用户名: 密码: 验证码:
基于G-四链体探针和链置换放大的光学分析新方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核酸是一种广泛存在于生物体内的生物大分子,为生命的最基本物质之一。伴随着体外合成技术,特别是固相合成的出现,它已成为一种重要的分子工具,在生化分析领域扮演着重要的角色。由于核酸具有易于合成、稳定性好、生物相容性好、设计简单、信号机制灵活等诸多优势,它被广泛应用于分子探针、分子机器、生物传感器的构建,另外它可与各种工具酶联用开发高效快速的信号放大方法。目前,基于核酸的分子探针和放大方法已成为构建光化学生物传感器的重要元件。这类传感器具有灵敏度高、操作简便、分析速度快、检测成本低、易于实现高通量和微型化等优点,在生物化学、生物医学、环境监测、食品、医药和军事等领域有着极其广阔的应用前景。新型多功能核酸探针的开发及高效信号放大方法的设计对发展多功能、高灵敏的光学生物传感器至关重要。基于以上考虑,综合文献报道,本文主要在开发新型多功能核酸探针和解决当前链置换放大方法在使用过程中存在的焦点和难点问题做了一些工作,主要内容如下:
     鉴于含连续不间断富G片段的DNA探针具有优越的自组装性能已在生物材料领域引起广泛关注,而在生物传感器领域的报道相对较少,在第2章中,我们以一条含7个连续G碱基(G7s)的富G荧光探针为模型,对该类富G探针的自组装性能和荧光光学性质进行了详细研究。通过圆二色谱(CD)、紫外光谱(UV)和电泳分析发现该富G探针主要自组装形成分子间平行G-四链体结构(intermolecular parallel G-quadruplex,IGQ)。伴随这种独特的自组装行为,该探针展现出了独特的荧光猝灭机理,荧光背景非常低,并且猝灭信号可以通过加入互补序列进行调控。荧光信号恢复可达近90倍,可与传统的分子信标媲美。实验结果表明该类IGQ信号探针在光学传感器领域具有良好的应用前景。
     第3章我们将IGQ信号探针与无标记的发夹探针结合,开发了一种新的无猝灭标记的分子信标(IGQ-MB),应用于人P53基因检测。得益于IGQ信号探针独特的光学性质,我们实现了MB的识别序列与信号报告基团的分离。因此,针对不同的目标,我们只需根据需求重新合成无标记的发夹序列,从而大大降低了MB的实际操作成本,增强了通用性。另外,发夹探针末端的无标记有利于其在聚合反应以及界面分析方法中的应用,拓宽了MB的适用范围。G-四链体结构的引入使得该设计在疾病诊断和药物运载领域具有更广阔的前景。
     在采用荧光嵌入剂作为信号报告基团的链置换放大(SDA)反应体系中,不依赖模板/引物的非特异性扩增现象广泛存在,并严重严重影响检测体系的背景信号。在第4章中,我们发现向体系中加入一种蛋白质能有效地抑制这种非特异性扩增。基于该发现我们进一步提出了一种新的SDA模型——切刻反转式SDA模型。该模型主要基于一条一体化的模板探针,告别了传统方法使用多条引物探针和循环高温加热操作的模式,不仅操作简单价格低廉,而且适用于37℃条件下DNA及蛋白质的无标记检测。
     第5章我们通过实验指出并证明了在传统的采用目标识别和信号传导相分离的链置换扩增放大检测方法中,存在“信号耗损”现象。针对该现象我们提出了一种新型的基于集成式信号读出方式的一体化探针分子机器,用于可卡因的定量分析。通过采用目标识别与信号传导一体化的设计,巧妙避免了“信号耗损”,缩短了分子机器的信号响应时间,提高了的检测灵敏度,同时扩宽了响应范围近500倍。
     第6章描述了一种摆臂式DNA(LPOD)纳米开关,并将其应用于目标DNA序列的特异性识别以及高灵敏定量检测。逐步加入启动探针或制动探针与开关杂交,能使该开关的单链手臂在9.4nm范围内进行摆臂运动,调控FRET反应,实现开关的反复开合。与传统的“镊子”型的纳米开关相比,该开关只有一个手臂呈现单链状态,其它均呈刚性双链结构,一方面有效地避免了纳米开关之间的共杂交,另一方面降低了DNA纳米器件的不可预知形变几率。另外,该开关采用单一的启动结合位点,有效地避免了间隔碱基片段的拉伸作用,更利于启动探针的杂交反应。
Nucleic acids are important biological macromolecules essential for life, which arefound in abundance in all living things. As the development of synthesistechnology in vitro, especially with the discovery of the solid phase synthesis,nucleic acids have become important molecular tools and play important roles inbiochemical analysis. With the advantages of stable, biocompatible, simple design,easy to synthesize and flexible signal mechanism, nucleic acids have been widelyapplied in designing molecular probe, constructing molecular machines andbiosensors. Additionally, by combining with various tool enzymes, they can also beused in developing efficient signal amplification strategies. Nowadays, nucleic acidsbased molecular probe and signal amplification strategy have become importantelements of photochemical biosensor. This kind of biosensors has wide applicationprospects in chemistry, biomedicine, environmental monitoring, food industry,medicine and military affairs, attributing to its high sensitivity, easy operation, fastresponse, low cost and easy to realize high throughput analysis and miniaturization.Therefore, developing nucleic acid probe with multifunctions and efficient signalamplification strategy is vital for photochemical biosensor with excellent properties.We focused on these points and developed several photochemical biosensors in thispaper. The details are summarized as follows:
     (1) In chapter2, single fluorescein (FAM)-labeled G-rich signaling probewithout any quencher is developed as the model. This probe was designed to possessa continuous seven-guanine fragment (G7s) and a random tail. Its intermolecularparallel G-quadruplex (IGQ) structure is validated by recording fluorescenceemission, CD, UV, and gel electropherogram. Moreover, the developed probepossesses low self-quenching-based background fluorescence, and the restoration ofquenched fluorescence can be easily accomplished in a simple manner. Excitingly,more than90-fold fluorescence enhancement can be detected for an improvedIGQ-structure-based probe after hybridization to complementary strand, dramaticallyhigher than signal of traditional molecular beacon. The solid data imply thefascinating potential application of the concept of single fluorophore-labeled G-richprobe in biosensor development and G-quadruplex researches to acquire the furtherinformation on the function of vital nucleic acids in biological processes.
     (2) In chapter3, we further applied IGQ signaling probe to bind with an unmodified hairpin sequence and fabricated a novel quencher free molecular beacon(called intermolecular G-quadruplexb-based molecular beacon, IGQ-MB) for detectingof human P53gene. In this novel strategy, the molecular recognition element (hairpinsequence) and signal reporter has been successfully separated. Therefore, in practicalapplication, users just need to resynthesis the unmodified hairpin sequences accordingto the various requirements in optimization of MB or in detection of different targets,which obviously reduce the cost and improve the convenience. The novel strategy hasgreat potential in disease diagnosis, drug discovery and solid surface analysis.
     (3) There is a template/primer independent non-specific reaction existing in moststrand dispalsment amplification (SDA)-based detection systems, especially for theone with intercalating dye as the signal reporter, which seriously interference thebackground signal of the detection system. In Chapter4, we found that suchnon-specific reaction can be effectively inhibited by adding a special protein into thesystem. Furthermore, a novel SDA-based strategy, called nicking-induced reversingSDA model, is developed as a proof-of-concept. The model is mainly based on anintegrated template probe which is distinguished from tranditional multiprobe basedSDA system. The novel label-free SDA-based strategy is not only simple andinexpensive, but also suitable for detection of DNA and protein under the conditionof37°C.
