,35(17):9012-9020.
    [28]Ebrahimi-Purkani A, Kashani-Bozorg S F. Nanocrystalline Mg2Ni-based powders produced by high-energy ball milling and subsequent annealing [J]. J. Alloys Compd.,2008,456(1-2):211-215.
    [29]Zhao-Karger Z, Hu J, Roth A, et al. Altered thermodynamic and kinetic properties of MgH2 infiltrated in microporous scaffold [J]. Chem. Comm., 2010,46(44):8353-8355.
    [30]Yu X B, Guo Y H, Yang Z X, et al. Synthesis of catalyzed magnesium hydride with low absorption/desorption temperature [J]. Scr. Mater.,2009,61(5): 469-472.
    [31]Zener C. Elasticity and anelasticity of metals [M]. Chicago, University of Chicago press,1948.
    [32]Song Y, Guo Z X, Yang R. Influence of selected alloying elements on the stability of magnesium dihydride for hydrogen storage applications:A first-principles investigation [J]. Phys. Rev. B,2004,69(9):094205.
    [33]Ramzan M, Lebegue S, Ahuja R. Transition metal doped MgH2:A material to potentially combine fuel-cell and battery technologies [J]. Int. J. Hydrogen Energy,2010,35(19):10373-10376.
    [34]Liu X, Jiang L, Li Z, et al. Improve plateau property of Ti32Cr46V22 BCC alloy with heat treatment and Ce additive [J]. J. Alloys Compd.,2009,471(1-2): L36-L38.
    [35]Miao H, Gao M, Liu Y, et al. An improvement on cycling stability of Ti-V-Fe-based hydrogen storage alloys with Co substitution for Ni [J]. J. Power Sources,2008,184(2):627-632.
    [36]Soler-illia G J D, Sanchez C, Lebeau B, et al. Chemical strategies to design textured materials:From microporous and mesoporous oxides to nanonetworks and hierarchical structures [J]. Chem. Rev.,2002,102(11): 4093-4138.
    [37]Janiak C. Engineering coordination polymers towards applications [J]. Dalton Trans.,2003(14):2781-2804.
    [38]Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks [J]. Science,2003,300(5622):1127-1129.
    [39]Panella B, Hirscher M, Roth S. Hydrogen adsorption in different carbon nanostructures [J]. Carbon,2005,43(10):2209-2214.
    [40]Shaijumon M M, Bejoy N, Ramaprabhu S. Catalytic growth of carbon nanotubes over Ni/Cr hydrotalcite-type anionic clay and their hydrogen storage properties [J]. Appl. Surf. Sci.,2005,242(1-2):192-198.
    [41]Poirier E, Chahine R, Benard P, et al. Storage of hydrogen on single-walled carbon nanotubes and other carbon structures [J]. Appl. Phys. A-mater.,2004, 78(7):961-967.
    [42]Bogdanoviv B, Schwickardi M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials [J]. J. Alloys Compd., 1997,253-254(0):1-9.
    [43]Juza R. Amide of the alkali and the alkaline earth metals [J]. Angewandte Chemie,1964,3(7):453-524.
    [44]Milman V, Winkler B. Prediction of hydrogen positions in complex structures [J]. Zeitschrift fur Kristallographie-Crystalline Materials,2001,216(2-2001): 99-104.
    [45]Sorby M H, Nakamura Y, Brinks H W, et al. The crystal structure of LiND2 and Mg(ND2)2 [J]. J. Alloys Compd.,2007,428(1-2):297-301.
    [46]Nagib M, Kistrup H, Jacobs H. Neutron diffraction by sodium deuteroamide. NaND2 [J]. Atomkernenergie,1975,26(2):87-90.
    [47]Juza R, Jacobs H, Klose W. Die Kristallstrukturen der Tieftemperaturmodifikationen von Kalium-und Rubidiumamid [J]. Zeitschrift fur anorganische und allgemeine Chemie,1965,338(3-4):171-178.
    [48]Velikokhatnyi O I, Kumta P N. Energetics of the lithium-magnesium imide-magnesium amide and lithium hydride reaction for hydrogen storage:An ab initio study [J]. Mat. Sci. Eng. B-Solid.,2007,140(1-2):114-122.
    [49]Balogh M P, Jones C Y, Herbst J F, et al. Crystal structures and phase transformation of deuterated lithium imide, Li2ND [J]. J. Alloys Compd.,2006, 420(1-2):326-336.
    [50]Titherley A W. XLV-Sodium, potassium, and lithium amides [J]. J. Chem. Soc. Trans.,1894,65:504-522.
    [51]Leng H Y, Ichikawa T, Hino S, et al. Synthesis and decomposition reactions of metal amides in metal-N-H hydrogen storage system [J]. J. Power Sources 2006, 156(2):166-170.
    [52]Wang Q, Chen Y, Zheng X, et al. Thermodynamics of Li-N-H system for hydrogen storage:A theoretical and experimental study [J]. Physica B,2009, 404(20):3431-3434.
    [53]Zhang C J, Alavi A. A first-principles investigation of LiNH2 as a hydrogen-storage material:Effects of substitutions of K and Mg for Li [J]. J. Phys. Chem. B,2006,110(14):7139-7143.
