用户名: 密码: 验证码:
肽酶与核酸修饰酶检测新传感方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生命科学的发展,生物传感器技术作为一种简便、灵敏的生物分析检测技术,得到了长足的发展。它已成为生命科学分析化学的重要研究方法,在生物技术、临床诊断、环境监测、食品工业、医药和军事等领域具有广泛的应用前景。
     本研究论文以重要的生物酶为研究核心,结合电化学与光学生物传感技术,发展了一些具有高灵敏度与选择性的生物传感技术用于快速检测地衣芽孢杆菌蛋白酶(第二、三章),组蛋白去乙酰化酶(第四、五章),DNA甲基化转移酶(第六章),DNA糖基化酶(第七章)。具体内容包括:
     (1)基于高选择性的多肽构建用于检测细菌蛋白酶标志物检测的电化学生物传感器【第二章】
     蛋白酶是一种普遍存在于生物体内的酶,可通过其对底物的消化来进行检测。由于蛋白酶在细菌中也广泛的存在,因此,细菌分泌的蛋白酶是一种理想的生物标志物,为微生物临床检测提供了快速、灵敏的目标物。基于文献报道,利用择性识别地衣芽孢杆菌分泌的蛋白酶的含D-型氨基酸多肽,结合电化学生物传感器的一些成熟手段,发展一种用于检测细菌蛋白酶的简单的电化学生物传感器。将选择性的多肽利用C端半胱氨酸残基固定到金电极上,链酶亲和素标记的碱性磷酸酶与标记在多肽N端的生物素结合,碱性磷酸酶催化无电活性的1-萘酚磷酸酯转化为有电活性的1-萘酚产生一个放大的电化学信号。当有标志物蛋白酶存在时,多肽将被选择性切割,标记有生物素的部分被移除,信号减小,这种信号的变化与蛋白酶的含量有关,从而实现对目标细菌蛋白酶定量检测的目的。当目标蛋白酶的浓度在0.7–10μg/mL范围内,氧化峰电流的大小与目标蛋白酶的浓度对数成反比,检测下限达0.16μg/mL。
     (2)基于纳米金凝集变色对地衣芽孢杆菌蛋白酶的灵敏比色检测【第三章】
     纳米金具有独特的光学性质及生物相容性,将其用于生物传感器的构建中,可较大提高传感器的性能。因此,我们基于纳米金凝集变色原理构建了一种用于便捷检测地衣芽孢杆菌蛋白酶的比色法。本文使用两端含有半胱氨酸残基的多肽为底物,此多肽中间包含能被目标蛋白酶选择性识别的D-型氨基酸区域。由于巯基与金的强作用力,多肽将纳米金拉近,使得纳米金靠近,发生凝集变色。当有目标蛋白酶存在时,目标蛋白酶将底物切断,切断的底物只有一端有半胱氨酸残基,不能将纳米金拉近,从而不能发生团聚变色,利用颜色的差异,即可裸眼进行观察比色,也可以采用紫外吸收测定对蛋白酶进行检测。该方法在0.1–5μg/mL浓度范围内与A520/A600的吸光度比值呈线性关系,检测下限可达0.09μg/mL。
     (3)基于乙酰化的组蛋白H4多肽构建用于灵敏检测组蛋白去乙酰化酶的电化学生物传感器【第四章】
     组蛋白的翻译后修饰在转录等过程有着非常重要的意义。组蛋白的翻译后修饰主要有甲基化、磷酸化、乙酰化、泛素化等。其中,组蛋白的乙酰化是一种十分重要的组蛋白翻译后修饰。生物体内控制乙酰化平衡是乙酰化酶和去乙酰化酶。这两种酶的活性对生物的很多过程有着重要的影响,例如:细胞的分化、凋亡等。研究表明,异常的去乙酰化酶活性与人类疾病有重大的关系。因此,我们以组蛋白去乙酰化酶SIRT2作为检测目标,将乙酰化的多肽通过N端的半胱氨酸残基固定到金电极表面,利用乙酰化位点的特异抗体去识别乙酰化多肽,标记有碱性磷酸酶的二抗去识别一抗并提供电化学信号。当样品中存在去乙酰化酶SIRT2时,底物上的乙酰基被移除,特异性抗体结合量减小,电化学信号随之减小,从而实现对去乙酰化酶的检测。在对实验条件优化后,该方法在的1–500nM浓度范围与电流信号值线性相关,检测下限可达0.1nM。
     (4)基于纳米金淬灭荧光构建的荧光传感器用于组蛋白去乙酰化酶的灵敏检测【第五章】
     结合纳米金对荧光染料的强淬灭性,利用标记有荧光素的乙酰化多肽对去乙酰化酶进行检测。将特异识别乙酰化的抗体标记到纳米金上,由于抗体特异识别乙酰化多肽,将标记有荧光分子的乙酰化多肽与纳米金拉近,使得荧光淬灭。当样品中存在去乙酰化酶时,多肽被去乙酰化后,不能被抗体识别,荧光信号增强。该方法在50–500nM浓度范围内SIRT2与荧光信号线性相关,检测下限为11.9nM。
     (5)基于DNA甲基化敏感性内切酶和末端转移酶碱基延伸构建的电化学传感器用于灵敏检测DNA甲基化转移酶活性【第六章】
     DNA甲基化是一种很重要的DNA修饰,与很多生命过程相关,例如:转录、基因印记、细胞分化、染色体结构和胚胎行程等。研究发现,很多疾病都与非正常的基因甲基化水平有关。DNA甲基化的过程是通过DNA甲基化转移酶催化甲硫亮氨酸上的甲基共价连接到DNA序列中的胞嘧啶或者腺嘌呤上而完成的。非正常的DNA甲基化转移酶活性会导致非正常的基因甲基化水平。因此,我们基于甲基化敏感的限制性内切酶的切割,利用末端转移酶进行末端碱基延伸,构建了一种用于灵敏检测甲基化转移酶的电化学传感器。将含有甲基化转移酶特异识别序列的DNA探针组装到金电极表面,甲基化的探针可以被甲基化敏感的限制性内切酶识别、切割,从而产生一个带有3`-OH端的新引物,末端转移酶可以将生物素化的dUTP延伸到新产生引物的3`-OH末端。之后,偶联有碱性磷酸酶的链霉亲和素(SA-ALP)与新延伸的生物素结合。碱性磷酸酶可以催化非电活性物质1-萘酚磷酸酯水解,生成电活性物质1-萘酚在电极表面氧化产生电信号。从而实现对甲基化转移酶的灵敏检测。该方法在0.1-20U/mL浓度范围与电流值呈线性关系,检测下限为0.04U/mL。(6)基于Lambda外切酶构建用于灵敏检测DNA糖基化酶的DNAzyme催化显色法【第七章】
     基因的损伤是不可避免的,如果这种损伤得不到不修复,会导致基因突变、细胞凋亡,甚至会诱导癌症发生。生物体有自身的修复系统,可以对DNA的损伤进行识别和修复。碱基切补修复是对碱基损伤的一种修复手段,这过程是由很多酶共同作用实现的。在这碱基切补修复过程中,DNA糖基化酶对识别、除去受损碱基,起着至关重要的作用。非正常的DNA糖基化酶活性可能会导致疾病的发生,这就为疾病的检测提供了一种生物标志物。因此,我们利用具有辣根过氧化物酶活性的DNAzyme催化底物显色,并结合DNA外切酶的高活性,发展一种比色法对DNA糖基化酶进行方便、灵敏的检测。将含有受损碱基(8-oxo-dG)的DNA与含有血红素核酸适体的DNA互补杂交。糖基化酶hOGG1能识别受损碱基8-oxo-dG并将其从DNA序列中移除,产生一个5`磷酸端的缺口,然后利用Lambda核酸外切酶选择性消化5`磷酸端DNA的特性,将血红素核酸适体的抑制链消化分解,使得血红素核酸适体释放,与血红素结合,形成血红素-核酸适体的DNAzyme复合物结构,催化无色底物ABTS2-转化为有色的ABTS-,通过简单的比色就能达到对DNA糖基化酶的检测。该方法在418nm紫外吸收值与hOGG10.05-16U/mL浓度对数值在呈线性关系,检测下限为0.01U/mL。
With the development of life sciences, as a simple and sensitive biological analysistechnology, biosensing technology has made remarkable progress. It has become animportant research method for analytical chemistry of life sciences. It has extensiveapplication prospects in many fields, such as biology technique, clinical diagnosis,environmental protection, food industry, medicine and military.
     Enzymes are biological molecules that catalyze chemical reactions. Enzymes serve awide variety of functions inside living organisms. Almost all chemical reactions in abiological cell need enzymes in order to occur at rates sufficient for life. They areindispensable for metabolism, signal transduction and cell regulation. In addition, reactionsclosely connected with life process are almost all enzyme-catalyzed reactions. Aberrantactivity of important enzyme would lead to critical disease. Many human diseases are relatedto aberrant enzyme activity. Herein, enzymes are perfect biomarkers for quick and sensitivedisease detection in clinical diagnosis.