     (4) In chapter5, we pointed out and demonstrated that there is a “signalmisreading” behavior in existing autonomous machines where the target recognitionprocess and signal transduction is separated from each other. We further developed aintegrated signal transduction-based autonomous aptameric machine, in which therecognition element and signal reporters are integrated into a DNA strand. This newmachine can execute the in situ amplification of target-induced signal. The authenticoperation behavior of autonomous DNA machine is discovered: the machine’s productsdirectly hybridize to the “track” rather than to the signaling probes. Along this line, themachine is employed to detect the cocaine in a more straightforward fashion, andimproved assay characteristics (for example, the dynamic response range is widenedby more than500-fold) are achieved. Our efforts not only clarify the concept describedin traditional autonomous DNA machines but also have made technologicaladvancements that are expected to be especially valuable in designing nucleicacid-based machines employed in basic research and medical diagnosis.
     (5) In chapter6, a powerful pendulum-type DNA (LPOD) nanoswitch, which canperform a reversible on/off molecular motion at an about9.4-nm scale, is developed as a proof-of-concept, and the sequence-specific recognition and sensitive quantificationof target olignucleotides are demonstrated utilizing this screening scheme. In contrastto the existing nanomachines (e.g. tweezers), the hybridization of the fuel strand withthe nanodevice opens the hairpin structure and straightens one arm, bringing thequencher into the close proximity of the fluorophore for FRET. Additionally, thepresent scheme has eliminated dimers as only one arm is kept in the single-strandedstate avoiding the hybridization of nanodevices with each other. Furthermore, ashybridization reaction occurring at a single “binding site” rather than the dual “bindingsites” eliminates the effect of spacer segments that can encountered for an integratedsignaling probe, the nanomachine seems to exhibit significant advantages.
引文
[1] Naylor, S. Genomic and proteomic sample preparation: higher throughputsolutions. Expert Review of Proteomics,2004,1(1):11-16
    [2]陈玲.生物传感器的研究进展综述.传感器与微系统,2006,25(9):4-7
    [3]张先恩.生物传感技术原理与应用.长春:吉林科学技术出版社,1990,6-8
    [4]覃柳,刘仲明,邹小勇.电化学生物传感器研究进展.中国医学物理学杂志,2007,24(1):60-62
    [5] Jhaveri S D, Kirby R, Conrad R, et al. Designed signaling aptamers thattransduce molecular recognition to changes in fluorescence intensity. Journalof the American Chemical Society,2000,122(11):2469-2473
    [6] Potyrailo R A, Conrad R C, Ellington A D, et al. Adapting selected nucleic acidligands (aptamers) to biosensors. Analytical Chemistry,1998,70(16):3419-3425
    [7] Pavlov V, Xiao Y, Gill R, et al. Amplified chemiluminescence surfacedetection of DNA and telomerase activity using catalytic nucleic acid labels.Analytical Chemistry,2004,76(7):2152-2156
    [8] Scarano S, Ermini M L, Spiriti M M, et al. Simultaneous detection oftransgenic DNA by surface plasmon resonance imaging with potentialapplication to gene doping detection. Analytical Chemistry,2011,83(16):6245-6253
    [9] Campanella L, Pacifici F, Sammartino M P, et al. A new organic phasebienzymatic electrode for lecithin analysis in food products.Bioelectrochemistry and Bioenergetics,1998,47(1):25-38
    [10] Lee T, Tsuzuki M, Takeuchi T, et al. Quantitative determination ofcyanobacteria in mixed phytoplankton assemblages by an in vivo fluorimetricmethod. Analytica Chimica Acta,1995,302(1):81-87
    [11] Blackburn G F, Talley D B, Booth P M, et al. Potentiometric biosensoremploying catalytic antibodies as the molecular recognition element.Analytical Chemistry,1990,62(20):2211-2216
    [12] Pandey P C, Weetall H H. Detection of aromatic compounds based on DNAintercalation using an evanescent wave biosensor. Analytical Chemistry,1995,67(5):787-792
    [13] Tombelli S, Mascini M, Braccini L, et al. Coupling of a DNA piezoelectricbiosensor and polymerase chain reaction to detect apolipoprotein Epoly-morphisms. Biosensors and Bioelectronics,2000,15(7-8):363-370
    [14] Ward L N, Bej A K. Detection of vibrio parahaemolyticus in shellfish by use ofmultiplexed real-time PCR with TaqMan fluorescent probes. Applied andEnvironmental Microbiology,2006,72(3):2031-2042
    [15] Yip S P, To S T, Leung P H M, et al. Use of dual TaqMan probes to increasethe sensitivity of1-step quantitative reverse transcription-PCR: application tothe detection of SARS coronavirus. Clinical Chemistry,2005,51(10):1885-1888
    [16] Kolpashchikov D M. Binary probes for nucleic acid analysis. ChemicalReviews.2010,110(8):4709-4723
    [17] Tsuji A, Koshimoto H, Sato Y, et al. Direct observation of specific messengerRNA in a single living cell under a fluorescence microscope. BiophysicalJournal,2000,78(6):3260-3274
    [18] Shi H, He X X, Wang K M. Activatable aptamer probe for contrast-enhanced invivo cancer imaging based on cell membrane protein-triggered conformationalteration. Proceedings of the National Academy of Sciences,2011,108(10):3900-3905
    [19] Tyagi S, Kramer F R. Molecular beacons: probes that fluoresce uponhybridization. Nature Biotechnology,1996,14(3):303-308
    [20] Tyagi S, Marras S A E, Kramer F R, Wavelength-shifting molecular beacons,Nature Biotechnology,2000,18(11):1191-1196
    [21] Chao Y, Yang J, Pinto M, et al. Direct synthesis of an oligonucleotide-poly-(phenyleneethynylene) conjugate with a precise one-to-one molecular ratio. Angewandte Chemie International Edition,2005,44(17):2572-2576
    [22] Conlon P, James Yang C Y, Wu Y R, et al. Pyrene excimer signaling molecularbeacons for probing nucleic acids. Journal of the American Chemical Society,2008,130(1):336-342
    [23] Lovell J F, Jin H L, Ng K K, et al. Programmed nanoparticle aggregation usingmolecular beacons. Angewandte Chemie International Edition,2010,49(43):7917-7919
    [24] Dubertret B, Calame M, Libchaber A J. Single-mismatch detection usinggold-quenched fluorescent oligonucleotides. Nature Biotechnology,2001,19(4):365-370
    [25] Chao Y, Yang J, Lin H, et al. Molecular assembly of superquenchers insignaling molecular interactions, Journal of the American Chemical Society,2005,127(33):12772-12773
    [26] Lewis F D, Liu X Y, Liu J Q, et al. Dynamics and equilibria for oxidation ofG,GG, and GGG sequences in DNA hairpins. Journal of the AmericanChemical Society,2000,122(48):12037-12038
    [27] Du H, Disney M D, Miller B L, et al. Hybridization-based unquenching ofDNA hairpins on Au surfaces: prototypical “molecular beacon” biosensors.Journal of the American Chemical Society,2003,125(14):4012-4013
    [28] Venkatesan N, Seo Y J, Kim B H. Quencher-free molecular beacons: a newstrategy in fluorescence based nucleicacid analysis. Chemical Society Reviews,2008,37(4):648-663
    [29] Piestert O, Barsch H, Buschmann V, et al. A single-molecule sensitive DNAhairpin system based on intramolecular electron transfer. Nano Letters,2003,3(7):979-982
    [30] Gildea B D, Coll J M, Hyldig-Nielsen, et al. Methods, kits and compositionspertaining to linear beacons, WO. A-9921881,1999