    [54]Jacobs H, Juza R. Neubestimmung der kristallstruktur des lithiumamids [J]. Zeitschrift fur anorganische und allgemeine Chemie,1972,391(3):271-279.
    [55]Yang J B, Zhou X D, Cai Q, et al. Crystal and electronic structures of LiNH2 [J]. Appl. Phys. Lett.,2006,88(4):041914.
    [56]Miwa K, Ohba N, Towata S, et al. First-principles study on lithium amide for hydrogen storage [J]. Phys. Rev. B,2005,71(19):195109.
    [57]Tsumuraya T, Shishidou T, Oguchi T. First-principles study on lithium and magnesium nitrogen hydrides for hydrogen storage [J]. J. Alloys Compd.,2007, 446:323-327.
    [58]Jin H M, Wu P. Decreasing the hydrogen desorption temperature of LiNH2 through doping:A first-principles study [J]. Appl. Phys. Lett.,2005,87(18): 181917.
    [59]Gupta M, Gupta R P. First principles study of the destabilization of Li amide-imide reaction for hydrogen storage [J]. J. Alloys Compd.,2007,446: 319-322.
    [60]Orimo S, Nakamori Y, Kitahara G, et al. Destabilization and enhanced dehydriding reaction of LiNH2: an electronic structure viewpoint [J]. Appl. Phys. A Mater.,2004,79(7):1765-1767.
    [61]Brik M G, Kityk I V. Ab initio analysis of the optical, electronic and elastic properties of the hydrogen-storage single crystals L1NH2 [J]. Mater. Chem. Phys.,2011,130(1-2):685-689.
    [62]Zhang H, Qi K Z, Zhang G Y, et al. First-principles study on the influence of component element substitution on the dehydrogenation ability of LiNH2 hydrogen storage materials [J]. Acta Phys. Sinica,2009,58(11):8077-8082.
    [63]Herbst J F, Hector L G, Jr. Energetics of the Li amide/Li imide hydrogen storage reaction [J]. Phys. Rev. B,2005,72(12):125120.
    [64]Song Y, Guo Z X. Electronic structure, stability and bonding of the Li-N-H hydrogen storage system [J]. Phys. Rev. B,2006,74(19):195120.
    [65]Zalkin A, Templeton D H. The crystal structure of sodium amide [J]. J. Phys. Chem.,1956,60(6):821-823.
    [66]Takao T, Tatsuya S, Tamio 0. Ab initio study on the electronic structure and vibration modes of alkali and alkaline-earth amides and alanates [J]. J. Phys.: Condens. Matter,2009,21(18):185501.
    [67]Jacobs H, Juza R. Darstellung und Eigenschaften von Magnesiumamid undimid [J]. Zeitschrift fur anorganische und allgemeine Chemie,1969,370(5-6): 254-261.
    [68]Ohoyama K, Nakamori Y, Orimo S, et al. Revised crystal structure model of Li2NH by neutron powder diffraction [J]. J. Phys. Soc. Jan.,2005,74(1): 483-487.
    [69]Noritake T, Nozaki H, Aoki M, et al. Crystal structure and charge density analysis of Li2NH by synchrotron X-ray diffraction [J]. J. Alloys Compd.,2005, 393(1-2):264-268.
    [70]Zhang C, Dyer M, Alavi A. Quantum Delocalization of Hydrogen in the Li2NH Crystal [J]. J. Phys. Chem. B,2005,109(47):22089-22091.
    [71]Magyari-Kope B, Ozolinns V, Wolverton C. Theoretical prediction of low-energy crystal structures and hydrogen storage energetics in Li2NH [J]. Phys. Rev. B,2006,73(22):220101.
    [72]Mueller T, Ceder G. Effective interactions between the N-H bond orientations in lithium imide and a proposed ground-state structure [J]. Phys. Rev. B,2006, 74(13):134104.
    [73]Chen P, Xiong Z, Luo J, et al. Interaction between lithium amide and lithium hydride [J]. J. Phys. Chem. B,2003,107(39):10967-10970.
    [74]Chien W M, Lamb J, Chandra D, et al. Phase evolution of Li2ND, LiD and LiND2 in hydriding/dehydriding of Li3N [J]. J. Alloys Compd.,2007,446: 363-367.
    [75]Hu J, Xiong Z, Wu G, et al., Effects of ball-milling conditions on dehydrogenation of Mg(NH2)2-MgH2 [J]. J. Power Sources,2006,159(1): 120-125.
    [76]Xiong Z T, Chen P, Wu G T, et al. Investigations into the interaction between hydrogen and calcium nitride [J]. J. Mater. Chem.,2003,13(7):1676-1680.
    [77]Hino S, Ichikawa T, Leng H Y, et al. Hydrogen desorption properties of the Ca-N-H system [J]. J. Alloys Compd.,2005,398(1-2):62-66.
    [78]Leng H Y, Ichikawa T, Hino S, et al. New metal-N-H system composed of Mg(NH2)2 and LiH for hydrogen storage [J]. J. Phys. Chem. B,2004,108(26): 8763-8765.
    [79]Elvers D, Remer L, Arnold N, et al. Laser microdissection of biological tissues. process optimization [J]. Appl. Phys. A-Mater.,2005,80(1):55-59.
    [80]Xiong Z T, Wu G T, Hu J J, et al. Investigations on hydrogen storage over Li-Mg-N-H complex-the effect of compositional changes [J]. J. Alloys Compd.,2006,417(1-2):190-194.