     This dissertation focuses on developing a series of biosensing techniques for detection ofprotease biomarker from Bacillus licheniformis (in chapter2,3), histone deacetylase (inchapter4,5), DNA methyltransferase (in chapter6), DNA glycosylase (in chapter7) usingthe electrochemical and optical biosensing techniques. The details are listed as follows:
     (1) A novel electrochemical biosensor for highly selective detection of proteasebiomarker from Bacillus licheniformis with D-amino acid containing peptide (in chapter2)
     Protease is a kind of the common enzymes in the living organisms and accessible fordetection based on substrates cleavage. There are abundant proteases in bacteria and itssecretion. Herein, bacterial protease is an ideally biomarker for quick and sensitiveidentification of microorganisms in clinical samples. Therefore, an electrochemicalbiosensor was constructed for the detection of the protease biomarker from the Bacilluslicheniformis, a model of Bacillus anthracis. The D-amino acid containing peptide labelledwith biotin was used as the specific substrate. Firstly, the specific peptide was assembled onthe gold electrode through the C-terminal Cys interacting with gold. Upon the addition of theprotease, the substrate was selectively recognized and cleaved. Subsequently, thestreptavidin-alkaline phosphatase (SA-ALP) could specifically bind the remaining biotinmoieties on the electrode surface. ALP could catalyze the conversion of an electrochemicallyinactive1-naphthyl phosphate into an electrochemically active naphenol, generating anamplified signal for electrochemical readouts. Differential pulse voltammetry (DPV) was employed to detect the signal which could be used for quantifying the proteases of Bacilluslicheniformis. Electrochemical response arising from the oxidation of enzymatic product of1-naphthyl phosphate was observed to be inversely proportional to the logarithmic value ofprotease concentrtion in the range from0.7to10μg/mL with a detection limit as low as0.16μg/mL.
     (2) Gold nanoparticle aggregation-based colorimetric assay of protease biomarker fromBacillus licheniformis
     Gold nanoparticle is attractive due to its novel optical and biocompatibility properties.With the introduction of gold nanoparticle into biosensor fabrication, biosensors will begreatly improved. Therefore, we developed a simple colorimetric method based on goldnanoparticle aggregation for the detection of protease biomarker from Bacillus licheniformis.A C-and N-terminal Cys peptide substrate was exploited in the assay, which contained twoD-amino acids for selective recognition and cleavage by the target protease. Cys couldstrongly interact with gold nanoparticle, leading to the aggregation of gold nanoparticles andthe color change of its solution. Whereas, cleaved peptides are unable to induce goldnanoparticle aggregation; and as a result the solution color would not change. We couldobserve the change of color by naked eye, or monitor the changes of the absorption spectrumby a UV-Vis spectrophotometer. There is a linear correlation between the ratio of theabsorbance of the system at520to600nm (A520nm/A600nm) and the logarithm of adenosineconcentration range from0.1μg/mL to5μg/mL, with a detection limit of0.09μg/mL.
     (3) A sensitive electrochemical biosensor for the detection of histone deacetylase with ahistone H4Lys16acetylated peptide
     Histone post-translationally modifications play important roles in transcription. Oneprevalent modification is acetylation, which is related to the gene activity. The steady-statebalance of the acetylation and deacetylation of histone is achieved through two species ofenzyme: histone acetyltransferase and histone deacetylase. The activity of histoneacetyltransferase and histone deacetylase affects the angiogenesis, cell-cycle arrest,apoptosis and terminal differentiation of different cell types. Herein, we developed a simple,sensitive electrochemical biosensor for detecting the activity of sirtuin2one of the histonedeacetylase and screening its inhibitor. An acetylated peptide with a cystein residual atN-terminal as the substrate is self-assembled on the electrode surface by the interactionbetween cystein residual and gold. The rabbit anti-acetylated peptide antibody is employedto specifically bind with the acetylated peptide. The alkaline phosphatase labelled goatanti-rabbit antibody is captured through selective interaction with the rabbit anti-acetylatedpeptide antibody. The alkaline phosphatase catalyzes the conversion of the electrochemically inactive1-naphthyl phosphate into an electrochemically active naphenol for generating theamplified electrochemical signal. In the presence of sirtuin2, the peptide substrate isdeacetylated, resulting in the decrease of electrochemical signal. Therefore, the change of thecurrent signal could reflect the concentration of sirtuin2. Under the optimum conditions, thedetection limit is achieved down to0.1nM with a linear range from1nM to500nM.
     (4) A simple gold nanoparticle-based fluorescence biosensor for sensitive assay ofhistone deacetylase activity
     Gold nanoparticle, as a class of nanomaterials with many specific properties, such asconductivity, colorimetric and nonlinear optical properties, has been extensivy applied inbiomolecular research. Herein, we developed a fluorescence assay using gold nanopartilce asthe quencher. An acetylated peptide labeled with a fluorophore at C-terminal was used as thesubstrate of histone deacetylase sirtuin2. Gold nanoparticle labeled with anti-acetylatedpeptide antibody acted as the quenching probe. The fluorescence would be efficientlyquenched by the gold nanoparticle, when the acetylated peptide captured by its antibody. Inthe presence of sirtuin2, the acetyl was removed from the substrate, resulting in the increaseof fluorescence signal. The fluorescence intensity was proportional to logarithmic value ofthe sirtuin2concentration ranging from50nM to500nM, with a detection limit of11.9nM.
     (5) A sensitive electrochemical biosensor for the detection of DNA methyltransferaseactivity by combining DNA methylation-sensitive cleavage and terminaltransferase-mediated extension
     DNA methylation plays an important role in many biological processes includingtranscription, genomic imprinting, cellular differentiation, chromatin structure andembryogenesis. A number of human diseases have been found to be associated with aberrantgene methylation. The DNA methylation process was regulated by DNA methyltransferasecatalyzing covalent addition of a methyl group to cytosine or adenine in DNA sequences.The aberrant DNA methyltransferase activity was reported to be related to pathogenesis ofcancer, such relationship provides a potential target in disease diagnosis and therapy. Herein,we developed a sensitive electrochemical biosensor based on methylation sensitive cleavageusing terminal transferase-mediated extension for the detection of the methyltransferaseactivity. A DNA probe contained the sequence which could be recognized by DNAmethyltransferase, was self-assembled on the surface of gold electrode by3’-SH. After themethylation reaction by DNA methyltransferase, the methylation sequence was specificallyrecognized and cleaved by methylation sensitive restrictive endonuclease, that produced anew primer with a3`-OH on the electrode surface. Subsequently, the dUTP-biotin wasincoporated into the3`-OH terminal of the new primer by TdTase-mediated extension. Then, the SA-ALP was added and bound with the labeled biotin on the primer. The amplifiedelectrochemical signal was obtained by ALP catalyzing1-NP convertion. Differential pulsevoltammetry (DPV) was employed to detect the signal which can be used for quantifying theDam MTase activity and the concentration of its inhibitor. The DPV current is proportionalto the logarithmic value of DNA methyltransferase concentration ranging from0.1to20U/mL with a detection limitation of0.04U/mL.
     (6) DNAzyme-based label-free colorimetric method for sensitive detection of DNAglycosylase
     DNA damage occurs by various mechanisms, either as a by-product of normal cellularmetabolism or as a result of exposure to environmental and biological mutagens. DNAdamage that is not repaired leads to apoptosis or mutation, which in turn may lead toinduction of carcinogenesis. Multiple systems are in place to respond to this damage, whichrecognize and repair DNA damage. DNA base lesion is a kind of DNA damage. Baseexcision repair (BER) is the primary defense against oxidative and alkylating DNA damage.The process of BER needs many kinds of DNA enzyme. The glycosylase is one of thoseenzymes which recognize and cleave damage base. Aberrant activity of DNA glycosylasemay be related to many diseases and a potential biomarker for disease cline. Herein, wedeveloped a label-free colorimetric method for sensitive detection of hOGG1, an importantDNA glycosylase. A dsDNA was used as substrate, one of its signal strand contains thelesion base (8-oxo-dG) which could be recognized by hOGG1. The other signal strandcontains hemin aptamer. When the lesion base was removed by hOGG1, a new recesseddsDNA with5`-PO4end was produced. The5`-PO4DNA strand would be digested byLambda exonuclease, which resulted in the release of the hemin aptamer then combined withhemin. The hemin/aptamer complex could catalyze ABTS2--H2O2and give color readout.The absorbance at418is proportional to the logarithmic value of hOGG1concentrationranging from0.05to16U/mL with a detection limitation of0.01U/mL.