    [31] Kuhn H, Demidov V V, Coull J M, et al. Hybridization of DNA and PNAmolecular beacons to single-stranded and double-stranded DNA target. Journalof the American Chemical Society,2002,124(6):1097-1103
    [32] Maxwell D J, Taylor J R, Nie S M. Self-assembled nanoparticle probes forrecognition and detection of biomolecules. Journal of the American ChemicalSociety,2002,124(32):9606-9612
    [33] Browne K A. Sequence-specific, self-reporting hairpin inversion probes.Journal of the American Chemical Society,2005,127(6):1989-1994
    [34] Grossmann T N, R glin L, Seitz O, Triplex molecular beaconsas modularprobes for DNA detection. Angewandte Chemie International Edition,2007,46(27):5223-5225
    [35] Zheng J, Li J S, Jiang Y, et al. Design of aptamer-based sensing platform usingtriple-helix molecular switch. Analytical Chemistry,2011,83(17):6586-6592
    [36] Bourdoncle A, Estévez Torres A, Gosse C, et al. Quadruplex-based molecularbeacons as tunable DNA probes. Journal of the American Chemical Society,2006,128(34):11094-11105
    [37] McClintoek B. The stability of broken ends of chromosomes in zea mays,Geneties,1941,26(2):234-282
    [38] Watson J. D, Crick F H. Molecular structure of nueleic acids: a structure fordeoxyribose nucleic acid, Nature,1953,171(4356):737-738
    [39] Gellert M, Lipsett M N,Davies D R. Helix formation by guanylic acid.Proceedings of the National Academy of Sciences,1962,48(12),2013-2018
    [40] Zahler A M, Williamson J R, Cech T R. Prescott D M. Inhibition of telomeraseby G-quartet DNA structures. Nature,1991(0),350:718-720
    [41] Forman S L, Fettinger J C, Pieraccini S, et al. Toward artificial ion channels: alipophilic G-quadruplex. Journal of the American Chemical Society,2000,122(17):4060-4067
    [42] Laughlan G, Murchie A I, Norman D G, et al. The high-resolution crystalstructure of a parallel-stranded guanine tetraplex. Science,1994,265(5171):520-524
    [43] Henderson E, Hardin C C, Walk S K, et al. Telomeric DNA oligonucleotidesform novel intramolecular structures containing guanine-guanine base pairs.Cell,1987,51(6):899-908
    [44] Wang Y, Patel D J. Solution structure of oxytricha telomeric repeatd[G4(T4G4)3] G-tetraplex. Journal of Molecular Biology,1993, l(4):263-282
    [45] Zhu H, Lewis F D. Pyrene excimer fluoreseence as a Probe for parallelG-quadruplex formation. Bioeonjugate Chemistry,2007,18(4):1213-1217
    [46] Phillips K, Duater Z, Murehie A I H, et al. The crystal strueture of aparallel-stranded guaninete triplex at0.95A resolution. Journal of MolecularBiology,1997,273(1):171-182
    [47] Stephen N. The structures of quadruplex nucleic acids and their drugcomplexes. Current Opinion in Structural Biology,2009,19(3):239-250
    [48] Kang C, Zhang X, Ratliff R. Cyrstal strueture of four-stranded oxytrichatelomeric DNA. Nature,1992,356(6365):126-131
    [49] Smith F W, Feigon J. Quadruplex stureutre of oxytricha telomeric DNAoligonueleotides. Nature,1992,356(6365):164-168
    [50] Monchaud D, Teulade-Fichou M P. A hitchhiker’s guide to G-quadruplexligands. Organic&Biomolecular Chemistry,2008,6(4):627-636
    [51] Maeaya R F, Schultze P, Smith F W, et al. Thrombin-binding DNA aptamerforms a unimoleeular G-quadruplex structure in solution. Proceedings of theNational Academy of Sciences,1993,90(8):3745-3749
    [52] Kettani A, Gorin A, Majumdar A, et al. A dimeric DNA interface stabilized bystacked A·(G·G·G·G)·A hexads and coordinated monovalent cations. Journal ofMolecular Biology,2000,297(3):627-644
    [53] Parkinson G N, Lee M P, Neidle S. Crystal structure of parallel guadruplexesfrom human telomeric DNA. Nature,2002,417(6891):876-880
    [54]李明辉. G-四链体的三维结构及其与小分子相互作用的理论研究:[吉林大学博士学位论文].长春:吉林大学理论化学研究所,2010:4
    [55] Smirnov I V, Shafer R H. Electrostatics dominate quadruplex stability.Biopolymers,2007,85(1):91-101
    [56] Guédin A, Alberti P, Mergny J L. Stability of intramolecular quadruplexe:sequence effects in the central loop. Nueleic Acids Research,2009,37(16):5559-5567
    [57] Rachwa P A, Findlow I S, Werner J M, et al. Intramolecular DNA quadruplexeswith different arrangements of short and long loops. Nueleic Acids Research,2007,35(12):4214-4222
    [58] Wang Y, Patel D J. Solution structure of the human telomeric repeatd[AG3(T2AG3)3] G-tetraplex Structure. Structure,1993, l(4):263-282
    [59] Ambrus A, Chen D, Dai J X, et al. Human telomeric sequence forms ahybrid-type intramoleeular G-quadruplex structure with mixedparallel/antiparallel strands in potassium solution. Nucleic Acids Research,2006,34(9):2723-2735
    [60] Zhang J L, Fu Y, Zheng L, et al. Natural isoflavones regulate thequadruplex–duplex competition in human telomeric DNA. Nucleic AcidsResearch,2009,37(8):2417-2482
    [61] Haider S M, Parkinson G N, Neidle S. Structure of a G-quadruplex-ligandcomplex. Journal of Molecular Biology,2003,326(1):117-125
    [62] Miyoshi D, Nakao A, Toda T, et al. Effect of divalent cations on antiparallelG-quartet structure of d(G4T4G4). FEBS Letters,2001,496(2-3):128-133
    [63] Miyoshi D, Nakao A, Sugimoto N. Structural transition from antiparallel toparallel G-quadruplex of d(G4T4G4)induced by Ca2+. Nucleic Acids Research,2003,31(4):1156-1163
    [64] Daisuke M, Akihiro N, Naoki S. Molecular crowding regulates the structuralswitch of the DNA G-quadruplex. Biochemistry,2002,41(50):15017-15024
    [65] Ou T M, Lu Y J, Tan J H, et al. G-quadruplexes: targets in anticancer drugdesign. Chem Med Chem,2008,3(5):690-713
    [66] Han H, Langley D R, Rangan A, et al. Selective interactions of cationicporpHyrins with G-quadruplex structures, Journal of the American ChemicalSociety,2001,123(37):8902-8913
    [67] Rossetti L, Franceschin M, Bianco A. Perylene diimides with different didechains are selective in inducing different G-quadruplex DNA structures and ininhibiting telomerase. Bioorganic&Medicinal Chemistry Letters,2002,12(18):2527-2553
    [68] Izbicka E, Wheelhouse R T, Raymond E, et al. Effects of cationic porphyrins asG-quadruplex interactive agents in human tumor cells. Cancer Research,1999,59(3):693-644
    [69] Rezler E M, Seenisamy J, Bashyam S, et al. Telomestatin and diselenosapphyrin bind selectively to two different forms of the human telomericG-quadruplex structure. Journal of the American Chemical Society,2005,127(26):9439-9447
    [70] Kong D M, Wu J, Ma Y E, et al. A new method for the study of G-quadruplexligands. Analyst,2008,133(9):1158-1160
    [71] Wang H B, Chen T T, Wu S, et al. A novel biosensing strategy for screeningG-quadruplex ligands based on graphene oxide sheets. Biosensors andBioelectronics,2012,34(1):88-93
    [72] Wang K L, You M X, Chen Y, et al. Self-assembly of a bifunctional DNAcarrier for drug delivery, Angewandte Chemie International Edition,2011,50(27):6098-6101
    [73] Marsh T C, Henderson E. G-Wires: Self-assembly of a telomeric oligonucleotide, d(GGGGTTGGGG), into large superstructures. Biochemistry,1994,33(35):10718-10724
    [74] Marsh T C, Vesenka J, Henderson E. A new DNA nanostructure, the G-wire,imaged by scanning probe microscopy. Nucleic Acids Research,1995,23(4):696-700
