用户名: 密码: 验证码:
基于CT图像处理的冻结岩石细观结构及损伤力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温下冻结岩石的损伤是影响寒区岩石工程、地下低温贮存库以及冻结法施工的矿井建设等工程安全稳定的重要因素。论文以寒区岩石工程和人工冻结岩石工程为背景,针对低温状态下的冻结岩石损伤问题,以岩石的细观结构为切入点,以损伤力学、细观力学、体视学、冰力学作为理论依据,以CT扫描实验为研究基础,采用CT图像处理技术、损伤理论分析和细观数值计算相结合的方法,对低温环境下冻结岩石的细观结构及损伤力学特性进行研究,主要内容和成果如下:
     (1)进行了陕西红砂岩和灰砂岩两种岩石在常温、-2℃、-5℃、-10℃、-20℃、-30℃的CT扫描实验,获得了不同低温下岩石CT扫描图像。冻结岩石CT图像很好地反映了冻结过程中岩石的细观结构、各相组分分布(水、冰、岩石矿物颗粒)及损伤变化情况。低温作用下岩石内部产生新的孔隙和裂隙,同时伴有裂隙、孔隙贯通现象。岩石内部初始损伤随着温度的降低扩展增大,当温度降低至-20℃后,岩石内部细观结构不再变化。
     (2)将数字图像处理理论应用于冻结岩石CT图像处理中,实现了CT图像的伪彩色增强;获得了不同冻结温度下岩石的CT数直方图;将最大类间方差法和遗传算法相结合,对冻结岩石CT图像进行双阈值分割,实现了冻结岩石CT图像的三值化分割技术;运用Canny算子对冻结岩石CT图像进行边缘检测,获得了冻结岩石细观结构的二值图像。冻结岩石CT图像的伪彩色增强能够提高CT图像的分辨率,减少视觉上的判断误差,根据伪彩色增强图像颜色的变化、CT数直方图可定量分析冻结过程中岩石细观结构、水冰含量以及损伤分布随温度的变化情况。冻结岩石CT图像的三值化分割技术,将冻结岩石内部的水、冰、岩石三相介质区分开,明确地给出了水、冰、岩石空间位置及含量的数字表述。
     (3)将体视学原理引入到冻结岩石细观结构特性研究中,结合冻结岩石CT图像,分析了冻结岩石细观结构的构成及其相互关系,给出了冻结岩石细观结构参数计算公式。对冻结过程中岩石内部裂隙、孔隙的长度、周长、面积、宽度、圆形度等细观结构参数及水冰含量进行定量计算。细观结构参数能够显示冻结过程中损伤大小及形态的变化情况。冻结岩石内部水和冰含量定量计算结果表明:岩石内部水、冰含量随温度的变化而改变,两者处于动态平衡状态中。
     引入未冻水含量作为内变量,从与内变量功共轭的相变潜热出发,利用连续介质热力学理论推导出冻结岩石中未冻水、冰含量与冻结温度关系的理论公式。所给出的公式能描述冻结过程中岩石内部未冻水和冰含量的变化情况,同时可预测给定含水量的冻结岩石的纯冰点。
     (4)根据冻结岩石的细观结构组构及特性,从岩石细观力学机理出发,用混合律方法将含孔隙的冻结岩石视为各向同性介质,将含裂隙的冻结岩石视为横观各向同性介质,推导出不同冻结温度下的等效弹性模量计算公式。
     针对冻结作用对岩石力学性能的影响,提出“冻结负损伤”的概念,用冻结损伤、荷载损伤描述冻结和荷载两种不同作用下岩石损伤过程,拓展损伤变量内涵。基于连续介质热力学方法,以岩石的初始损伤状态为基准状态,应用推广后的应变等价原理及损伤力学理论,建立荷载作用下冻结岩石的宏—细观损伤本构模型。对模型进行了验证,理论曲线与实验曲线比较接近,所建立的模型能够描述荷载作用下冻结岩石损伤演化规律。
     (5)提出了冻结岩石数字图像数值分析方法(DIP-FEM),建立不同低温环境、不同荷载作用下岩石破坏过程的有限元数值计算格式。通过CT图像的三维重建技术,获得冻结岩石真实细观结构数字化模型,对其进行矢量化转化,并导入至有限元软件ANSYS中,进行冻结过程中温度场及冰膨胀力分布规律的数值模拟试验研究,分析含裂隙或孔隙岩石在低温环境下的损伤特性,该方法弥补了低温冻结岩石物理实验的不足,为实现冻结岩石的破坏过程研究从细观尺度向宏观尺度过渡提供新的研究途径。
Frozen rock problems exist in many projects in different degree, including the rockengineering in cold regions, the reservoir pool at low temperature of liquefied natural gas andthe construction using frozen methods in mine building projects, etc. The research on frozenrock problems has extensive engineering background and practical significance. The damageon frozen rock at low temperature has a significant effect on the security and stability of therock engineering in cold region. Aiming at the engineering demands for practical problemsoccurred in frozen rock engineering, based on the computed tomography (CT) scanningexperiment of frozen rock at different minus temperature, and guided by the theories ofDamage Mechanics, Continuous Media of Thermodynamics, Meso-mechanics, Stereology,Ice mechanics, and taking the meso-structure of frozen rock as cut-in point, meso-structureand mechanical characteristics of frozen rock were investigated by the method combiningwith CT image processing technology and damage theoretical analysis and mesoscopicnumerical calculation. The following conclusions have been gotten:
     (1) CT scanning images of red and gray sandstones at different low temperature areobtained by carrying out the CT scanning experiment at room temperature20℃,0℃,-5℃,-10℃,-20℃and-30℃. CT scanning images can well show the change of themeso-structure and damage of the frozen rock, and the composition distribution whichincludes water, ice and mineral particles during process of freezing. Under low temperature,the new internal rock pore and crack are generated also accompany with the phenomenon ofcrack propagation and coalescence. Rock damage increases with the temperature dropping.When the temperature drops to-20℃, the rock meso-structure keep stable and almost changeno more.