引文
[1]樊春海.纳米生物传感器.世界科学,2008,11():21-22
    [2]许春向.生物传感器及其应用.北京:科学出版社,1993
    [3] Pandey P C, Weetall H H. Detection of aromatic compounds based on DNAintercalation using an evanescent wave biosensor. Analytical Chemistry,1995,67(5):787-792
    [4] Tombelli S, Mascini M, Braccini L, et al. Coupling of a DNA piezoelectric biosensorand polymerase chain reaction to detect apolipoprotein E poly-morphisms. Biosensorsand Bioelectronics,2000,15(7-8):363-370
    [5] Blackburn G F, Talley D B, Booth P M, et al. Potentiometric biosensor employingcatalytic antibodies as the molecular recognition element. Analytical Chemistry,1990,62(20):2211-2216
    [6] Campanella L, Pacifici F, Sammartino M P, et al. A new organic phase bienzymaticelectrode for lecithin analysis in food products. Bioelectrochemistry and Bioenergetics,1998,47(1):25-38
    [7] Lee T, Tsuzuki M, Takeuchi T, et al. Quantitative determination of cyanobacteria inmixed phytoplankton assemblages by an in vivo fluorimetric method. AnalyticaChimica Acta,1995,302(1):81-87
    [8] Oungpipat W, Alexander P W, Southwell-Keely P. A reagentless amperometricbiosensor for hydrogen peroxide determination based on asparagus tissue andferrocene mediation. Analytica Chimica Acta,1995,309(1-3):35-45
    [9] Pena N, Kuiz G, Reviejo A J, et al. Graphite-teflon composite bienzyme electrodes forthe determination of cholesterol in reversed micelles: Application to food samples.Analytical Chemistry,2001,73(6):1190-1195
    [10] Sergeyeva T A, Soldatkin A P, Achkov A E, et al. β-Lactamase label-basedpotentiometric biosensor for α-2interferon detection. Analytica Chimica Acta,1999,390(1-3):78-81
    [11] Toppozada A R, Wright J, Eldefrawi A T. Evaluation of a fiber optic immunosensorfor quantitating cocaine in coca. Biosensors and Bioelectronics,1997,12(2):113-124
    [12] Pizziconi V B, Page D L. A cell-based immunosensor with engineered molecularrecognition-part: design feasibility. Biosensors and Bioelectronics,1997,12(3):287-299
    [13]姚守拙.压电化学与生物传感.长沙:湖南师范大学出版社,1997,386-391
    [14]乔晓艳,贾莲凤.新型生物传感器在生物医学工程中的应用.传感器技术,2002,21(10):62–64
    [15]韩树波,李新,郭光美等.伏安型细菌总数生物传感器的研究与应用.化学通报,2000,63(2):49–51
    [16] Alexander D C, Costanzo M A, Guzzo J, et al. Blazing towards the next millennium:Luciferase fusions to identify genes responsive to environmental stress. Water, Airand Soil Pollution,2000,123(1-4):81–94
    [17] Yamazaki T, Meng Z H, Mosbach K, et al. A novel amperometric sensor fororgano-phosphotriester insecticides detection employing catalytic polymer mimickingphosphotriesterase catalytic center. Electrochemistry,2001,69(12):969–972
    [18] Trosok S P, DriscollB T, Luong J H T. Mediated microbial biosensor using a novelyeast strain for wastewater BOD measurement. Applied Microbiology andBiotechnology,2001,56(3-4):550–554
    [19]张悦,王建龙,李花子等.生物传感器快速测定BOD在海洋监测中的应用.海洋环境科学,2001,20(1):50–54
    [20] Leth S, Maltoni S, Simkus R, et al. Engineered bacteria based biosensors formonitoring bioavailable heavy metal. Electroanalysis,2002,14(1):35–42
    [21] Yoshida N, McNiven S J, Yoshida A, et al. A compact optical system for multi-determination of biochemical oxygen demand using disposable strips. Field analyticalchemistry and technology,2001,5(5):222–227
    [22] Wang J. Miniaturized DNA biosensor for detecting cryptosporidium in water samples.Technical completion report-311,2000,26(3):1–11
    [23] Arkhypova V N, Dzyadevych S V, Soldatkin A P, et al. Multibiosensor based onenzyme inhibition analysis for determination of different toxic substances. Talanta,2001,55(5):919–927
    [24] Riether K B, Dollard M A, Billard P. Assessment of heavy metal bioavailability usingEscherichia coli zntAp lux and copAp lux-based biosensors. Applied microbiologyand biotechnology,2001,57(5-6):712–716
    [25]田昭武,苏文煅.电化学基础研究的进展.电化学,1995,1(4):375–383
    [26] Wang J. From DNA biosensors to gene chips. Nucleic Acids Research,2000,28(16):3011–3016
    [27] Pandey P C, Aston R W, Weetall H H. Tetracyanoquinodimethane mediated glucosesensor based on a self-assembling alkanethiol/phospholipid bilayer. Biosensors andBioelectronics,1995,10(8):669–674
    [28] Vandenheuvel D J, Kooyman R P H, Drijfhout J W, et al. Synthetic peptides asreceptors in affinity sensors: a feasibility study. Analytical Biochemistry,1993,215(2):223–230
    [29] Hazel J, Fuchigami N, Gorbunov V, et al. Ultramicrostructure andmicrothermomechanics of biological IR detectors: materials properties from abiomimetic perspective. Biomacromolecules,2001,2(1):304–312
    [30]马丽,白燕,刘仲明.电化学DNA传感器研究进展.传感器技术,2002,21(3):58–64
    [31]邹小勇,陈汇勇,李荫.电化学DNA传感器的研制及其医学应用.分析测试学报,2005,24(1):123–128
    [32] Huang H Z, Liu Z G, Yang X R. Application of electrochemical impedancespectroscopy for monitoring allergen–antibody reactions using goldnanoparticle-based biomolecular immobilization method. Analytical Biochemistry,2006,356(2):208–214
    [33]周亚民,王永东,王桦等.基于Nafion膜修饰的血吸虫抗体压电免疫传感器研究.分析化学,2006(特刊): S195-S198.
    [34] Fortier G, Beliveau R, Leblond E, et al. Development of biosensors based onimmobilization of enzymes in eastman AQ polymer coated with a layer of nafion.Analytical Letters,1990,23(9):1607-1619.
    [35] Tor R, Amihay F. New enzyme membrane for enzyme electrodes. AnalyticalChemistry,1986,58(6):1042-1046.
    [36] Umana M, Waller J. Protein-modified electrodes: The glucose oxidase/polypyrrolesystem.1986, Analytical Chemistry,58(14):2979-2983.
    [37] Sasso S V, Pierce R J, Walla R, et al. Electropolymerized1,2-diaminobenzene as ameans to prevent interferences and fouling and to stabilize immobilized enzyme inelectrochemical biosensors. Analytical Chemistry,1990,62(11):1111-1117.
    [38] Malitesta C, Palmisano F, Torsi L, et al. Glucose fast-response amperometric sensorbased on glucose oxidase immobilized in an electropolymerized poly(ophenylene-diamine) film. Analytical Chemistry,1990,62(24):2735-2740.
    [39] Bartlett P N, Whitaker R G. Electrochemical immobilization of enzymes: Part I.Theory. Journal of Electroanalytical Chemistry,1987224(1-2):27-35.
    [40] Bartlett P N, Whitaker R G. Electrochemical immobilization of enzymes: Part II.Glucose oxidase immobilized in poly-N-methylpyrrole. Journal of ElectroanalyticalChemistry,1987,224(1-2):37-35.
    [41]干宁,葛从辛,无试剂二氧化钛凝胶酶传感器检测苹果酸对映异构体研究.中国食品学报,2006,6(6):105-111.
    [42]雷存喜,沈国励,俞汝勤.基于硅溶胶2凝胶/褐藻酸钠复合膜包埋酪氨酸酶的苯酚传感器研制.分析化学,2007,35(2):273-276.
    [43] Avnir D, Braun S, Lev O, et al. Enzymes and other proteins entrapped in sol-gelmaterials Chem. Mater.,1994,6(10):1605–1614
    [44] Yang M H, Yang Y H, Liu Y L, et al. Platinum nanoparticles-doped sol–gel/carbonnanotubes composite electrochemical sensors and biosensors. Biosensors andBioelectronics,2006,21(7):1125–1131
    [45] Yasuzava M, Nieda T, Hirano T, et al. Properties of glucose sensors based on theimmobilization of glucose oxidase in N-substituted polypyrrole film. Sensors andActuators B: Chemical,2000,66(1-3):77-79.
    [46] Raitman O A, Katz E, Buckmann A F, et al. Integration of polyaniline/poly(acrylicacid) films and redox enzymes on electrode supports: an in-situelectrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidationof glucose or lactate in the integrated bioelectrocatalytic systems. Journal of theAmerican Chemical Society,2002,124(22):6487-6496.
    [47] Ramanavicius A, Ramanaviciene A, Malinauskas A. Electrochemical sensors basedon conducting polymer-polypyrrole. Electrochimica Acta,2006,51(10):6025-6037.
    [48] Loaiza O A, Campuzano S, Prada A G, et al. Amperometric DNA quantificationbased on the use of peroxidase-mercaptopropionic acid-modified gold electrodes.Sensors and Actuators B: Chemical,2008,132(1):250-257.
    [49] Ma Y, Jiao K, Yang T, et al. Sensitive PAT gene sequence detection bynano-SiO2/p-aminothiophenol self-assembled films DNA electrochemical biosensorbased on impedance measurement. Sensors and Actuators B: Chemical,2008,131(2):565-571.
    [50] Mendes R K, Carvalhal R F, Kubota L T. Effects of different self-assembledmonolayers on enzyme immobilization procedures in peroxidase-based biosensordevelopment. Journal of Electroanalytical Chemistry,2008,612(2):164-172
    [51]时伟杰,艾仕云,李金焕等.基于树状高分子固定DNA的电化学生物传感器的研究.分析化学,2008,36(3):335-338.