    [75] Kotlyar A B, Borovok N, Molotsky T, et al. Long monomolecularguanine-based nanowires. Advanced Materials,2005,17(15):1901-1905
    [76] Miyoshi D, Karimata H, Wang Z M, et al. Artificial G-wire switch with2,2’-bipyridine units responsive to divalent metal ions. Journal of the AmericanChemical Society,2007,129(18):5919-5925
    [77] Protozanova E, Macgregor R B. Frayed wires: a thermally stable form of DNAwith two distinct structural domains. Biochemistry,1996,35(51):16638-16645
    [78] Batalia M A, Protozanova E, Macgregor R B et al. Self-assembly of frayedwires and frayed-wire networks: nanoconstruction with multistranded DNA.Nano Letters,2002,2(4):269-274
    [79] Biyani M, Nishigaki K. Structural characterization of ultra-stable higher-ordered aggregates generated by novel guanine-rich DNA sequences. Gene,2005,364:130-138
    [80] Lin J, Yan Y Y, Ou T M, et al. Effective detection and separation method forG-quadruplex DNA based on its specific precipitation with Mg2+.Biomacromolecules,2010,11(12):3384-3389
    [81] Berti L, Alessandrini A, Bellesia M, et al. Fine-tuning nanoparticle size byoligo(guanine)n templated synthesis of CdS: an AFM study. Langmuir,2007,23(22):10891-10892
    [82] Zhang J L, Zheng L, Wang X, et al. Branched silica nanostructures oriented bydynamic G-quadruplex transformation. Materials Research Bulletin,2010,45(12):1954-1959
    [83] Lubitz I, Kotlyar A. Self-assembled G4-DNA-silver nanoparticle structures.Bioconjugate Chemistry,2011,22(3):482-487
    [84] Li Z, Mirkin Chad A. G-quartet-induced nanoparticle assembly. Journal of theAmerican Chemical Society,2005,127(33):11568-11569
    [85] Padmanabhan K, Padmanabhan K P, Ferrarag J D, et al. The structure ofa-thrombin inhibited by a15-mer single-stranded DNA aptamer. The Journal ofbiological chemistry,1993,268(23):17651-17654
    [86] Chou S H, Chin K H, Wang A H. DNA aptamers as potential anti-HIV agents.Tr in Biochemical Sciences,2005,30(5):231-234
    [87] Li J J, Fang X, Tan W. Molecular aptamer beacons for real-time proteinrecognition. Biochemical and Biophysical Research Communications,2002,292(1):31-40
    [88] Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the directdetection of proteins. Analytical Biochemisty,2001,294(2):126-131
    [89] Wang X L, Li F, Su Y H, et al. Ultrasensitive detection of protein using anaptamer-based exonuclease protection assay. Analytical Chemistry,2004,76(19):5605-5610
    [90] Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of theAmerican Chemical Society,2004,126(38):11768-11769
    [91] Deng C, Chen J, Nie Z, et al. Impedimetric aptasensor with femtomolarsensitivity based on the enlargement of surface-charged gold nanoparticles.Analytical Chemistry,2009,81(2):739-745
    [92] Di Giusto D A, Wlassoff W A, Gooding J J, et al. Proximity extension ofcircular DNA aptamers with real-time protein detection. Nucleic AcidsResearch,2005,33(6): e64-e70
    [93] Li J J, Zhong X Q, Zhang H Q, et al. Binding-induced fluorescence turn-onassay using aptamer-functionalized silver nanocluster DNA probes, Analyticalchemistry,2012,84(12):5170-5174
    [94] Li T, Shi L L, Wang E K, et al. Multifunctional G-Quadruplex aptamers andtheir application to protein detection, Chemistry-A European Journal,2009,15(4):1036-1042
    [95] Li T, Wang E K, Dong S J, G-quadruplex-based DNAzyme as sensing platformfor ultrasensitive colorimetric potassium detection, Chemical Communications,2009(5):580-582
    [96] Li T, Dong S J, Wang E K, A lead(II)-driven DNA molecular device forturn-on fluorescence detection of lead(II) ion with high selectivity andsensitivity, Journal of the American Chemical Society,2010,132(38):13156-13157
    [97] Cheng R X H, Liu X J, Tao B, et al, General peroxidase activity ofG-quadruplex-hemin complexes and its application in ligand screening.Biochemistry,2009,48(33):7817-7823
    [98] Li T, Dong S J, Wang E K. G-quadruplex aptamers with peroxidise-likeDNAzyme functions: which is the best and how dose it work? Chemistry anAsian journal,2009,4(6):918-922
    [99] Travascio P, Li Y F, Sen D. DNA-enhanced peroxidase activity of a DNAaptamer-hemin. Chemistry&Biology,1998,5(9):505-517
    [100] Majhi P R, Shafer R H, Characterization of an unusual folding pattern in acatalytically active guanine quadruplex structure. Biopplymers,2006,82(6):558-569
    [101] Nakayama S, Sintim H O. Colorimetric split G-quadruplex probes for nucleicacid sensing: improving reconstituted DNAzyme’s catalytic efficiency viaprobe remodeling. Journal of the American Chemical Society,2009,131(29):10320-10333
    [102] Kong D M, Xu J, Shen H X. Positive effects of ATP on G-quadruplex-heminDNAzyme-mediated reactions. Analytical Chemistry,2010,82(14):6148-6153
    [103] Li D, Shlyahovsky B, Eibaz J, et al. Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamerconjugates. Journal of the American Chemical Society,2007,129(18):5804-5805
    [104] Teller C, Shimron S, Willner I. Aptamer DNAzyme hairpins for amplifiedbiosensing. Analytical chemistry,2009,81(21):9114-9119
    [105] Zhang L B, Zhu J B, Li T. Bifunctional colorimetric oligonucleotide probebased on a G-quadruplex DNAzyme molecular beacon. Analytical chemistry,2011,83(23):8871-8876
    [106] Poon L C H, Methot S P, Morabi-Pazooli W, et al. Guanine-rich RNAs andDNAs that bind heme robustly catalyze oxygen transfer reactions. Journal ofthe American Chemical Society,2011,133(6):1877-1884
    [107] Shimro S, Wang F, Ron O, et al. Amplified detection of DNA through theenzyme-free autonomous assembly of hemin/G-quadruplex DNAzymenanowires. Analytical chemistry,2012,84(2):1042-1048
    [108] Cheglakov Z, Weizmann Y, Basnar B, et al. Diagnosing viruses by the rollingcircle amplified synthesis of DNAzymes. Organic&Biomolecular Chemistry,2007,5(2):223-225
    [109] Wang H Q, Liu W Y, Wu Z, et al. Homogeneous label-free genotyping ofsingle nucleotide polymorphism using ligation-mediated strand displacementamplification with DNAzyme-based chemiluminescence detection. Analyticalchemistry,2011,83(6):1883-1889
    [110] Nakayama S, Sintim H O. Biomolecule detection with peroxidase-mimickingDNAzymes; expanding detection modality with fluorogenic compounds.Molecular bioSystems,2010,6(1):95-97
    [111] Zhang S B, Wu Z S, Qiu L P, et al. G-quadruplex signaling probe for highlysensitive DNA detection. Chemical communications,2010,46(19):3381-3383
    [112] Hou X, Guo W, Xia F, et al. A biomimetic potassium responsive nanochannel:G-quadruplex DNA conformational switching in a synthetic nanopore. Journalof the American Chemical Society,2009,131(22):7800-7805
    [113] Walker G T, Little M C, Nadeau J G, et al. Isothermal in vitro amplification ofDNA by a restriction enzyme/DNA polymerase system. Proceedings of theNational Academy of Sciences,1992,89(1):392-396
    [114] Spears P A, Linn C P, Woodard D L, et al. Simultaneous strand displacementamplification and fluorescence polarization detection of chlamydia trachomatisDNA. Analytical Biochemistry,1997,247(1),130-137
    [115] Song Q X, Wu H P, Feng F, et al. Pyrosequencing on nicked dsDNA generatedby nicking endonucleases. Analytical Chemistry,2010,82(5):2074-2081