    [81]Aoki M, Noritake T, Nakamori Y, et al. Dehydriding and rehydriding properties of Mg(NH2)2-LiH systems [J]. J. Alloys Compd.,2007,446:328-331.
    [82]Liu Y, Hu J, Wu G, et al. Large amount of hydrogen desorption from the mixture of Mg(NH2)2 and LiAlH4 [J]. J. Phys. Chem. C,2007,111(51): 19161-19164.
    [83]Zhitao X, Jianjiang H, Guotao W, et al. Hydrogen absorption and desorption in Mg-Na-N-H system [J]. J. Alloys Compd.,2005,395(1-2):209-212.
    [84]Aoki M, Miwa K, Noritake T, et al. Destabilization of LiBHU by mixing with LiNH2 [J]. Appl. Phys. A Mater.,2005,80(7):1409-1412.
    [85]Pinkerton F E, Meisner G P, Meyer M S, et al. Hydrogen desorption exceeding ten weight percent from the new quaternary hydride Li3BN2Hs [J]. J. Phys. Chem. B,2005,109(1):6-8.
    [86]Xiong Z, Wu G, Hu J, et al. Investigation on chemical reaction between L1AIH4 and LiNH2 [J]. J. Power Sources,2006,159(1):167-170.
    [87]Nakamori Y, Ninomiya A, Kitahara G, et al. Dehydriding reactions of mixed complex hydrides [J]. J. Power Sources,2006,155(2):447-455.
    [88]Kojima Y, Matsumoto M, Kawai Y, et al. Hydrogen absorption and desorption by the Li-Al-N-H system [J]. J. Phys. Chem. B,2006,110(19):9632-9636.
    [89]Xiong Z T, Hu J J, Wu G T, et al. Large amount of hydrogen desorption and stepwise phase transition in the chemical reaction of NaNH2 and LiAlHt [J]. Catal. Today,2007,120(3-4):287-291.
    [90]Filinchuk Y, Chernyshov D, Nevidomskyy A, et al. High-pressure polymorphism as a step towards destabilization of LiBH4 [J]. Angew. Chem. Int. Edit,2008,47(3):529-532.
    [91]Chellappa R S, Chandra D, Somayazulu M, et al. Pressure-induced phase transitions in LiNH2 [J]. J. Phys. Chem. B,2007,111(36):10785-10789.
    [92]Huang X, Li D, Li F, et al. Large volume collapse during pressure-induced phase transition in lithium amide [J]. J. Phys. Chem. C,2012,116(17): 9744.9749.
    [93]Liu A, Song Y. In Situ High-pressure study of sodium amide by Raman and Infrared spectroscopies [J]. J. Phys. Chem. B,2010,115(1):7-13.
    [94]Friedrichs O, Buchter F, Borgschulte A, et al. Direct synthesis of LiBH4 and Li BD4 from the elements [J]. Acta Mater.,2008,56(5):949-954.
    [95]Cakanyildirim C, Guru M. Hydrogen cycle with sodium borohydride [J]. Int. J. Hydrogen Energy,2008,33(17):4634-4639.
    [96]Brown H C, Choi Y M, Narasimhan S. Convenient procedure for the conversion of sodium borohydride into lithium borohydride in simple ether solvents [J]. Inorg. Chem.,1981,20(12):4454-4456.
    [97]Schlesinger H, Brown H C, Abraham B, et al. New developments in the chemistry of diborane and the borohydrides [J]. J. Am. Chem. Soc.,1953,75(1): 186-190.
    [98]Zuttel A, Borgschulte A, Orimo S I. Tetrahydroborates as new hydrogen storage materials [J]. Scripta Mater.,2007,56(10):823-828.
    [99]Orimo S I, Nakamori Y, Eliseo J R, et al. Complex hydrides for hydrogen storage [J]. Chem. Rev.,2007,107(10):4111-4132.
    [100]Mauron P, Buchter F, Friedrichs O, et al. Stability and reversibility of LiBH4 [J]. J. Phys. Chem. B,2008,112(3):906-910.
    [101]Blanchard D, Brinks H W, Hauback B C, et al. Desorption of LiAlH4 with Ti-and V-based additives [J]. Mat. Sci. Eng. B-Solid.,2004,108(1-2):54-59.
    [102]Zuttel A, Rentsch S, Fischer P, et al. Hydrogen storage properties of LiBH4 [J]. J. Alloys Compd.,2003,356:515-520.
    [103]Orimo S I, Nakamori Y, Ohba N, et al. Experimental studies on intermediate compound of LiBH4 [J]. Appl. Phys. Lett.,2006,89(2):021920.
    [104]Barbaro P, Bianchini C. Catalysis for sustainable energy production [M]. Germany, Wiley-VCH Weinheim,2009.
    [105]Vajo J J, Olson G L. Hydrogen storage in destabilized chemical systems [J]. Scripta Mater.,2007,56(10):829-834.
    [106]Vajo J J, Skeith S L, Mertens F. Reversible storage of hydrogen in destabilized LiBH4 [J]. J. Phys. Chem. B,2005,109(9):3719-3722.