    [52] Zhou Y, Zhi J. Development of an amperometric biosensor based on covalentimmobilization of tyrosinase on a boron-doped diamond electrode. ElectrochemistryCommunications,2006,8(8):1811-1816.
    [53] Mascini M, Guilbault G G. Urease coupled ammonia electrode for urea determinationin blood serum. Analytical Chemistry,1977,49(6):795-798.
    [54] Coutant R W, William K G. An alternative method for gas chromatographicdetermination of volatile organic compounds in water. Analytical Chemistry,1988,60(22):2536-2537
    [55] Dong Y, Shannon C. Heterogeneous immunosensing using antigen and antibodymonolayers on gold surfaces with electrochemical and scanning probe detection.Analytical chemistry,2000,72(11):2371–2376.
    [56] Singhal R, Gambhir A, Pandey M K, et al. Immobilization of urease on poly(N-vinylcarbazole)/stearic acid Langmuir–Blodgett films for application to urea biosensor.Biosensors and Bioelectronics,2002,17(8):697–703
    [57] Maruyama T, Takata T, Ichinose H, et al. Detection of point mutations in the HBVpolymerase gene using a fluorescence intercalator in reverse micelles. BiotechnologyProgress,2005,21(2):575–579
    [58] Ruiz-Ponte C, Carracedo A, Barros F. Duplication and deletion analysis by fluorescentreal-time PCR-based genotyping. Clinica Chimica Acta,2006,363(1-2):138–146
    [59] Oliveira-Brett A N M, Vivan M, Fernandes I R, et al. Electrochemical detection of insitu adriamycin oxidative damage to DNA. Talanta,2002,56(5):959–970
    [60] Zhu Z W, Li C, Li N Q. Electrochemical studies of quercetin interacting with DNA.Microchemical Journal,2002,71(1):57–63
    [61] La-Scalea M A, Serrano S H P, Ferreira E I, et al. Voltammetric behavior ofbenznidazole at a DNA-electrochemical biosensor. Pharmaceutical and BiomedicalAnalysis,2002,29(3):561–568
    [62] Wang J. Towards Genoelectronics: Electrochemical biosensing of DNA hybridization.Chemistry-A European Journal,1999,5(6):1681-1685.
    [63] Mikklesen S R. Electrochecmical biosensors for DNA sequence detection.Electroanalysis,1996,8(1):15-19.
    [64] Palecek E, Fojta M. DNA hybridization and damage. Analytical Chemistry,2001,73(3):75A-83A.
    [65]赵元弟,庞代文,王宗礼等.电化学脱氧核糖核酸传感器.分析化学,1996,24(3):364-368
    [66]陆晓军,鞠熀先.脱氧核糖核酸电化学传感器的原理及其应用.分析化学,2003,31(1):110-115
    [67] Palecek E. Oscillographic polarography of highly polymerized deoxyribonucleic acid.Nature,1960,188(4751):656–657
    [68] Wang J, Rivas G, Fernandes J R, et al. Indicator-free electrochemical DNAhybridization biosensor. Analytica Chimica Acta,1998,375(3):197–203
    [69] Wu Z S, Jiang J H, Shen G L, et al. Highly sensitive DNA detection and pointmutation identification: an electrochemical approach based on the combined use ofligase and reverse molecular beacon. Human mutation,2007,28(6):630–637
    [70] Xiao Y, Lubin A A, Baker B R, et al. Single-step electronic detection of femtomolarDNA by target-induced strand displacement in an electrode-bound duplex.Proceedings of the National Academy of Sciences U S A,2006,103(45):16677–16680
    [71] Gao Z Q, Rafea S, Lim L H. Detection of nucleic acids using enzyme-catalyzedtemplate-guided deposition of polyaniline. Advanced Materials,2007,19(4):602–606
    [72] Kavanagh P, Leech D. Redox polymer and probe DNA tethered to gold electrodes forenzyme-amplified amperometric detection of DNA hybridization. AnalyticalChemistry,2006,78(8):2710–2716
    [73] Miranda-Castro R, de-los-Santos-Alvarez P, Lobo-Castanon M J, et al. Hairpin-DNAprobe for enzyme-amplified electrochemical detection of legionella pneumophila.Analytical Chemistry,2007,79(11):4050–4055
    [74] Sun X Y, He P G, Liu S H, et al. Immobilization of single-stranded deoxyribonucleicacid on gold electrode with self-assembled aminoethanethiol monolayer for DNAelectrochemical sensor applications. Talanta,1998,47(2):487–495
    [75] Patolsky F, Katz E, Willner I. Amplified DNA detection by electrogeneratedbiochemiluminescence and by the catalyzed precipitation of an insoluble product onelectrodes in the presence of the doxorubicin intercalator. Angewandte ChemieInternational Edition,2002,41(18):3398–3402
    [76] Jin Y, Yao X, Liu Q, et al. Hairpin DNA probe based electrochemical biosensor usingmethylene blue as hybridization indicator. Biosensors and Bioelectronics,2007,22(6):1126–1130
    [77] Kara P, Meric B, Zeytinoglu A, et al. Electrochemical DNA biosensor for thedetection and discrimination of herpes simplex Type I and Type II viruses from PCRamplified real samples. Analytica Chimica Acta,2004,518(1-2):69–76
    [78] Liu S H, Ye J N, He P G, et al. Voltammetric determination of sequence-specificDNA by electroactive intercalator on graphite electrode. Analytica Chimica Acta,1996,335(3):239–243
    [79] Millan K M, Mikkelsen S R. Sequence-selective biosensor for DNA based onelectroactive hybridization indicators. Analytical Chemistry,1993,65(17):2317–2323
    [80] Yan F, Erdem A, Meric B, et al. Electrochemical DNA biosensor for the detection ofspecific gene related to Microcystis species. Electrochemistry Communications,2001,3(5):224–228
    [81] Authier L, Grossiord C, Brossier P, et al. Gold nanoparticle-based quantitativeelectrochemical detection of amplified human cytomegalovirus DNA using disposablemicroband electrodes. Analytical Chemistry,2001,73(18):4450–4456
    [82] Cai H, Xu Y, Zhu N N, et al. An electrochemical DNA hybridization detection assaybased on a silver nanoparticle label. Analyst,2002,127(6):803–808
    [83] Wang J, Liu G, Merkoci A. Electrochemical coding technology for simultaneousdetection of multiple DNA targets. Journal of the American Chemical Society,2003,125(11):3214–3215
    [84] Ozsoz M, Erdem A, Kerman K. Electrochemical genosensor based on colloidal goldnanoparticles for the detection of factor V leiden mutation using disposable pencilgraphite electrodes. Analytical Chemistry,2003,75(9):2181–2187
    [85] Wang J, Xu D, Kawde A N, et al. Metal nanoparticle-based electrochemical strippingpotentiometric detection of DNA hybridization. Analytical Chemistry,2001,73(22):5576–5581
    [86] Wang J, Xu D, Polsky R. Magnetically-induced solid-state electrochemical detectionof DNA hybridization. Journal of the American Chemical Society,2002,124(16):4208–4209
    [87] Xu Y, Cai H, He P G, et al. Probing DNA hybridization by impedance measurementbased on cds-oligonucleotide nanoconjugates. Electroanalysis,2004,16(1-2):150–155
    [88] Kato N, Caruso F. Homogeneous, Competitive fluorescence quenching immunoassaybased on gold nanoparticle/polyelectrolyte coated latex particles. Journal of PhysicalChemistry B,2005,109(42):19604-19612
    [89] Hage D S, Thomas D H, Chowdhuri A Y, et al. Development of a theoretical modelfor chromatographic-based competitive binding immunoassays with simultaneousinjection of sample and label. Analytical Chemistry,1999,71(15):2965-2975
    [90] Wei H, Guo Z B, Zhu Z W, et al. Sensitive detection of antibody against antigen F1ofYersinia Pestis by an antigen sandwich method using a portable fiber optic biosensor.Sensors and Actuators B: Chemical,2007,127(2):525-530
    [91] Luo Q P, Huang H L, Zou W, et al. An indirect sandwich ELISA for the detection ofavian influenza H5subtype viruses using anti-hemagglutinin protein monoclonalantibody. Veterinary Microbiology,2009,137(1-2):24-30
    [92] Lim M H, Ast D G. Free-Standing Thin films containing hexagonally organized silvernanocrystals in a polymer matrix. Advanced Materials,2001,13(10):718-721
    [93] Moon J M, Wei A. Uniform gold nanorod arrays from polyethylenimine-coatedalumina templates. Journal of Physical Chemistry B,2005,109(49):23336-23341
    [94] Zelenski C M, Dorhout P K. Template synthesis of near-monodisperse microscalenanofibers and nanotubules of MoS2. Journal of the American Chemical Society,1998,120(4):734-742
    [95] Clark L C, Lyons C. Electrode systems for continuous monitoring in cardiovascularsurgery. Annals of the New York Academy of Sciences,1962,102(1):29-45
    [96] Updike S J, Hicks G P. The enzyme electrode. Nature,1967,214(5092):986-988
    [97] Alonso B, Armad P G, Losad J, et al. Amperometric enzyme electrodes for aerobicand anaerobic glucose monitoring prepared by glucose oxidase immobilized in mixedferrocene-cobaltocenium dendrimers. Biosensors and Bioelectronics,2004,19(8):1617-1625