    [116] Chan S H, Stoddard B L, Xu S Y. Natural and engineered nickingendonucleases–from cleavage mechanism to engineering of strand-specificity.Nucleic Acids Research,2011,39(1):1-18
    [117] Chan S H, Zhu Z Y, Van Etten J L, et al. Cloning of CviPII nicking andmodification system from chlorella virus NYs-1and application of Nt. CviPIIin random DNA amplification. Nucleic Acids Research,2004,32(21):6187-6199
    [118] Ehses S, Ackermann J, John S, et al. Optimization and design of oligonucleotide set up for strand displacement amplification. Journal of Biochemical and Biophysical Methods,2005,63(3):170-186
    [119] Connolly A R, Trau M. Isothermal detection of DNA by beacon-assisteddetection amplification. Angewandte Chemie International Edition,2010,49(15):2720-2723
    [120] Joneja A, Huang X H, Linear nicking endonuclease-mediated strand-displacement DNA amplification. Analytical Biochemistry,2011,414(1):58-69
    [121] Kiesling T, Cox K, Davidson E A, et al. Sequence specific detection of DNAusing nicking endonuclease signal amplification(NESA). Nucleic AcidsResearch,2007,35(18): e117
    [122] Zyrina N V, Artyukh R I, Svad’bina I V, et al. The effect of single-strandedDNA binding proteins on template/primer-independent DNA synthesis in thepresence of nicking endonuclease Nt.BspD6I. Russian Journal of BioorganicChemistry,2012,38(2):171-176
    [123] Weizmann Y, Beissenhirtz M K, Cheglakov Z, et al. A virus spotlighted by anautonomous DNA machine. Angewandte Chemie International Edition,2006,45(44):7384-7388
    [124] He K Y, Li W, Nie Z, et al. Enzyme-regulated activation of DNAzyme: a novelstrategy for a label-free colorimetric DNA ligase assay and ligase-basedbiosensing. Chemistry A European Journal,2012,18(13):3992-3999
    [125] Li W, Liu Z L, Lin H, et al. Label-free colorimetric assay for methyltransferaseactivity based on a novel methylation-responsive DNAzyme strategy.Analytical Chemistry,2010,82(5):1935-1941
    [126] Wen Y Q, Xu Y, Mao X H, et al. DNAzyme-based rolling-circle amplificationDNA machine for ultrasensitive analysis of microRNA in drosophila larva.Analytical Chemistry,2012,84(18):76647669
    [127] Liu Y Q, Zhang M, Yin B C, et al. Attomolar ultrasensitive microRNAdetection by DNA-scanolded silver-nanocluster probe based on isothermalamplification. Analytical Chemistry,2012,84(12):5165-5169
    [128] Shlyahovsky B, Li D, Weizmann Y, et al. Spotlighting of cocaine by anautonomous aptamer-based machine. Journal of the American ChemicalSociety,2007,129(13):3814-3815
    [129] Zhu C F, Wen Y Q, Li D, et al. Inhibition of the in vitro replication of DNA byan aptamer–protein complex in an autonomous DNA machine. Chemistry-AEuropean Journal,2009,15(44):11898-11903
    [130] Beissenhirtz M K, Elnathan R, Weizmann Y, et al. The aggregation of Aunanoparticles by an autonomous DNA machine detects viruses. Small,2007,3(3):375-379
    [131] Zhang Y, Zhang C Y. Sensitive detection of microRNA with isothermalamplification and a single-quantum-dot-based nanosensor. AnalyticalChemistry,2012,84(1):224-231
    [132] Ness J V, Van Ness L K, Galas D J. Isothermal reactions for the amplificationof oligonucleotides. Proceedings of the National Academy of Sciences,2003,100(8):4504-4509
    [133] Tan E, Erwin B, Dames S, et al. Isothermal DNA amplification with goldnanosphere-based visual colorimetric readout for herpes simplex virusdetection. Clinical Chemistry,2007,53(11):2017-2020
    [134] Tan E, Wong J, Nguyen D, et al. Isothermal DNA amplification coupled withDNA nanosphere-based colorimetric detection. Analytical Chemistry,2005,77(24):7984-7992
    [135] Tan E, Erwin B, Dames S, et al. Specific versus nonspecific isothermal DNAamplification through thermophilic polymerase and nicking enzyme activities.Biochemistry,2008,47(38):9987-9999
    [136] Qian J F, Ferguson T M, Shinde D N, et al. Sequence dependence of isothermalDNA amplification via EXPAR. Nucleic Acids Research,2012,40(11): e87
    [137] Jia H X, Li Z P, Liu C H, et al. Ultrasensitive detection of microRNAs byexponential isothermal amplification. Angewandte Chemie InternationalEdition,2010,49(32):5498-5501
    [138] Wang G L, Zhang C Y. Sensitive detection of microRNAs with hairpinprobe-based circular exponential amplification assay. Analytical Chemistry,2012,84(16):7037-7042
    [139] Zhang Z Z, Zhang C Y. Highly sensitive detection of protein withaptamer-based target-triggering two-stage amplification, Analytical Chemistry,2012,84(3):1623-1629
    [140] Williamson J R, Raghuraman M K, Cech T R. Monovalent cation-inducedstructure of telomeric DNA: the G-quartet model. Cell,1989,59(5):871-880
    [141] Davis J T. G-quartets40years later: from5’-GMP to molecular biology andsupramolecular chemistry. Angewandte Chemie International Edition,2004,43(6):668-698
    [142] Yao Y, Wang Q, Hao Y H, et al. An exonuclease I hydrolysis assay forevaluating G-quadruplex stabilization by small molecules. Nucleic AcidsResearch,2007,35(9): e68
    [143] Tang J, Kan Z Y, Yao Y, et al. G-quadruplex preferentially forms at the very3’end of vertebrate telomeric DNA. Nucleic Acids Research,2008,36(4):1200-1208
    [144] Pedersen E B, Nielsen J T, Nielsen C, et al. Enhanced anti-HIV-1activity ofG-quadruplexes comprising locked nucleicacids and intercalating nucleic acids.Nucleic Acids Research,2011,39(6):2470-2481
    [145] Cian A D, Cristofari G, Reichenbach P, et al. Reevaluation of telomeraseinhibition by quadruplex ligands and their mechanisms of action. Proceedingsof the National Academy of Sciences,2007,104(44):17347-17352
    [146] Hurleya L H, Wheelhouseb R T, Sunc D, et al. G-quadruplexes as targets fordrug design. Pharmacology&Therapeutics,2000,85(3):141-158
    [147] Evans S E, Mendez M A, Turner K B, et al. End-stacking of coppercationicporphyrins on parallel-stranded guanine quadruplexes. Journal of BiologicalInorganic Chemistry,2007,12(8):1235-1249
    [148] Borovok N, Iram N, Zikich D, et al. Assembling of G-strands into noveltetra-molecular parallel G4-DNA nanostructures using avidin–biotinrecognition. Nucleic Acids Research,2008,36(15):5050-5060
    [149] Fahlman R P, Hsing M, Sporer-Tuhten C S, et al. Duplex Pinching: Astructural switch suitable for contractile DNA nanoconstructions. Nano Letters,2003,3(8):1073-1078
    [150] Green J J, Ying L, Klenerman D, et al. Kinetics of unfolding the humantelomeric DNA quadruplex using a PNA trap. Journal of the AmericanChemical Society,2003,125(13):3763-3767
    [151] Merkina E E, Fox K R. Kinetic stability of intermolecular DNA quadruplexes.Biophysical Journal,2005,89(1):365-373
    [152] Noble J E, Wang L, Cole K D, et al. The effect of overhanging nucleotides onfluorescence properties of hybridizing oligonucleotides labeled with Alexa-488and FAM fluorophores. Biophysical Chemistry,2005,113(3):255-263
    [153] Nazarenko I, Pires R, Lowe B, et al. Effect of primary and secondary structureof oligodeoxyribonucleotides on the fluorescent properties of conjugated dyes.Nucleic Acids Research2002,30(9):2089-2195
    [154] Walter N G, Burke J M. Real-time monitoring of haipin ribozyme kineticsthrough base-specific quenching of fluorescein-labeled substrates. RNA,1997,3(4):392-404