    [107]Wan X, Markmaitree T, Osborn W, et al. Nanoengineering-enabled solid-state hydrogen uptake and release in the LiBH4 plus MgH2 system [J]. J. Phys. Chem. C,2008,112(46):18232-18243.
    [108]Lim J H, Shim J H, Lee Y S, et al. Rehydrogenation and cycle studies of LiBH4-CaH2 composite [J]. Int. J. Hydrogen Energy,2010,35(13):6578-6582.
    [109]Jin S A, Lee Y S, Shim J H, et al. Reversible hydrogen storage in LiBH4-MH2(M=Ce,Ca) composites [J]. J. Phys. Chem. C,2008,112(25): 9520-9524.
    [110]Mauron P, Bielmann M, Remhof A, et al. Stability of the LiBH4/CeHH2 composite system determined by dynamic PCT measurements [J]. J. Phys. Chem. C,2010,114(39):16801-16805.
    [111]Purewal J, Hwang S J, Bowman R C, et al. Hydrogen sorption behavior of the ScH2-LiBH4 system:Experimental assesment of chemical destabilization effects [J]. J. Phys. Chem. C,2008,112(22):8481-8485.
    [112]Pinkerton F E, Meyer M S. Reversible hydrogen storage in the lithium borohydride-calcium hydride coupled system [J]. J. Alloys Compd.,2008, 464(1-2):L1-L4.
    [113]Yin L, Wang P, Fang Z, et al. Thermodynamically tuning LiBH4 by fluorine anion doping for hydrogen storage:A density functional study [J]. Chem. Phys. Lett.,2008,450(4-6):318-321.
    [114]Wang P J, Fang Z Z, Ma L P, et al. Effect of carbon addition on hydrogen storage behaviors of Li-Mg-B-H system [J]. Int. J. Hydrogen Energy,2010, 35(7):3072-3075.
    [115]Fan M Q, Sun L X, Zhang Y, et al. The catalytic effect of additive Nb2O5 on the reversible hydrogen storage performances of LiBH4-MgH2 composite [J]. Int. J. Hydrogen Energy,2008,33(1):74-80.
    [116]Bosenberg U, Doppiu S, Mosegaard L, et al. Hydrogen sorption properties of MgH2-LiBH4 composites [J]. Acta Mater.,2007,55(11):3951-3958.
    [117]Bosenberg U, Ravnsbask D B, Hagemann H, et al. Pressure and temperature influence on the desorption pathway of the LiBH4-MgH2 composite system [J]. J. Phys. Chem. C,2010,114(35):15212-15217.
    [118]Walker G S, Grant D M, Price T C, et al. High capacity multicomponent hydrogen storage materials:Investigation of the effect of stoichiometry and decomposition conditions on the cycling behaviour of LiBH4-MgH2 [J]. J. Power Sources,2009,194(2):1128-1134.
    [119]Ibikunle A, Goudy A, Yang H. Hydrogen storage in a CaH2-LiBH4 destabilized metal hydride system [J]. J. Alloys Compd.,2009,475(1):110-115.
    [120]Choudhury P, Srinivasan S S, Bhethanabotla V R, et al. Nano-Ni doped Li-Mn-B-H system as a new hydrogen storage candidate [J]. Int. J. Hydrogen Energy,2009,34(15):6325-6334.
    [121]Puszkiel J A, Gennari F C. Reversible hydrogen storage in metal-doped Mg-LiBH4 composites [J]. Scripta Mater.,2009,60(8):667-670.
    [122]Xu J, Cao J, Yu X, et al. Enhanced catalytic hydrogen release of LiBH4 by carbon-supported Pt nanoparticles [J]. J. Alloys Compd.,2010,490(1-2):88-92.
    [123]Au M, Spencer W, Jurgensen A, et al. Hydrogen storage properties of modified lithium borohydrides [J]. J. Alloys Compd.,2008,462(1):303-309.
    [124]Fang Z, Kang X, Dai H, et al. Reversible dehydrogenation of LiBH4 catalyzed by as-prepared single-walled carbon nanotubes [J]. Scripta Mater.,2008,58(10): 922-925.
    [125]Mao J, Guo Z, Liu H, et al. Reversible hydrogen storage in titanium-catalyzed LiAlH4-LiBH4 system [J]. J. Alloys Compd.,2009,487(1):434-438.
    [126]Friedrichs O, Borgschulte A, Kato S, et al. Low-temperature synthesis of LiBH4 by gas-solid reaction [J]. Chemistry,2009,15(22):5531-5534.
    [127]Zuttel A, Wenger P, Rentsch S, et al. LiBH4 a new hydrogen storage material [J]. J. Power Sources,2003,118(1):1-7.
    [128]Mosegaard L, Moller B, Jorgensen J E, et al. Reactivity of LiBH4:In situ synchrotron radiation powder X-ray diffraction study [J]. J. Phys. Chem. C, 2008,112(4):1299-1303.
    [129]Zhang Y, Zhang W S, Fan M Q, et al. Enhanced hydrogen storage performance of LiBH4-SiO2-TiF3 composite [J]. J. Phys. Chem. C,2008,112(10): 4005-4010.
    [130]Xu J, Yu X, Zou Z, et al. Enhanced dehydrogenation of LiBH4 catalyzed by carbon-supported Pt nanoparticles [J]. Chem. Commun.,2008, (44):5740-5742.