    [98] Llaudet E, Botting N P, Crayston J A, et al. A three-enzyme microelectrode sensor fordetecting purine release from central nervous system. Biosensors and Bioelectronics,2003,18(1):43-52
    [99] Okuda J, Wakai J, Yuhashi N, et al. Glucose enzyme electrode using cytochromeb562as an electron mediator. Biosensors and Bioelectronics,2003,18(3):699-704
    [100] Di J, Bi S, Zhang M. Third-generation superoxide anion sensor based on superoxidedismutase directly immobilized by sol-gel thin film on gold electrode. Biosensors andBioelectronics,2004,19(5):1479-1486
    [101] Polsky R, Harper J C, Dirk S M, et al. Diazonium-functionalized horseradishperoxidase immobilized via addressable electrodeposition: direct electron transfer andelectrochemical detection. Langmuir,2007,23(2):364-366
    [102] Jia J, Wang B, Wu A, et al. A method to construct a third-generation horseradishperoxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gelnetwork. Analytical Chemistry,2002,74(9):2217-2223
    [103] Daigle F, Leech D. Reagentless Tyrosinase enzyme electrode: effects of enzymeloading, electrolyte pH, ionic strength, and temperature. Analytical Chemistry,1997,69(20):4108-4112
    [104] Guilbaul G G, Montalvo J G. An enzyme electrode for substrate urea. Journal of theAmerican Chemical Society,1970,92(8):2533-2534
    [105] Stojanovic M N, Prada P, Landry D W, et al. Aptamer-based folding fluorescentsensor for cocaine. Journal of the American Chemical Society,2001,123(21):4928-4931
    [106] Ghadiali J E, Cohen B E, Stevens M M. Protein kinase-actuated resonance energytransfer in quantum dot-peptide conjugates. ACS NANO,2010,4(8):4915-4919
    [107] Y Li, D Sen. Toward an efficient DNAzyme. Biochemistry,1997,36(18):5589–5599
    [108] Travascio P, Li Y, Sen D. DNA-enhanced peroxidase activity of a DNAaptamer-hemin complex. Chemistry and Biology,1998,5(9):505–517
    [109] Freeman R, Liu X Q, Willner I. Chemiluminescent and chemiluminescence resonanceenergy transfer (CRET) detection of DNA, metal ions, and aptamer-substratecomplexes using hemin/g-quadruplexes and CdSe/ZnS quantum dots. Journal of theAmerican Chemical Society,2011,133(30):11597-11604
    [110] Cavicchi R E. Coulomb suppression of tunneling rate from small metal particles.Physical Review Letters,1984,52(16):1453-1456
    [111] Ball P, Li G. Science at atomic scale. Nature,1992,355(6363):761-766
    [112]张立德,牟季美.物理学与新型功能材料专题系列介绍-开拓原子和物质的中间领域:纳米微粒与纳米固体.物理,1992,21(3):167-173
    [113] Grabar K C, Reeman R G, Hommer M B, et al. Preparation and characterization of Aucolloid monolayers. Analytical Chemistry,1995,67(4):735-743
    [114] Liu T, Tang J, Jiang L. The enhancement effect of gold nanoparticles as a surfacemodifier on DNA sensor sensitivity. Biochemical and Biophysical ResearchCommunication,2004,313(1):3-7
    [115] Barth M, Oulmi Y, Ehrenreich H, et al. Pre-embedding immunogold labeling ofTUNEL stain enables evaluation of DNA strand breaks and ultrastructural alterationsin individual cells of neuronal tissue. Acta Neuropathologica,2002,104(6):621-636
    [116] Faulk W P, Taylor G M. An immunocolloid method for the election microscope.Immunochemistry,1971,8(11):1081-1083
    [117] Liu T, Tang J, Jiang L. The enhancement effect of gold nanoparticles as a surfacemodifier on DNA sensor sensitivity. Biochemical and Biophysical ResearchCommunication,2004,313(1):3-7
    [118] Barth M, Oulmi Y, Ehrenreich H, et al. Pre-embedding immunogold labeling ofTUNEL stain enables evaluation of DNA strand breaks and ultrastructural alterationsin individual cells of neuronal tissue. Acta Neuropathologica,2002,104(6):621-636
    [119] Wang H, Wang C C, Lei C X, et al. A novel biosensing interfacial design produced byassembling nano-Au particles on amine-terminated plasma-polymerized films.Analytical and Bioanalytical Chemistry,2003,377(4):632-638
    [120]刘涛,唐季安,韩梅梅等.纳米金颗粒在石英晶体微天平检测中的表面修饰作用.科学通报,2003,48(4):342-344
    [121] Hicks J F, Zamborini F P, Osisek A J, et al. The dynamics of electron self-exchangebetween nanoparticles. Journal of the American Chemical Society,2001,123(29):7048-7053
    [122] Xiao Y, Ju H X, Chen H Y. Direct electrochemistry of horseradish peroxidaseimmobilized on a colloid/cysteamine-modified gold electrode. AnalyticalBiochemistry,2000,278(1):22-28
    [123] Zhao H Q, Lin L, Li J R, et al. DNA biosensor with high sensitivity amplified by goldnanoparticles. Journal of Nanoparticle Research,2001,3:321–323
    [124] Nie L B, Yang Y, Li S, et al. Enhanced DNA detection based on the amplification ofgold nanoparticles using quartz crystal microbalance. Nanotechnology,2007,18:305501-305506
    [125] Stoeva S L, Lee J S, Thaxton C S, et al. Multiplexed DNA detection with biobarcodednanoparticle probes. Angewandte Chemie International Edition,2006,45(20):3303-3306
    [126] Nam J M, Wise A R, Groves J T. Colorimetric bio-barcode amplification assay forcytokines. Analytical Chemistry,2005,77(21):6985-6988
    [127] Georganopoulou D G, Chang L, Nam J M, et al. Nanoparticle-based detection incerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease.Proceedings of the National Academy of Sciences USA,2005,102(7):2273-2276
    [128] Nam J M, Stoeva S L, Mirki C A. Bio-bar-code-based DNA detection with PCR-likesensitivity. Journal of the American Chemical Society,2004,126(19):5932-5933
    [129] Bao Y P, Wei T F, Lefebvre P A, et al. Detection of protein analytes viananoparticle-based bio bar code technology. Analytical Chemistry,2006,78(6):2055-2059
    [130] Wei H, Li B, Li J, et al. Simple and sensitive aptamer-based colorimetric sensing ofprotein using unmodified gold nanoparticle probes. Chemical Communications,2007,(36):3735-3737
    [131] Lee J H, Wang Z, Liu J, et al. Highly sensitive and selective colorimetric sensors forUranyl (UO22+): development and comparison of labeled and label-freeDNAzyme-gold nanoparticle systems. Journal of the American Chemical Society,2008,130(43):14217–14226
    [132] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection ofpolynucleotides based on the distance-dependent optical properties of goldnanoparticles. Science,1997,277(5329):1078-1081
    [133] Liu J W, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a generalsensor design involving aptamers and nanoparticles. Angewandte Chemie,2006,118(1):96-100
    [134] Dubertret B, Calame M, Libchaber A J. Single-mismatch detection usinggold-quenched fluorescent oligonucleotides. Nature Biotechnology,2001,19(7):365-370
    [135] Dulkeith E, Morteani A C, Niedereichholz T, et al. Fluorescence quenching of dyemolecules near gold nanoparticles: radiative and nonradiative effects. Physical reviewletters,2002,89:203002-203005
    [136] Kato N, Caruso F. Homogeneous, competitive fluorescence quenching immunoassaybased on gold nanoparticle/polyelectrolyte coated latex particles. The Journal ofPhysical Chemistry B,2005,109(42):19604–19612
    [137] Dulkeith E, Ringler M, Klar T A, et al. Gold nanoparticles quench fluorescence byphase induced radiative rate suppression. Nano Letters,2005,5(4):585–589
    [138] Ao L, Gao F, Pan B F, et al. Fluoroimmunoassay for antigen based on fluorescencequenching signal of gold nanoparticles. Analytical chemistry,2006,78(4):1104–1106
    [139] Wang H, Wang Y, Jin J, et al. Gold nanoparticle-based colorimetric and “turn-on”fluorescent probe for mercury(ii) ions in aqueous solution. Analytical chemistry,2008,80(23):9021–9028
    [140] Maxwell D J, Taylor J R, Nie S M. Self-assembled nanoparticle probes for recognitionand detection of biomolecules. Journal of the American Chemical Society,2002,124(32):9606-9612
    [141] Dequaire M, Degrand C, Limoges B. An electrochemical metalloimmunoassay basedon a colloidal gold label. Analytical Chemistry,2000,72(22):5521-5528
    [142] Wang J, Xu D, Kawde A, et al. Metal nanoparticle-based electrochemical strippingpotentiometric detection of DNA hybridization. Analytical Chemistry,2001,73(22):5576-5581
    [143] Evans G M, Furlong J C. Environmental biotechnology: theory and application, JohnWilley, West Sussex,2003.