    [155] Seo Y J, Rhee H, Joo T, et al. Self-duplex formation of an APy-substitutedoligodeoxyadenylate and its unique fluorescence. Journal of the AmericanChemical Society,2007,129(16):5244-5247
    [156] Randolph J B, Waggoner A S. Stability, specificity and fluorescence brightnessof multiply-labeled fluorescent DNA probes. Nucleic Acids Research,1997,25(14):2923-2929
    [157] Seidel C A M, Schulz A, Sauer M H M. Nucleobase-specific quenching offluorescent dyes.1. Nucleobase one-electron redox potentials and theircorrelation with static and dynamic quenching efficiencies. The Journal ofPhysical Chemistry,1996,100(13):5541-5553
    [158] Torimura M, Kurata S, Yamada K, et al. Fluorescence-quenching phenomenonby photo induced electron transfer between a fluorescent dye and a nucleotidebade. Analytical Sciences,2001,17(1):155-160
    [159] St hr K, H fner B, Nolte O, et al. Species-specific identification ofmycobacterial16S rRNA PCR amplicons using smart probes. AnalyticalChemistry,2005,77(22):7195-7203
    [160] Sen D, Gilbert W. A sodium-potassium switch in the formation offour-stranded G4-DNA. Nature,1990,344(6265):410-414
    [161] Travascio P, Witting P K, Mauk A G, et al. The peroxidase activity of a heminDNA oligonucleotide complex: free radical damage to specific guanine basesof the DNA. Journal of the American Chemical Society,2001,123(7):1337-1348
    [162] French D J, Archard C L, Brown T, et al. HyBeaconTM probes: a new tool forDNA sequence detection and allele discrimination. Molecular and CellularProbes,2001,15(6):363-374
    [163] Hwang G T, Seo Y J, Kim B H. A highly discriminating quencher-freemolecular beacon for probing DNA. Journal of the American Chemical Society,2004,126(21):6528-6529
    [164] Knemeyer J P, Marme N, Sauer M. Probes for detection of specific DNAsequences at the single-molecule level. Analytical Chemistry,2000,72(16):3717-3724
    [165] Heinlein T, Knemeyer J P, Piestert O, et al. Photoinduced electron transferbetween fluorescent dyes and guanosine residues in DNA-hairpins. The Journalof Physical Chemistry B,2003,107(31):7957-7964
    [166] Xu Y. Chemistry in human telomere biology: structure, function and targetingof telomere DNA/RNA. Chemical Society Reviews,2011,40(5):2719-2740
    [167] Brody R S, Doherty K G, Zimmerman P D. Processivity and kinetics of thereaction of exonuclease I from Escherichia coli with polydeoxyribonucleotides.The Journal of Biological Chemistry,1986,261(16):7136-7143
    [168] Kolpashchikov D M. Split DNA enzyme for visual single nucleotidepolymorphism typing. Journal of the American Chemical Society,2008,130(10):2934-2935
    [169] Protozanova E, Macgregor R B. Formation of DNA frayed wires is independentof the directionality of the parent strand. Biopolymers,2001,58(4):355-358
    [170] Dai T Y, Marotta S P, Sheardy R D. Self-assembly of DNA oligomers into highmolecular weight species. Biochemistry,1995,34(11):3655-3662
    [171] Keniry M A. Quadruplex structures in Nucleic Acids. Biopolymers,2001,56(3):123-146
    [172] Valdes-Aguilera O, Necker D C. Aggregation phenomena in xanthene dyed.Accounts Chemical Research,1989,22(5):171-177
    [173] Avnir D, Levy D, Reisfeld R. The nature of the silica cage as reflected byspectral changes and enhanced photostability of trapped rhodamine6G. TheJournal of Physical Chemistry,1984,88(24):5956-5659
    [174] Chen R F, Knutson J R. Machanism of fluorescence concentration quenching ofcarboxyfluorescein in liposomes: energy transfer to nonfluorescent dimmers.Analytical Biochemistry,1988,172(1):61-77
    [175] Ueyama H, Takagi M, Takenaka S. A novel potassium sensing in aqueousmedia with a synthetic oligonucleotide derivative: fluorescence resonanceenergy transfer associated with guanine quartet potassium ion complexformation. Journal of the American Chemical Society,2002,124(48):14286-14287
    [176] Ju J Y, Ruan C C, Fuller C W, et al. Fluorescence energy transfer dye-labeledprimers for DNA sequencing and analysis. Proceedings of the NationalAcademy of Sciences,1995,92(10):4347-4351
    [177] Wang Y W, Ju J Y, Carpenter B A, et al. Rapid sizing of short tandem repeatalleles using capillary array electrophoresis and energy-transfer fluorescentprimers. Analytical Chemistry,1995,67(7):1197-1203
    [178] Risitano A, Fox K R. Stability of intramolecular DNA quadruplexes:comparison with DNA duplexes. Biochemistry,2003,42(21):6507-6513
    [179] Gray D M. A circular dichroism study of poly dG, Poly dC, and Poly dG:dC.Biopolymers,1974,13(10):2087-2102
    [180] Protozanova E, Macgregor R B. Circular dichroism of DNA frayed wires.Biophysical Journal,1998,75(2):982-989
    [181] Fahlman R P, Sen D.“Synapsable” DNA double helices: a self-selectivemodules for assembling DNA superstructures. Journal of the AmericanChemical Society,1999,121(48):11079-11085
    [182] Zhao Y, Kan Z Y, Zeng Z X, et al. Determining the folding and unfolding rateconstants of nucleic acids by biosensor: application to telomere G-quadruplex.Journal of the American Chemical Society,2004,126(41):13255-13264
    [183] Smargiasso N, Rosu F, Hsia W, et al. G-quadruplex DNA assemblies: looplength, cation identity, and multimer formation. Journal of the AmericanChemical Society,2008,130(31):10208-10216
    [184] Wong M L, Medrano J F, Real-time PCR for mRNA quantitation. BioTechniques.2005,39(1):75-85
    [185] Tan W H, Wang K M, Drake T J. Molecular beacons. Current Opinion inChemical Biology,2004,8(5):547-553
    [186] Bratu D P, Cha B, Mhlanga M M, et al. Visualizing the distribution andtransport of mRNAs in living cells. Proceedings of the National Academy ofSciences,2003,100(23):13308-13313
    [187] Ryu J H, Seo Y J, Hwang G T, et al. Triad base pairs containing fluoreneunitfor quencher-free SNP typing. Tetrahedron,2007,63(17):3538-3547
    [188] Nazarenko I, Lowe B, Darfler M, et al. Multiplex quantitative PCR usingself-quenched primers labeled with a single fluorophore. Nucleic AcidsResearch,2002,30(9): e37
    [189] Xiao Y, Pavlov V, Niazov T, et al. Catalytic beacons for the detection of DNAand telomerase activity. Journal of the American Chemical Society,2004,126(24):7430-7431
    [190] Yang X H, Zhu Y, Liu P, et al. G-quadruplex fluorescence quenching ability: asimple and efficient strategy to design a single-labeled DNA probe. Analyticalmethods,2012,4(4):895–897
    [191] Cardullo R A, Agrawal S, Flores C. et al. Detection of nucleic acidhybridization by nonradiative fluorescence resonance energy transfer.Proceedings of the National Academy of Sciences,1988,85(23):8790-8794
    [192] Nutiu R, Li Y. Structure-switching signaling aptamers. Journal of theAmerican Chemical Society,2003,125(16):4771-4778
    [193] Hud N V, Smith F W, Anet F A, et al. The selectivity for K+versus Na+inDNA quadruplexes is dominated by relative free energies of hydration: athermodynamic analysis by1H NMR. Biochemistry,1996,35(48):15383-15390
    [194] Wong A, Wu G. Selective binding of monovalent cations to the stackingG-quartet structure formed by guanosine5’-monophosphate: a solid-state NMRstudy. Journal of the American Chemical Society,2003,125(45):13895-13905