    [131]Zhang Y, Zhang W S, Wang A Q, et al. LiBH4 nanoparticles supported by disordered mesoporous carbon:Hydrogen storage performances and destabilization mechanisms [J]. Int. J. Hydrogen Energy,2007,32(16): 3976-3980.
    [132]Yu X, Wu Z, Chen Q, et al. Improved hydrogen storage properties of LiBH4 destabilized by carbon [J]. Appl. Phys. Lett.,2007,90:034106.
    [133]Wang P J, Fang Z Z, Ma L P, et al. Effect of SWNTs on the reversible hydrogen storage properties of LiBH4-MgH2 composite [J]. Int. J. Hydrogen Energy,2008,33(20):5611-5616.
    [134]Gross A F, Vajo J J, Van Atta S L, et al. Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds [J]. J. Phys. Chem. C,2008,112(14): 5651-5657.
    [135]Cahen S, Eymery J B, Janot R, et al. Improvement of the LiBH4 hydrogen desorption by inclusion into mesoporous carbons [J]. J. Power Sources,2009, 189(2):902-908.
    [136]SouliS J P, Renaudin G, Cerny R, et al. Lithium boro-hydride LiBH4:Ⅰ. Crystal structure [J]. J. Alloys Compd.,2002,346(1-2):200-205.
    [137]Kumar R S, Cornelius A L. Structural transitions in NaBH4 under pressure [J]. Appl. Phys. Lett.,2005,87(26):261916-261913.
    [138]Abrahams S C, Kalnajs J. The Lattice constants of the alkali borohydrides and the low-temperature phase of sodium borohydride [J]. J. Chem. Phys.,1954,22: 434.
    [139]Vajeeston P, Ravindran P, Kjekshus A, et al. High hydrogen content complex hydrides:A density-functional study [J]. Appl. Phys. Lett.,2006,89(7): 071906-071903.
    [140]Hartman M R, Rush J J, Udovic T J, et al. Structure and vibrational dynamics of isotopically labeled lithium borohydride using neutron diffraction and spectroscopy [J]. J. Solid State Chem.,2007,180(4):1298-1305.
    [141]Filinchuk Y, Chernyshov D, Cerny R. Lightest borohydride probed by synchrotron X-ray diffraction:experiment calls for a new theoretical revision [J]. J. Phys. Chem. C,2008,112(28):10579-10584.
    [142]Tekin A, Caputo R, Zuettel A. First-principles determination of the ground-state structure of LiBH4 [J]. Phys. Rev. Lett.,2010,104(21):215501
    [143]Araujo C M, Ahuja R, Talyzin A V, et al. Pressure-induced structural phase transition in NaBH4 [J]. Phys. Rev. B,2005,72(5):054125.
    [144]Filinchuk Y, Talyzin A, Chernyshov D, et al. High-pressure phase of NaBH^: Crystal structure from synchrotron powder diffraction data [J]. Phys. Rev. B, 2007,76(9):092104.
    [145]Yu F, Sun J X, Tian R G, et al. Structural transition of NaBH4 under high pressure:Ab initio calculations [J]. Chem. Phys.,2009,362(3):135-139.
    [146]Pendolino F, Mauron P, Borgschulte A, et al. Effect of boron on the activation energy of the decomposition of LiBH4 [J]. J. Phys. Chem. C,2009,113(39): 17231-17234.
    [147]Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev.,1964, 136(3B):B864-B871.
    [148]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev.,1965,140(4A):A1133-A1138.
    [149]李琳艳.压力下物质结构相变的第一性原理计算研究[D].北京:中国科学院物理所,2006.
    [150]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998.
    [151]李正中.固体理论[M].北京:高等教育出版社,2003.
    [152]Born M, Oppenheimer R. Zur Quantentheorie der Molekeln [J]. Ann. Physik, 1927,389(20):457-484.
    [153]Hartree D R. The wave mechanics of an atom with a non-coulomb central field: Part II. some results and discussion [J]. Math. Pro. Cambridge,1928,24(01): 111-132.
    [154]Fork V. Naerungsmethode zur Losung des qantenmeehanischen mehrkorperproblems [J]. Z. Phys.,1930,61:126-148.
    [155]Slater J C. The theory of complex spectra [J]. Phys. Rev.,1929,34:1293-1129.
    [156]徐光宪,黎乐民,王德民.量子化学[M].北京:科学出版社,2001.
    [157]Thomas L H. The calculation of atomic fields [J]. Proc. Camb. Phil. Soc.,1927, 23(05):542-548.
    [158]Fermi E. Eine statistische methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theorie des periodischen Systems der elemente [J]. Zeitschrift fur Physik A Hadrons and Nuclei,1928,48(1):73-79.
    [159]徐克尊,陈宏芳,周子肪.近代物理学[M].北京:高等教育出版社,2003.
    [160]Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method [J]. Phys. Rev. Lett.,1980,45(7):566-569.
    [161]Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys. Rev. B,1981,23(10): 5048-5079.
    [162]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett.,1996,77(18):3865-3868.
    [163]Hammer B, Hansen L B, Norskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J]. Phys. Rev. B,1999,59(11):7413-7421.
    [164]Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B,1992,45(23):13244-13249.
    [165]Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces:applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B,1992,46(11):6671-6687.