    [144] Prescott L M, Harley J P, Kleen D A. Microbiology, New York,5th edn,2002.
    [145] Inglesby T V, Henderson D A, Bartlett J G, et al. Anthrax as a biological weapon:medical and public. JAMA: Journal of American Medical Association,1999,281(18):1735-1745
    [146] Lim D V, Simpson J M, Kearns E A, et al. Current and developing technologies formonitoring agents of bioterrorism and biowarfare. Clinical Microbiology Reviews.2005,18(4):583-607.
    [147] Mock M, Fouet A. Anthrax. Annual Reviews in Microbiology,2001,55(1):647-671
    [148] Edwards K A, Clancy H A, Baeumner A J. Bacillus anthracis: toxicology,epidemiology and current rapid-detection methods. Analytical and bioanalyticalchemistry.2006,384(1):73-84
    [149] Antwerpen M H, Zimmermann P, Bewley K, et al. Real-time PCR system targeting achromosomal marker specific for Bacillus anthracis. Molecular and Cellular Probes,2008,22(5–6):313–315
    [150] Volokhov D, Rasooly A, Chumakov K, et al. Identification of Listeria species bymicroarray-based assay. Journal of clinical Microbiology,2002,40(12):4720-4728
    [151] Gonzalez S F, Krug M J, Nielsen M E, et al. Simultaneous detection of marine fishpathogens by using multiplex PCR and a DNA microarray. Journal of clinicalMicrobiology,2004,42(4):1414-1419
    [152] Mwilu S K, Aluoch A O, Miller S, et al. Identification and quantitation of Bacillusglobigii using metal enhanced electrochemical detection and capillary biosensor.Analytical Chemistry,2009,81(18):7561–7570
    [153] Biagini R E, Sammons D L, Smith J P, et al. Rapid, sensitive, and specific lateral-flowimmunochromatographic device to measure anti-anthrax protective antigenimmunoglobulin G in serum and whole blood. Clinical. Vaccine Immunology,2006,13(5):541-546
    [154] Hao R Z, Wang D B, Zhang X E, et al. Rapid detection of Bacillus anthracis usingmonoclonal antibody functionalized QCM sensor. Biosensors and Bioelectronics,2009,24(5):1330–1335
    [155] Manafi M, Kneifel W, Bascomb S. Fluorogenic and chromogenic substrates used inbacterial diagnostics. Microbiological reviews,1991,55(3):335-348
    [156] Rawlings N D, Barrett A J, Bateman A. MEROPS: the peptidase database. Nucleicacids research,2010,38(1): D227-D233
    [157] Boyer A E, Quinn C P, Woolfitt A R, et al. Detection and quantification of anthraxlethal factor in serum by mass spectrometry. Analytical Chemistry,2007,79(22):8463–8470
    [158] Rasooly R, Stanker L H, Carter J M, et al. Detection of botulinum neurotoxin-Aactivity in food by peptide cleavage assay. International journal of Food Microbiology,2008,126(1–2):135–139
    [159] Ingram A, Byers L, Faulds K, et al. SERRS-based enzymatic probes for the detectionof protease activity. Journal of the American Chemical Society,2008,130(36):11846–11847
    [160] Cummings R T, Salowe S P, Cunningham B R, et al. A peptide-based fluorescenceresonance energy transfer assay for Bacillus anthracis lethal factor protease.Proceedings of the National Academy of Sciences U S A,2002,99(10):6603-6606
    [161] Zakharova M Y, Kuznetsov N A, Dubiley S A, et al. Substrate recognition of anthraxlethal factor examined by combinatorial and pre-steady-state kinetic approaches. TheJournal of Biological Chemistry,2009,284():17902-17913
    [162] Kimura R H, Steenblock E R, Camarero J A. Development of a cell-basedfluorescence resonance energy transfer reporter for Bacillus anthracis lethal factorprotease. Analytical biochemistry,2007,369(1):60-70
    [163] Aravamudhan S, Joseph P J, Kuklenyik Z, et al. Integrated microfluidic enzymereactor mass spectrometry platform for detection of anthrax lethal factor. AnnualInternational Conference of the IEEE Engineering in Medicine and Biology Society,2009,1071–1074
    [164] Kaman W E, Hulst A G, van Alphen P T W, et al. Peptide-based fluorescenceresonance energy transfer protease substrates for the detection and diagnosis ofbacillus species.2011,83(7):2511–2517
    [165] Holtje J V. Growth of the stress-bearing and shape-maintaining murein sacculus ofEscherichia coli. Microbiology and molecular biology reviews,1998,62(1):181-203
    [166] Pemberton R M, Hart J P, Stoddard P, et al. A comparison of1-naphthyl phosphateand4aminophenyl phosphate as enzyme substrates for use with a screen-printedamperometric immunosensor for progesterone in cows’ milk. Biosensors andBioelectronics,14(5):495–503
    [167] Del Giallo M L, Lucarelli F, Cosulich E, et al. Steric factors controlling the surfacehybridization of PCR amplified sequences. Analytical Chemistry,2005,77(19):6324–6330
    [168] Carpini G, Lucarelli F, Marrazza G, et al. Oligonucleotide-modified screen-printedgold electrodes for enzyme-amplified sensing of nucleic acids. Biosensors andBioelectronics,20(2):167–175
    [169] Wang J, Rivas G, Cai X H. Screen-printed electrochemical hybridization biosensor forthe detection of DNA sequences from the Escherichia coli pathogen. Electroanalysis,1997,9(5):395-398
    [170] Shockman G D, Daneo-Moore L, Kariyama R, et al. Bacterial walls, peptidoglycanhydrolases, autolysins, and autolysis. Microbial Drug Resistance,1996,2(1):95-98
    [171] Zhu M Q, Wang L Q, Exarhos G J, et al. Thermosensitive gold nanoparticles. Journalof the American Chemical Society,2004,126(9):2656-2657
    [172] Matsui J, Akamatsu K, Nishiguchi S, et al. Composite of Au nanoparticles andmolecularly imprinted polymer as a sensing material. Analytical Chemistry,2004,76(5):1310-1315
    [173] Liu J W, Lu Y. Accelerated color change of gold nanoparticles assembled bydnazymes for simple and fast colorimetric Pb2+detection. Journal of the AmericanChemical Society,2004,126(39):12298-12305
    [174] Liu Y J, Yin F, Long Y M, et al. Study of the immobilization of alcoholdehydrogenase on Au-colloid modified gold electrode by piezoelectric quartz crystalsensor, cyclic voltammetry, and electrochemical impedance techniques. Journal ofColloid and Interface Science,2003,258(1):75-81
    [175] He H, Xie C, Ren J. Nonbleaching fluorescence of gold nanoparticles and itsapplications in cancer cell imaging. Analytical Chemistry,2008,80(15):5951-5957
    [176] Nath N, Chilkoti A. A colorimetric gold nanoparticle sensor to interrogatebiomolecular interactions in real time on a surface. Analytical Chemistry,2002,74(3):504-509
    [177] Lin S Y, Chen C h, Lin M C, et al. A cooperative effect of bifunctionalizednanoparticles on recognition: sensing alkali ions by crown and carboxylate moieties inaqueous media. Analytical Chemistry,2005,77(15):4821-4828
    [178] Huang C C, Huang Y F, Cao Z, et al. Aptamer-modified gold nanoparticles forcolorimetric determination of platelet-derived growth factors and their receptors.Analytical Chemistry,2005,77(17):5735-5741
    [179] Thanh N T K, Rosenzweig Z. Development of an aggregation-based immunoassay foranti-protein A using gold nanoparticles. Analytical Chemistry,2002,74(7):1624-1628
    [180] Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationallyassembling nanoparticles into macroscopic materials. Nature,1996,382(15):607-609
    [181] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection ofpolynucleotides based on the distance-dependent optical properties of goldnanoparticles. Science,1997,277(22):1078-1080
    [182] Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles forthe amplified optical detection of thrombin. Journal of the American Chemical Society,2004,126(38):11768-11769
    [183] Liu J W, Lu Y. Adenosine-dependent assembly of aptazyme-functionalized goldnanoparticles and its application as a colorimetric biosensor. Analytical Chemistry,2004,76(6):1627-1632
    [184] Williams K P, Liu X H, Schumacher T N M, et al. Bioactive and nuclease-resistantL-DNA ligand of vasopressin. Proceedings of the National Academy of Science USA,1997,94(21):11285-11290
    [185] Sato K, Hosokawa K, Maeda M. Rapid aggregation of gold nanoparticles induced bynon-cross-linking DNA hybridization. Journal of the American Chemical Society,2003,125(27):8102-8103
    [186] Han M S, Lytton-Jean A K R, Mirkin C A. A gold nanoparticle based approach forscreening triplex DNA binders. Journal of the American Chemical Society,2006,128(15):4954-4955
    [187] Li J, Chu X, Liu Y, et al. A colorimetric method for point mutation detection usinghigh-fidelity DNA ligase. Nucleic Acids Research,2005,33(19): e168