    [195] Bolten M, Niermann M, Eimer W. Structural analysis of G-DNA in solution: acombination of polarized and depolarized dynamic light scattering withhydrodynamic model calculations. Biochemistry,1999,38(38):12416-12423
    [196] Shim J W, Tan Q L, Gu L Q. Single-molecule detection of folding andunfolding of the G-quadruplex aptamer in a nanopore nanocavity. NucleicAcids Research,2009,37(3):972-982
    [197] Ma L, Iezzi M, Kaucher M S, et al. Cation exchange in lipophilicG-quadruplexes: not all ion binding sites are equal. Journal of the AmericanChemical Society,2006,128(47):15269-15277
    [198] Mendelson J H, Mello N K. Management of cocaine abuse and dependence.The New England Journal of Medicine,1996,334(15):965-972
    [199] Walker G T. Empirical aspects of strand displacement amplification, PCRmethods and applications. Genome Research,1993,3(1):1-6
    [200] Ahn S J, Costa J, Emanuel J R. PicoGreen quantitation of DNA: effectiveevaluation of samples pre-or post-PCR. Nucleic Acids Researchearch,1996,24(13):2623-2625
    [201] Vitzthum F, Geiger G, Bisswanger H, et al. A quantitative fluorescence-basedmicroplate assay for the determination of double-stranded DNA using SYBRGreen I and a standard ultraviolet transilluminator gel imaging system.Analytical Biochemistry,1999,276(1):59-64
    [202] Leggate J, Allain R, Isaaz L, et al. Microplate fluorescence assay for thequantification of double stranded DNA using SYBR Green I dye.Biotechnology Letters,2006,28(19):1587-1594
    [203] Ozhal c-Unal H, Armitage B A. Fluorescent DNA nanotags based on aself-assembled DNA tetrahedron. ACS Nano,2009,3(2):425-433
    [204] Li K, Liu B. Conjugated polyelectrolyte amplified thiazole orange emission forlabel free sequence specific DNA detection with single nucleotidepolymorphism selectivity. Analytical Chemistry,2009,81(10):4099-4105
    [205] Meyer R R, Laine P S, The single-stranded DNA-binding protein ofEscherichia coli. Microbiological Reviews,1990,54(4):342-380
    [206] Tan Y N, Lee K H, Su X D. Study of single-stranded DNA bindingprotein-nucleic acids interactions using unmodified gold nanoparticles and itsapplication for detection of single nucleotide polymorphisms. AnalyticalChemistry,2011,83(11):4251-4257
    [207] Li J W J, Fang X H, Schuster S M, et al. Molecular beacons: a novel approachto detect protein-DNA interactions. Angewandte Chemie International Edition,2000,39(6):1049-1052
    [208] Fang X H, Li J W J, Tan W H. Using molecular beacons to probe molecularinteractions between lactate dehydrogenase and single-stranded DNA.Analytical Chemistry,2000,72(14):3280-3285
    [209] Mendelson J H, Mello N K. Cocaine and other commonly abused drugs.Harrison’s Principles of Internal Medicine,1994,13:2429-2433
    [210] Schlesinger, Bull H L. Topics in the chemistry of cocaine. Narcotics,1985,35(1),63-78
    [211] Wen Y L, Pei H, Wan Y, et al. DNA nanostructure-decorated surfaces forenhanced aptamer-target binding and electrochemical cocaine sensors.Analytical Chemistry,2011,83(19):7418-7423
    [212] Clauwaert K M, Van Bocxlaer J F, Lambert W E, et al. Analysis of cocaine,benzoylecgonine, and cocaethylene in urine by HPLC with diode arraydetection. Analytical Chemistry,1996,68(17):3021-3028
    [213] Trachta G, Schwarze B, S gmüller B, et al. Combination of high-performanceliquid chromatography and SERS detection applied to the analysis of drugs inhuman blood and urine. Journal of Molecular Structure,2004,693(1-3):175-185
    [214] Buryakov I A. Express analysis of explosives, chemical warfare agents anddrugs with multicapillary column gas chromatography and ion mobilityincrement spectrometry. Journal of Chromatography B,2004,800(1-2):75-82
    [215] Strano-Rossi S, Molaioni F, Rossi F, et al. Rapid screening of drugs ofabuse and their metabolites by gas chromatography/mass spectrometry: application to urinalysis. Rapid Communications in Mass Spectrometry,2005,19(11):1529-1535
    [216] Brunetto M D, Delgado Y, Clavijo S, et al. Analysis of cocaine and benzoylecgonine in urine by using multisyringe flow injection analysis-gas chromatography-mass spectrometry system. Journal of Separation Science,2010,33(12):1779-1786
    [217] Stojanovic M N, De Prada P, Landry D W, et al. Aptamer-based foldingfluorescent sensor for cocaine. Journal of the American Chemical Society,2001,123(21):4928-4931
    [218] Stojanovic M N, Landry D W. Aptamer-based colorimetric probe for cocaine.Journal of the American Chemical Society,2002,124(33):9678-9679
    [219] Liu J W, Lee J H, Lu Y. Quantum dot encoding of aptamer-linkednanostructures for one-pot simultaneous detection of multiple analytes.Analytical Chemistry,2007,79(11):4120-4125
    [220] Freeman R, Sharon E, Tel-Vered R, et al. Supramolecular cocaine-aptamercomplexes activate biocatalytic cascades. Journal of the American ChemicalSociety,2009,131(14):5028-5029
    [221] Famulok M, Hartig J S, Mayer G. Functional aptamers and aptazymes inbiotechnology, diagnostics, and therapy. Chemical Reviews.2007,107(9):3715-3743
    [222] He F, Tang Y, Wang S, Li Y, et al. Fluorescent amplifying recognition forDNA G-quadruplex folding with a cationic conjugated polymer: A platform forhomogeneous potassium detection. Journal of the American Chemical Society,2005,127(35):12343-12346
    [223] Katilius E, Katiliene Z, Woodbury N W. Signaling aptamers created usingfluorescent nucleotide analogues. Analytical Chemistry,2006,78(18):6484-6489
    [224] Liu J, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on ageneral sensor design involving aptamers and nanoparticles. AngewandteChemie International Edition,2006,45(1):90-94
    [225] Li N, Ho C-M. Catalytic inactivation of human carbonic anhydrase I by ametallopeptide-sulfonamide conjugate is mediated by oxidation of active siteresidues. Journal of the American Chemical Society,2008,130(8):2380-2381
    [226] Stojanovic M N, Kolpashchikov D M. Modular aptameric sensors. Journal ofthe American Chemical Society,2004,126(30):9266-9270
    [227] Zuo X, Song S, Zhang J, et al. A target-responsive electrochemical aptamerswitch (TREAS) for reagentless detection of nanomolar ATP. Journal of theAmerican Chemical Society,2007,129(5):1042-1043
    [228] Xiao Y, Piorek B D, Plaxco K W, et al. A reagentless signal-on architecture forelectronic, aptamer-based sensors via target-induced strand displacement.Journal of the American Chemical Society,2005,127(51):17990-17991
    [229] Xiao Y, Lubin A A, Heeger A J, et al. Label-free electronic detection ofthrombin in blood serum by using an aptamer-based sensor. AngewandteChemie International Edition,2005,44(34):5456-5459
    [230] Radi A E, Sanchez J L A, Baldrich E, et al. Reagentless, reusable,ultrasensitive electrochemical molecular beacon aptasensor. Journal of theAmerican Chemical Society,2006,128(1):117-124
    [231] Lu Y, Li X C, Zhang L M, et al. Aptamer-based electrochemical sensors withaptamer-complementary DNA oligonucleotides as probe. Analytical Chemistry,2008,80(6):1883-1890
    [232] Zhang S S, Xia J P, Li X M. Electrochemical biosensor for detection ofadenosine based on structure-switching aptamer and amplification withreporter probe DNA modified Au nanoparticles. Analytical Chemistry,2008,80(22):8382-8388.