    [166]Wu Z, Cohen R E. More accurate generalized gradient approximation for solids [J]. Phys. Rev. B,2006,73(23):235116.
    [167]江建军,缪灵,梁培.计算材料学—设计实践方法[M].上海:高等教育出版社,2010.
    [168]Parlinski K, Li Z Q, Kawazoe Y. First-principles determination of the soft mode in cubic ZrO2 [J]. Phys. Rev. Lett.,1997,78(21):4063-4066.
    [169]Wendel H, Martin R B. Theory of structural properties of covalent semiconductors [J]. Phys. Rev. B,1979,19(10):5251-5264.
    [170]Frank W, Elssser C, Fhnle M. Ab initio force-constant method for phonon dispersions in alkali metals [J]. Phys. Rev. Lett.,1995,74(10):1791-1794.
    [171]Giannozzi P, de Gironcoli S, Pavone P, et al. Ab initio calculation of phonon dispersions in semiconductors [J]. Phys. Rev. B,1991,43(9):7231-7242.
    [172]Savrasov S Y. Linear-response theory and lattice dynamics:a muffin-tin-orbital approach [J]. Phys. Rev. B,1996,54(23):16470-16486.
    [173]Baroni S, De Gironcoli S, Dal Corso A, et al. Phonons and related crystal properties from density-functional perturbation theory [J]. Rev. Mod. Phys., 2001,73(2):515-562.
    [174]Gonze X, Lee C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory [J]. Phys. Rev. B,1997,55(16):10355-10368.
    [175]谢禹.简单金属元素及其金属间化合物高压物理性质的第一性原理研究[D].吉林:吉林大学,2010.
    [176]段德芳.高压下卤族单质及其化合物的第一性原理研究[D].吉林:吉林大学,2011.
    [177]Martonak R, Laio A, Parrinello M. Predicting crystal structures:The Parrinello-Rahman method revisited [J]. Phys. Rev. Lett.,2003,90(7):75503.
    [178]Goedecker S. Minima hopping. An efficient search method for the global minimum of the potential energy surface of complex molecular systems [J]. J. Chem. Phys.,2004,120:9911.
    [179]David J, Doye J P K. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms [J]. J. Phys.Chem. A,1997,101(28):5111-5116.
    [180]Pannetier J, Bassas-Alsina J, Rodriguez-Carvajal J, et al. Prediction of crystal structures from crystal chemistry rules by simulated annealing [J]. Nature,1990, 346(6282):343-345.
    [181]Aarts E, Korst J. Simulated annealing and Boltzmann machines [M]. New York, John Wiley and Sons Inc.,1988.
    [182]孙树栋,周明.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [183]云庆夏.进化计算[M].北京:冶金工业出版社,2000.
    [184]Deaven D, Ho K. Molecular geometry optimization with a genetic algorithm [J]. Phys. Rev. Lett.,1995,75(2):288-291.
    [185]Woodley S M, Battle P D, Gale J D, et al. The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation [J]. Phys. Chem. Chem. Phys.,1999,1(10):2535-2542.
    [186]Glass C W, Oganov A R, Hansen N. USPEX-Evolutionary crystal structure prediction [J]. Comput. Phys. Commun.,2006,175(11-12):713-720.
    [187]Oganov A R, Ma Y, Glass C W, et al. Evolutionary crystal structure prediction. overview of the USPEX method and some of its applications [J]. Psi-k Newsletter,2007,84:142-171.
    [188]Oganov A R, Glass C W. Crystal structure prediction using ab initio evolutionary techniques:principles and applications [J]. J. Chem. Phys.,2006, 124(24):244704-244715.
    [189]Oganov A R, Chen J, Gatti C, et al. Ionic high-pressure form of elemental boron [J]. Nature,2009,457(7231):863-867.
    [190]Lyakhov A O, Oganov A R, Valle M. How to predict very large and complex crystal structures [J]. Comput. Phys. Commun.,2010,181(9):1623-1632.
    [191]Wang Y, Lv J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization [J]. Phys. Rev. B,2010,82(9):094116.
    [192]余飞.新型功能材料高压性质的第一性原理研究[D].成都:电子科技大学,2011.
    [193]徐祖耀.相变原理[M].北京:科学出版社,1988.
    [194]朱景川,来忠红.固态相变原理[M].北京:科学出版社,2010.
    [195]冯瑞.金属物理学[M].北京:北京科学出版社,1999.
    [196]Liu L G, Bassett W A, Sharry J. New high-pressure modifications of GeO2 and SiO2 [J]. J. Geophys. Res.,1978,83(B5):2301-2305.
    [197]German V, Podurets M, Trunin R. Synthesis of a high density phase of silicon dioxide in shock waves [J]. J. Exp. Theor. Phys.,1973,37:107.
    [198]Dubrovinsky L, Saxena S, Lazor P, et al. Experimental and theoretical identification of a new high-pressure phase of silica [J]. Nature,1997, 388(6640):362-365.
    [199]Tse J S, Klug D D, Le Page Y. Novel high pressure phase of silica [J]. Phys. Rev. Lett.,1992,69(25):3647-3649.
    [200]Zaluska A, Zaluski L, Strom-Olsen J O. Sodium alanates for reversible hydrogen storage [J]. J. Alloys Compd.,2000,298(1-2):125-134.