    [188] Lin S Y, Liu S W, Lin C M, et al. Recognition of potassium ion in water by15-Crown-5functionalized gold nanoparticles. Analytical Chemistry,2002,74(2):330-335
    [189] Liu J, Lu Y. Stimuli-responsive disassembly of nanoparticle aggregates for light-upcolorimetric sensing. Journal of the American Chemical Society,2005,127(36):12677-12683
    [190] Aslan K, Lakowicz J R, Geddes C D. Nanogold-plasmon-resonance-based glucosesensing. Analytical Biochemistry,2004,330(1):145-155
    [191] Aslan K, Lakowicz J R, Geddes C D. Nanogold plasmon resonance-based glucosesensing: Wavelength-ratiometric resonance light scattering. Analytical Chemistry,2005,77(7):2007-2014
    [192] Allfrey V G, Faulkner R, Mirsky A E. Acetylation and methylation of histones andtheir possible role in the regulation of RNA synthesis. Proceedings of the NationalAcademy of Sciences U S A,1964,54:786-794
    [193] Shahbazian M D, Grunstein M. Functions of site-specific histone acetylation anddeacetylation. Annual Review of Biochemistry,2007,76:75-100
    [194] Wang Z, Zang C, Cui K, et al. Genome-wide mapping of HATs and HDACs revealsdistinct functions in active and inactive genes. Cell,2009,138(5):1019–1031
    [195] Grunstein M. Histone acetylation in chromatin structure and transcription. Nature,1997,389:349-352
    [196] Chung D. Histone modification: the ‘next wave’ in cancer therapeutics. Trends inMolecular Medicine,2002,8(4): S10-S11
    [197] Roth S Y, Denu J M, Allis C D. Histone acetyltransferases. Annual review ofbiochemistry,2001,70:81-120
    [198] Yang X J. Lysine acetylation and the bromodomain: a new partnership for signalingBioessays,2004,26(10):1076–1087
    [199] Grozinger C M, Schreiber S L. Deacetylase enzymes-biological functions and the useof small-molecule inhibitors. Chemistry and Biology,2002,9:3-16
    [200] Kadosh D, Struhl K. Repression by Ume6involves recruitment of a complexcontaining Sin3corepressor and Rpd3histone deacetylase to target promoters. Cell,1997,89(3):365–371
    [201] Rundlett S E, Carmen A A, Suka N, et al. Transcriptional repression by UME6involves deacetylation of lysine5of histone H4by RPD3. Nature,1998,392:831-835
    [202] Taunton J, Hassig C A, Schreiber S L. A mammalian histone deacetylase related to theyeast transcriptional regulator Rpd3p. Science,1996,272(5260):408-411
    [203] Johnstone R W. Histone-deacetylase inhibitors: novel drugs for the treatment ofcancer. Nature reviews Drug discovery,2002,1:287–299
    [204] Bhaumik S R, Smith E, Shilatifard A. Covalent modifications of histones duringdevelopment and disease pathogenesis. Nature structural&molecular,2007,14:1008–1016
    [205] Garske A L, Smith B C, Denu J M. Linking SIRT2to Parkinson's disease. ACSChemical Biology,2007,2(8):529–532
    [206] Dekker F J, Haisma H J. Histone acetyl transferases as emerging drug targets. Drugdiscovery today,2009,14(19–20):942–948
    [207] Darkin-Rattray J, Gurnett A M, Myers R W, et al. Apicidin: a novel antiprotozoalagent that inhibits parasite histone deacetylase. Proceedings of the National Academyof Sciences U S A,1996,93(23):13143-13147
    [208] Nare B, Allocco J J, Kuningas R, et al. Development of a scintillation proximity assayfor histone deacetylase using a biotinylated peptide derived from histone-H4.Analytical Biochemistry,1999,267(2):390–396
    [209] Ito K, Lim S, Caramori G, et al. A molecular mechanism of action of theophylline:induction of histone deacetylase activity to decrease inflammatory gene expression.Proceedings of the National Academy of Sciences U S A,2002,99(13):8921-8926
    [210] Kelly W K, O'Connor O A, Krug L M, et al. Phase I study of an oral histonedeacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advancedcancer. Journal of Clinical Oncology,2005,23(17):3923-3931
    [211] Hoffmann K, Jung M, Brosch G, et al. A non-isotopic assay for histone deacetylaseactivity. Nucleic acids research,1999,27(9):2057-2058
    [212] Hoffmann K, S ll R M, Beck-Sickinger A G, et al. Fluorescence-labeled octapeptidesas substrates for histone deacetylase. Bioconjugate Chemistry,2001,12(1):51–55
    [213] Heltweg B, Jung M. A homogeneous nonisotopic histone deacetylase activity assay.Journal of biomolecular screening,2003,8(1):89-95
    [214] Vaquero A, Scher M B, Lee D H, et al. SirT2is a histone deacetylase with preferencefor histone H4Lys16during mitosis. Genes and Development,2006,20:1256-1261
    [215] Dryden S C, Nahhas F A, Nowak J E, et al. Role for human SIRT2NAD-dependentdeacetylase activity in control of mitotic exit in the cell cycle. Molecular and cellularbiology.2003,23(9):3173-3185
    [216] Outeiro T F, Kontopoulos E, Altmann S M, et al. Sirtuin2inhibitors rescueα-synuclein-mediated toxicity in models of Parkinson's disease. Science,2007,317(5837):516-519
    [217] Lakowicz J R. Principles of fluorescence spectroscopy, Kluwer Academic/PlenumPublishers, New York,1999, pp.367–394.
    [218] Breunig M, Lungwitz U, Liebl R, et al. Fluorescence resonance energy transfer:Evaluation of the intracellular stability of polyplexes. European Journal ofPharmaceutics and Biopharmaceutics,2006,63(2):156-165
    [219] Thomas K G, Kamat P V. Chromophore-functionalized gold nanoparticles. Accountsof Chemical Research,2003,36(12):888-898
    [220] Demers L M, Mirkin C A, Mucic R C, et al. A fluorescence-based method fordetermining the surface coverage and hybridization efficiency of thiol-cappedoligonucleotides bound to gold thin films and nanoparticles. Analytical Chemisty,2000,72(22):5535-5541
    [221] Tyagi S, Kramer F R. Molecular beacons: probes that fluoresce upon hybridization.Nature Biotechnology,1996,14,303-308
    [222] Noya O, Patarroyo M E, Guzman F, et al. Immunodiagnosis of parasitic diseases withsynthetic peptides. Current Protein&Peptide Science,2003,4,299-308
    [223] Fang X H, Li J W, Perlette J, et al. Peer reviewed: molecular beacons: novelfluorescent probes. Analytical Chemisty,2000,72(23):747A-753A
    [224] Tsourkas A, Bao G. Shedding light on health and disease using molecular beacons.Briefings in Functional Genomics and Proteomics,2003,1(4):372-384
    [225] Li J W, Geyer R, Tan W H. Using molecular beacons as a sensitive fluorescenceassay for enzymatic cleavage of single-strand DNA. Nucleic Acids Research,2000,28(11): e52
    [226] Perlette J, Tan W H. Real-time monitoring of intacellular mRNA hybridization insidesingle living cells. Analytical Chemisty,2002,73(22):5544-5550
    [227] Tan L, Li Y, Drake T J, et al. Molecular beacons for bioanalytical applications.Analyst,2005,130,1002-1005
    [228] Vet J A, Marras S A. Design and optimization of molecular beacon real-timepolymerase chain reaction assays. Methods in Molecular Biology,2005,288,273-290
    [229] Tsourkas A, Behlke M A, Rose S D, et al. Hybridization kinetics and thermodynamicsof molecular beacons. Nucleic Acids Research,2003,31(4):1319-1330
    [230] Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes&development,1998,12:599-606
    [231] Sterner D E, Berger S L. Acetylation of histones and transcription-related factors.Microbiology and Molecular Biology,2000,64:435-459
    [232] Park E J, Chan D W, Park J H, et al. DNA‐PK is activated by nucleosomes andphosphorylates H2AX within the nucleosomes in an acetylation‐dependent manner.Nucleic acids research,2003,31(23):6819-6827
    [233] Li X, Corsa C A S, Pan P W, et al. MOF and H4K16acetylation play important rolesin DNA damage repair by modulating recruitment of DNA damage repair proteinMdc1. Molecular and cellular biology,2010,30(22):5335-5347
    [234] Saha R N, Pahan K. HATs and HDACs in neurodegeneration: a tale of disconcertedacetylation homeostasis. Cell Death&Differentiation,2006,13:539–550
    [235] Mai A, Massa S, Lavu S, et al. Design, synthesis, and biological evaluation of sirtinolanalogues as class III histone/protein deacetylase (Sirtuin) inhibitors. Journal ofmedicinal chemistry,2005,48(24):7789–7795
    [236] Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genomeintegrates intrinsic and environmental signals. Nature genetics,2003,33:245-254
    [237] Robertson K D. DNA methylation and human disease. Nature Reviews Genetics,2005,6:597-610
    [238] Flusberg B A, Webster D R, Lee J H, et al. Direct detection of DNA methylationduring single-molecule, real-time sequencing. Nature Methods,2010,7:461-465