    [233] Baker B R, Lai R Y, Wood M S, et al. An electronic, aptamer-basedsmall-molecule sensor for the rapid, label-free detection of cocaine inadulterated samples and biological fluids. Journal of the American ChemicalSociety,2006,128(10):3138-3139
    [234] Fredriksson S, Gullberg M, Jarvius J, et al. Protein detection usingproximity-dependent DNA ligation assays. Nature Biotechnology,2002,20(5):473-477
    [235] Xiang Y, Xie M Y, Bash R, et al. Ultrasensitive label-free aptamer-basedelectronic detection. Angewandte Chemie International Edition,2007,46(47):9054-9056
    [236] Cho E J, Yang L T, Levy M, et al. Using a deoxyribozyme ligase and rollingcircle amplification to detect a non-nucleic acid analyte, ATP. Journal of theAmerican Chemical Society,2005,127(7):2022-2023
    [237] Wu Z S, Zhou H, Zhang S B, et al. Electrochemical aptameric recognitionsystem for a sensitive protein assay based on specific target binding-inducedrolling circle amplification. Analytical Chemistry,2010,82(6):2282-2289
    [238] Wu Z S, Zhang S B, Zhou H, et al. Universal aptameric system for highlysensitive detection of protein based on structure-switching-triggered rollingcircle amplification. Analytical Chemistry,2010,82(6):2221-2227
    [239] Baldrich E, Acero J L, Reekmans G, et al. Displacement enzyme linkedaptamer assay. Analytical Chemistry,2005,77(15):4774-4784
    [240] Xiang Y, Zhang Y Y, Qian X Q, et al. Ultrasensitive aptamer-based proteindetection via a dual amplified biocatalytic strategy. Biosensors andBioelectronics,2010,25(11):2539-2542
    [241] Polsky R, Gill R, Kaganovsky L, et al. Nucleic acid-functionalized Ptnanoparticles: Catalytic labels for the amplified electrochemical detection ofbiomolecules. Analytical Chemistry,2006,78(7):2268-2271
    [242] Gill R, Polsky R, Willner I. Pt nanoparticles functionalized with nucleic acidact as catalytic labels for the chemiluminescent detection of DNA and proteins.Small,2006,2(8-9):1037-1041
    [243] Hansen J A, Wang J, Kawde A N, et al. Quantum-dot/aptamer-basedultrasensitive multi-analyte electrochemical biosensor. Journal of the AmericanChemical Society,2006,128(7):2228-2229
    [244] He J L, Wu Z S, Zhou H, et al. Fluorescence aptameric sensor for stranddisplacement amplification detection of cocaine. Analytical Chemistry,2010,82(4):1358-1364
    [245] Qiu L P, Wu Z S, Shen G L, et al. Highly sensitive and selective bifunctionaloligonucleotide probe for homogeneous parallel fluorescence detection ofprotein and nucleotide sequence. Analytical Chemistry,2010,83(8):3050-3057
    [246] Irizarry K, Kustanovich V, Li C, et al. Genome-wide analysis ofsingle-nucleotide polymorphisms in human expressed sequences. NatureGenetics,2000,26(2):233-236
    [247] Li D, Wieckowska A, Willner I. Optical analysis of Hg2+ions byoligonucleotide–gold-nanoparticle hybrids and DNA-based machines.Angewandte Chemie International Edition,2008,47(21):3927-3931
    [248] Zhu C F, Wen Y Q, Peng H Z, et al. A methylation-stimulated DNA machine:an autonomous isothermal route to methyltransferase activity and inhibitionanalysis. Analytical and Bioanalytical Chemistry,2011,399(10):3459-3464
    [249] Seeman N C. From genes to machines: DNA nanomechanical devices. Trendsin Biochemical Sciences,2005,30(3):119-125
    [250] Chen Y, Wang M, Mao C. An autonomous DNA nanomotor powered by a DNAenzyme. Angewandte Chemie International Edition,2004,43(27):3554-3557
    [251] Mao C D, Sun W Q, Shen Z Y, et al. A nanomechanical device based on the BZtransition of DNA. Nature,1999,397(6715):144-146
    [252] Liu D, Balasubramanian S. A proton-fuelled DNA nanomachine angewandte.Chemie International Edition,2003,42(46):5734-5736
    [253] Alberti P, Mergny J L. DNA duplex-quadruplex exchange as the basis for ananomolecular machine. Proceedings of the National Academy of Sciences,2003,100(4):1569-1573
    [254] Dittmer W U, Reuter A, Simmel F C, A DNA-based machine that cancyclically bind and release thrombin. Angewandte Chemie InternationalEdition,2004,43(27):3550-3553
    [255] Li J J, Tan W H. A Single DNA Molecule Nanomotor. Nano Letters,2002,2(4):315-318
    [256] Yurke B, Turberfield A J, Mills A P, et al. A DNA-fuelled molecular machinemade of DNA. Nature,2000,406(6796):605-608
    [257] Muller B K, Reuter A, Simmel F C, et al. Single-pair FRET characterization ofDNA tweezers. Nano Lettersers,2006,6(12):2814-2820
    [258] Simmel F C, Yurke B. A DNA-based molecular device switchable betweenthree distinct mechanical states. Applied Physics Letters,2002,80(5):883-885
    [259] Chen Y, Lee S H, Mao C D. A DNA nanomachine based on a duplex–triplextransition. Angewandte Chemie International Edition,2004,43(40):5335-5338
    [260] Buranachai C, McKinney S A, Ha T. Single molecule nanometronome. NanoLettersers,2006,6(3):496-500
    [261] Yan H, Zhang X P, Shen Z Y, et al. A robust DNA mechanical devicecontrolled by hybridization topology. Nature,2002,415(6867):62-65
    [262] Zhong H, Seeman N C. RNA used to control a DNA rotary nanomachine. NanoLettersers,2006,6(12):2899-2903
    [263] Yin P, Yan H, Daniell X G, et al. A unidirectional DNA walker that movesautonomously along a DNA track. Angewandte Chemie International Edition,2004,43(37):4906-4911
    [264] Tian Y, Mao C D. Molecular gears: a pair of DNA circles continuously rollsagainst each other. Journal of the American Chemical Society,2004,126(37):11410-11411
    [265] Sherman W B, Seeman N C. A precisely controlled DNA biped walking device.Nano Lettersers,2004,4(7):1203-1207
    [266] Shin J S, Pierce N A. A synthetic DNA walker for molecular transport. Journalof the American Chemical Society,2004,126(35):10834-10835
    [267] Bath J, Turberfield A J. DNA nanomachines. Nature Biotech,2007,2(5),275-284
    [268] Gole A, Jana N R, Selvan S T, et al. Langmuir blodgett thin films of quantumdots: synthesis, surface modification, and fluorescence resonance energytransfer (FRET) studies. Langmuir,2008,24(15):8181-8186
    [269] Green S J, Lubrich D, Turberfield A J. DNA hairpins: fuel for autonomousDNA devices. Biophysical Journalournal,2006,9(8):2966-2975
    [270] Simmel F C, Yurke B. Using DNA to construct and power a nanoactuator.Physical Review E,2001,63(4):1-5
    [271] Wu Z S, Jiang J H, Fu L, et al. Optical detection of DNA hybridization basedon fluorescence quenching of tagged oligonucleotide probes by goldnanoparticles. Analytical Biochemistry,2006,353(2):22-29
    [272] Kostrikis L G, Tyagi S, Mhlanga M M, et al. Spectral genotyping of humanalleles. Science,1998,279(5354):1228-1229
    [273] James Yang C Y, Martinez K, Lin H, et al. Hybrid molecular probe for nucleicacid analysis in biological samples. Journal of the American Chemical Society,2006,128(31):9986-9987
    [274] Wabuyele M B, Farquar H, Stryjewski W, et al. Approaching real-timemolecular diagnostics: single-pair fluorescence resonance energy transfer(spFRET) detection for the analysis of low abundant point mutations in k-rasoncogenes. Journal of the American Chemical Society,2003,125(23):6937-6945
    [275] Liu X, Tan W H. A fiber-optic evanescent wave DNA biosensor based on novelmolecular beacons. Analytical Chemistry,1999,71(22):5054-5059

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700