    [201]Orimo S, Nakamori Y, Kitahara G, et al. Dehydriding and rehydriding reactions of LiBH4 [J]. J. Alloys Compd.,2005,404-406(0):427-430.
    [202]Schwarz M, Haiduc A, Stil H, et al. The use of complex metal hydrides as hydrogen storage materials:Synthesis and XRD-studies of Ca(AlH4)2 and Mg(AlH4)2 [J]. J. Alloys Compd.,2005,404-406(0):762-765.
    [203]Gross K J, Majzoub E H, Spangler S W. The effects of titanium precursors on hydriding properties of alanates [J]. J. Alloys Compd.,2003,356-357(0): 423-428.
    [204]Price C, Gray J, Lascola Jr R, et al. The effects of halide modifiers on the sorption kinetics of the Li-Mg-N-H System [J]. Int. J. Hydrogen Energy,2012, 37(3):2742-2749.
    [205]Yao J H, Shang C, Aguey-Zinsou K F, et al. Desorption characteristics of mechanically and chemically modified LiNH2 and (LiNH2+LiH) [J]. J. Alloys Compd.,2007,432(1-2):277-282.
    [206]Yang J, Sudik A, Siegel D J, et al. A self-catalyzing hydrogen-storage material [J]. Angew. Chem. Int. Edit.,2008,47(5):882-887.
    [207]Vajeeston P, Ravindran P, Kjekshus A, et al. Pressure-induced structural transitions in MgH2 [J]. Phys. Rev. Lett.,2002,89(17):175506.
    [208]Hu C H, Oganov A R, Lyakhov A O, et al. Insulating states of LiBeH3 under extreme compression [J]. Phys. Rev. B,2009,79(13):134116.
    [209]Hu C H, Wang Y M, Chen D M, et al. First-principles calculations of structural, electronic, and thermodynamic properties of Na2BeH4 [J]. Phys. Rev. B,2007, 76(14):144104.
    [210]Vajeeston P, Ravindran P, Vidya R, et al. Huge-pressure-induced volume collapse in LiAlH4 and its implications to hydrogen storage [J]. Phys. Rev. B, 2003,68(21):212101.
    [211]Bastide J P, Bonnetot B, Letoffe J M, et al. Polymorphisme de l'hydrure de magnesium sous haute pression [J]. Mater. Res. Bull.,1980,15(9):1215-1224.
    [212]Talyzin AV, Sundqvist B. Reversible phase transition in LiAlH4 under high-pressure conditions [J]. Phys. Rev. B,2004,70(18):180101.
    [213]Pitt M P, Blanchard D, Hauback B C, et al. Pressure-induced phase transitions of the LiAlD4 system [J]. Phys. Rev. B,2005,72(21):214113.
    [214]Pimentel G C, McClellan A L. The hydrogen bond [M]. Freeman, San Francisco,1960.
    [215]Steiner T. The hydrogen bond in the solid state [J]. Angew. Chem. Int. Edit., 2002,41(1):48-76.
    [216]Fortes A D, Brodholt J P, Wood I G, et al. Hydrogen bonding in solid ammonia from ab initio calculations [J]. J. Chem. Phys.,2003,118(13):5987-5994.
    [217]Santra B, Klimes J, Alfe D, et al. Hydrogen bonds and van der waals forces in ice at ambient and high pressures [J]. Phys. Rev. Lett.,2011,107(18):185701.
    [218]Bohger J P O, Eβmann R R, Jacobs H. Infrared and Raman studies on the internal modes of lithium amide [J]. J. Mol. Struct.,1995,348(0):325-328.
    [219]Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev. B,1999,59(3):1758-1775.
    [220]Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comp. Mater Sci., 1996,6(1):15-50.
    [221]Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures [J]. Phys. Rev. B,2008,78(13):134106.
    [222]Paolo G, Stefano B, Nicola B, et al. QUANTUM ESPRESSO:a modular and open-source software project for quantum simulations of materials [J]. J. Phys.: Condens. Matter 2009,21(39):395502.
    [223]Lutz H D. Structure and strength of hydrogen bonds in inorganic solids [J]. J. Mol. Struct.,2003,646(1-3):227-236.
    [224]Scheiner S. Hydrogen bonding:a theoretical perspective [M]. USA, Oxford University Press,1997.
    [225]Li X Z, Walker B, Michaelides A. Quantum nature of the hydrogen bond [J]. PNAS.,2011,108(16):6369-6373.
    [226]Jensen C M, Gross K J. Development of catalytically enhanced sodium aluminum hydride as a hydrogen-storage material [J]. Appl. Phys A-Mat. Sci. Process,2001,72(2):213-219.
    [227]Gutowska A, Li L, Shin Y, et al. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane [J]. Angew. Chem. Int. Edit.,2005,44(23): 3578-3582.
    [228]Hirscher M, Becher M, Haluska M, et al. Hydrogen storage in carbon nanostructures [J]. J. Alloys Compd.,2002,330-332(0):654-658.
    [229]Seayad A M, Antonelli D M. Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials [J]. Adv. Mater., 2004,16(9-10):765-777.
    [230]Sheppard D A, Paskevicius M, Buckley C E. Hydrogen desorption from the NaNH2-MgH2 System [J]. J. Phys. Chem. C,2011,115(16):8407-8413.