    [239] Baylin S B, Esteller M, Rountree M R, et al. Aberrant patterns of DNA methylation,chromatin formation and gene expression in cancer. Human molecular genetics,2001,10(7):687-692
    [240] Costello J F, Fruhwald M C, Smiraglia D J, et al. Aberrant CpG-island methylationhas non-random and tumour-type-specific patterns. Nature Genetics,2000,24:132-138
    [241] Horton J R, Liebert K, Bekes M, et al. Structure and substrate recognition of theEscherichia coli DNA adenine methyltransferase. Journal of Molecular Biology,2006,358(2):559–570
    [242] Kossykh V G, Schlagman S L,Hattman S. Conserved sequence motif DPPY in regionIV of the phage T4Dam DNA-[N6-adenine] methyltransferase is important forS-adenosyl-L-methionine binding. Nucleic Acids Research,1993,21(15):3563-3566
    [243] Parker B, Marinus M G. A simple and rapid method to obtain substitution mutations inEscherichia coli: isolation of a dam deletion/insertion mutation. Gene,1988,73(2):531-535
    [244] Malygin E G, Lindstrom W M, Schlagman S L, et al. Pre-steady state kinetics ofbacteriophage T4Dam DNA-[N6-adenine] methyltransferase: interaction with native(GATC) or modified sites. Nucleic Acids Research,2000,28(21):4207-4211
    [245] Yan X J, Xu J, Gu Z H, et al. Exome sequencing identifies somatic mutations of DNAmethyltransferase gene DNMT3A in acute monocytic leukemia. Nature,1999,402:187-191
    [246] Malygin E G, Petrov N A, Gorbunov Y A, et al. Interaction of the phage T4DamDNA-[N6-adenine] methyltransferase with oligonucleotides containing native ormodified (defective) recognition sites. Nucleic Acids Research,1997,25(21):4393-4399
    [247] Guyot J B, Grassi J, Hahn U, et al. The role of the preserved sequences of Dammethylase. Nucleic Acids Research,1993,21(14):3183-3190
    [248] Willcock D F, Dryden D T, Murray N E. A mutational analysis of the two motifscommon to adenine methyltransferases. The EMBO journal,1994,13(16):3902–3908
    [249] Xu G L, Bestor T H, Bourchis D, et al. Chromosome instability andimmunodeficiency syndrome caused by mutations in a DNA methyltransferase gene.Nature,1999,402:187-191
    [250] Messer W, Noyer-Weidner M. Timing and targeting: the biological functions of Dammethylation in E. coli. Cell,1988,54(6):735-737
    [251] Bergerat A, Guschlbauer W, Fazakerley G V. Allosteric and catalytic binding ofS-adenosylmethionine to Escherichia coli DNA adenine methyltransferase monitoredby3H NMR. Proceedings of the National Academy of Sciences U S A,1991,88(15):6394-6397
    [252] Boye E, Marinus M G, Lobner-Olesen A. Quantitation of Dam methyltransferase inEscherichia coli. Journal of bacteriology,1992,174(5):1682-1685
    [253] Marzabal S, DuBois S, Thielking V, et al. Dam methylase from Escherichia coli:kinetic studies using modified DNA oligomers: hemimethylated substrates. NucleicAcids Research,1995,23(18):3648-3655
    [254] Li J, Yan H F, Wang K M, et al. Hairpin fluorescence DNA probe for real-timemonitoring of DNA methylation. Analytical Chemisty,2007,79(3):1050–1056
    [255] Feng F, Tang Y, He F, et al. Cationic conjugated polymer/DNA complexes foramplified fluorescence assays of nucleases and methyltransferases. AdvancedMaterials,2007,19(21):3490–3495
    [256] Song G, Chen C, Ren J, et al. A Simple, Universal colorimetric assay forendonuclease/methyltransferase activity and inhibition based on anenzyme-responsive nanoparticle system. ACS nano,2009,3(5):1183–1189
    [257] Liu T, Zhao J, Zhang D, et al. Novel method to detect DNA methylation using goldnanoparticles coupled with enzyme-linkage reactions. Analytical chemistry,2009,82(1):229–233
    [258] Wang L, Liu Z L, Lin H, et al. Label-free colorimetric assay for methyltransferaseactivity based on a novel methylation-responsive DNAzyme strategy. Analyticalchemistry,2010,82(5):1935–1941
    [259] Su J, He X X, Wang Y H, et al. A sensitive signal-on assay for MTase activity basedon methylation-responsive hairpin-capture DNA probe. Biosensors and Bioelectronics,2012,36(1):123–128
    [260] Liu S, Wu P, Li W, et al. An electrochemical approach for detection of DNAmethylation and assay of the methyltransferase activity. Chemical Communications,2011,47:2844-2846
    [261] Anne A, Bonnaudat C, Demaille C, et al. Enzymatic redox3‘-end-labeling of DNAoligonucleotide monolayers on gold surfaces using terminal deoxynucleotidyltransferase (TdT)-mediated single base extension. Journal of the American ChemicalSociety,2007,129(10):2734–2735
    [262] Loft S, Poulsen H E. Cancer risk and oxidative DNA damage in man. Journal ofmolecular medicine,1996,74(6):297-312
    [263] Michaels M L, Miller J H. The GO system protects organisms from the mutageniceffect of the spontaneous lesion8-hydroxyguanine (7,8-dihydro-8-oxoguanine).Journal of bacteriology,1992,174(20):6321–6325
    [264] Vidal A E, Hickson I D, Boiteux S, et al. Mechanism of stimulation of the DNAglycosylase activity of hOGG1by the major human AP endonuclease: bypass of theAP lyase activity step. Nucleic Acids Research,2001,29(6):1285–1292
    [265] Schyman P, Danielsson J, Pinak M, et al. Theoretical study of the human dna repairprotein hOGG1activity. The Journal of Physical Chemistry A,2005,109(8):1713–1719
    [266] Dianov G, Bischoff C, Piotrowski J, et al. Repair pathways for processing of8-oxoguanine in DNA by mammalian cell extracts. Journal of Biological Chemistry,1998,273:33811-33816
    [267] Crenshaw C M, Nam K, Oo K, et al. Enforced presentation of an extrahelical guanineto the lesion recognition pocket of human8-oxoguanine glycosylase, hOGG1. Journalof Biological Chemistry,2012,287:24916-24928
    [268] Krokan H E, Nilsen H, Skorpen F, et al. Base excision repair of DNA in mammaliancells. FEBS letters,2000,476(1–2):73–77
    [269] Ellenberger T. Pocketing the difference: structures of uracil excision repair proteins.Chemistry and Biology,1995,2(6):351–354
    [270] Krokan H E, Standal R, Slupphaug G. DNA glycosylases in the base excision repair ofDNA. Biochemical Journal,1997,325(1):1–16
    [271] Singhal R K, Prasad R, Wilson S H. DNA polymerase conducts the gap-filling step inuracil-initiated base excision repair in a bovine testis nuclear extract. Journal ofBiological Chemistry,1995,270:949-957
    [272] Dianov G, Lindahl T. Reconstitution of the DNA base excision--repair pathway.Current Biology,1994,4(12):1069–1076
    [273] Boiteux S, Radicella J P. Base excision repair of8-hydroxyguanine protects DNAfrom endogenous oxidative stress. Biochimie,1999,81(1–2):59–67
    [274] Caldecott K W. Single-strand break repair and genetic disease. Nature ReviewsGenetics,2008,9:619-631
    [275] Wiederhold L, Leppard J B, Kedar P, et al. AP endonuclease-independent DNA baseexcision repair in human cells. Molecular Cell,2004,15(2):209-220
    [276] Lin L H, Cao S T, Yu L, et al. Up‐regulation of base excision repair activity for8‐hydroxy‐2'‐deoxyguanosine in the mouse brain after forebrain ischemia‐reperfusion. Journal of Neurochemistry,2000,74(3):1098–1105
    [277] Gackowski D, Speina E, Zielinska M, et al. Oxidative damage to DNA andantioxidant status in aging and age-related diseases. Acta Biochimica Polonica,2007,54(1):11-26
    [278] Weiss J M, Goode E L, Ladiges W C, et al. Polymorphic variation in hOGG1and riskof cancer: a review of the functional and epidemiologic literature. MolecularCarcinogenesis,42(3):127–141
    [279] Travascio P, Li Y, Sen D. DNA-enhanced peroxidase activity of a DNAaptamer-hemin complex. Chemistry and biology,1998,5(9):505–517
    [280] Shlyahovsky B, Li Y, Lioubashevski O, et al. Logic gates and antisense DNA devicesoperating on a translator nucleic acid scaffold. ACS nano,2009,3(7):1831–1843
    [281] Li D, Shlyahovsky B, Elbaz J, et al. Amplified analysis of low-molecular-weightsubstrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. Journalof the American Chemical Society,2007,129(18):5804–5805
    [282] Sefah K, Phillips J A, Xiong X, et al. Nucleic acid aptamers for biosensors andbio-analytical applications. Analyst,2009,134:1765-1775
    [283] Teller C, Shimron S, Willner I. Aptamer DNAzyme hairpins for amplifiedbiosensing. Analytical chemistry,2009,81(21):9114–9119
    [284] Zuker M. Mfold web server for nucleic acid folding and hybridization prediction.Nucleic acids research,2003,31(13):3406-3415

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700