    [231]Zhang Y, Tian Q. The reactions in LiBH4-NaNH2 hydrogen storage system [J]. Int. J. Hydrogen Energy,2011,36(16):9733-9742.
    [232]Juza R, Weber H H, Opp K. Kristallstruktur des Natriumamids [J]. Zeitschrift fur anorganische und allgemeine Chemie,1956,284(1-3):73-82.
    [233]Cunningham P T, Maroni V A. Laser raman spectra of solid and molten NaNH2: evidence for hindered rotation of the NH2-1 Ion [J]. J. Chem. Phys.,1972, 57(4):1415-1418.
    [234]Zhong Y, Zhou H, Hu C, et al. Pressure-induced structural transitions of LiNH2: A first-principle study [J]. J. Alloys Compd.,2012,544(0):129-133.
    [235]Xie Y, Oganov A R, Ma Y. Novel High pressure structures and superconductivity of CaLi2 [J]. Phys. Rev. Lett.,2010,104(17):177005.
    [236]Hu C H, Oganov A R, Wang Y M, et al. Crystal structure prediction of LiBeH3 using ab initio total-energy calculations and evolutionary simulations [J]. J. Chem. Phys.,2008,129(23):234105-234112.
    [237]Frank W, Elsasser C, Fahnle M. Ab initio force-constant method for phonon dispersions in alkali metals [J]. Phys. Rev. Lett.,1995,74(10):1791-1794.
    [238]Vajeeston P, Ravindran P, Kjekshus A, et al. Structural stability of alkali boron tetrahydrides ABH4(A=Li, Na, K, Rb, Cs) from first principle calculation [J]. J. Alloys amd Compd.,2005,387:97-104.
    [239]Vajeeston P, Ravindran P, Vidya R, et al. Pressure-induced phase of NaAlH4:a potential candidate for hydrogen storage [J]. Appl. Phys. Lett.,2003,82(14): 2257-2259.
    [240]Ferro O, Quartieri S, Vezzalini G, et al. High-pressure behavior of bikitaite:an integrated theoretical and experimental approach [J]. Am. Mineral.,2002, 87(10):1415-1425.
    [241]Muller M, Asmussen B, Press W, et al. Orientational order and rotational dynamics of the amide ions in potassium amide:II. quasielastic neutron scattering [J]. J. Chem. Phys.,1998,109(9):3559-3567.
    [242]Day D H, Sinclair R N. Studies of vibration spectra of bonded hydrogen atoms using a pulsed neutron source [J]. J. Chem. Phys.,1971,55(6):2807-2811.
    [243]Kojima Y, Kawai Y. IR characterizations of lithium imide and amide [J]. J. Alloys Compd.,2005,395(1-2):236-239.
    [244]Juza R, Opp K. Metallamide und metallnitride mitteilung. zur kenntnis des lithiumimides [J]. Zeitschrift fur anorganische und allgemeine Chemie 1951, 266(6):325-330.
    [245]Sandrock G. A panoramic overview of hydrogen storage alloys from a gas reaction point of view [J]. J. Alloys Compd.,1999,293-295(0):877-888.
    [246]Zhong Y, Zhou H Y, Hu C H, et al. Theoretical studies of high-pressure phases, electronic structure, and vibrational properties of NaNH2 [J]. J. Phys. Chem. C, 2012,116(15):8387-8393.
    [247]Kremer K, Grest G S. Dynamics of entangled linear polymer melts:a molecular-dynamics simulation [J]. J. Chem. Phys.,1990,92(8):5057-5086.
    [248]Domenech-Ferrer R, Ziegs F, Klod S, et al. In situ Raman cell for high pressure and temperature studies of metal and complex hydrides [J]. Anal. Chem.,2011, 83(8):3199-3204.
    [249]Borgschulte A, Zuttel A, Orimo S I. Tetrahydroborates as new hydrogen storage materials [J]. Scripta Mater.,2007,56(10):823-828.
    [250]Harris P M, Meibohm E P. The crystal structure of lithium borohydride LiBH4 [J]. J. Am. Chem. Soc.,1947,69(5):1231-1232.
    [251]Lodziana Z, Vegge T. Structural stability of complex hydrides. UBH4 Revisited [J]. Phys. Rev. Lett.,2004,93(14):145501.
    [252]Frankcombe T J, Kroes G J, Zuttel A. Theoretical calculation of the energy of formation of LiBH4 [J]. Chem. Phys. Lett.,2005,405(1-3):73-78.
    [253]Callaway J, March N. Density functional methods:theory and applications [J]. Solid State Phys.,1984,38:135-221.
    [254]Talyzin A V, Andersson O, Sundqvist B, et al. High-pressure phase transition in LiBH4, [J]. J. Solid State Chem.,2007,18:510-517.
    [255]Kumar R S, Kim E, Cornelius A L. Structural phase transitions in the potential hydrogen storage compound KBH4 under compression [J]. J. Phys. Chem. C, 2008,112(22):8452-8457.
    [256]Kumar R S, Cornelius A L. Structural phase transitions in RbBH4 under compression [J]. J. Alloys Compd.,2009,476(1-2):5-8.
    [257]Vajeeston P, Ravindran P, Vidya R, et al. Design of potential hydrogen-storage materials using first-principle density-functional calculations [J]. Cryst. Growth Des.,2004,4(3):471-477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700