     (2) Applying digital image processing theory to CT image, pseudo-color enhancement technique of CT image of frozen rock has been implemented. Histogram of frozen rock basedon CT value has been obtained. The double thresholds segmentation that based on geneticalgorithm is realized and the three-valued segmentation of frozen rock CT images iscompleted. By Canny operator's edge detection, the binary images of frozen rockmeso-structure are gotten. Using CT image processing technology can improve the resolutionof frozen rock CT images, and reduce the error of visual judgment. According with thechanges of colors in pseudo-color enhancement image of frozen rock CT images andhistogram of frozen rock based on CT value, meso-structure, unfrozen water, ice, and damagedistribution can be analyzed quantitatively dependent on temperature during freezing process.he three-valued segmentation of frozen rock CT images is employed to distinguish water andice from rock in the internal of frozen rock. Digital expression of spatial location and thecontent of water, ice and rock are given definitely by the three-valued segmentation.
     (3) The stereology theory is introduced to the study of the characteristics of freeze rockmeso-structure. Combined with the CT images of frozen rock, the meso-structure compositionand their mutual relations are analyzed and the parameter calculation formulations ofmeso-structure of frozen rock are put forward. The meso-structure parameters are calculatedquantitatively, such as length, perimeter, area, width and circularity of pore and crack. Thecalculation results of unfrozen water and ice content shows that unfrozen water and icecontent in rock interior varied with the changes of temperature, and both are in a state ofdynamic balance.
     In frozen rock, the unfrozen water content is considered as an internal variable and thework conjugated with the internal variable is the latent heat of phase change of unfrozen rock.The continuum thermodynamic theory is employed to deduce the formula of the relationshipbetween the unfrozen water and ice content depends on temperature. The experimental resultsof CT scanning agree well with the result predicted by deduced formula. The changes ofunfrozen water and ice content in the process of freezing can be described by deducedformula, and the pure frozen point of frozen rock can be predicted.
     (4) Based on composition and characteristics of mesoscopic structure of frozen rock,from the idea of the rock mesoscopic mechanics, using mixed law methods to consider frozenrock with pore as isotropic medium, and frozen rock with crack as the transversely isotropicmedium, calculation formulas of equivalent elastic modulus of frozen rock under differentfrozen temperature were deduced.
     In view of the influence of frozen action on the properties of rock mechanics, the conceptof frozen negative damage was put forward. Damage variable was proposed with more new meaning to frozen and loaded rock, three new conceptions were put forward, which werefrozen damage, loaded damage and total damage. Proposed damage variable can describedifferent damage process of rock under the two different actions,one is low temperaturefrozen and another is load.Based on the continuum thermodynamics method, and takeing theinitial damage state as reference state, macro-mesoscopic damaged constitutive model offrozen rock was build under the load action according to the generalized principle of strainequality and theory of damage mechanics.
     (5) The CT image of frozen rock can be extended to be applicable to research frozenrock damage. The new method (DIP-FEM), Digital Image Processing—Finite ElementMethod was put forward. By the proposed method, the finite numerical analysis fomat of rockdamage process has been established under different low temperature environment and loadaction. The real mesoscopic structure digital model of frozen rock is obtained bythree-dimesion reconstruction technology of CT image. Vectorization algorithm ofmesoscopic structure digital model of frozen rock is presented, which can convert imageformat to graphics format. Then real meso-structure of frozen rock is imported into finiteelement software ANSYS to analysis damage characteristics of rock with pore or crack in lowtemperature environment. The proposed method can make up for the deficiencies of lowtemperature frozen rock physical experiment, and provide a new research avenues to realizedamage process research of frozen rock from the meso-scale to macro-scale.
引文
[1]崔托维奇,H.A.著,张长庆,朱元林译.冻土力学[M].北京:科学出版社,1985.
    [2]李宁,程国栋,徐学祖.冻土力学的研究现状与思考.力学进展,2001,31(1):95~102.
    [3]中国科学院兰州冰川冻土沙漠研究所.冻土[M].北京:科学出版社,1975.
    [4]铁道部第三勘测设计院.冻土工程[M].北京:中国铁道出版社,1994.
    [5]马巍.中国地层冻结技术的研究回顾与展望.冰川冻土,2001,23(3):90~99.
    [6] Cheng Guodong, Ma Wei. A research review of international permafrost engineering-5thinternational symposium on permafrost engineering. Journal of Glaciology and Geology,2003,25(3):303~11.
    [7]曹志远,傅志平.材料细观结构与构件宏观响应间直接关联分析.上海力学,1996,17(4):313~318.
    [8] Gale W.J, Fabjanczyk M.W. Design Approach to Assess Coal Mine Roadway Stability andSupport Requirement[J].AustralianTunnellingConference,1993.
    [9]吴紫汪,马巍.冻土强度与蠕变[M].兰州:兰州大学出版社,1993.
    [10]何平,程国栋,朱元林.土体冻结过程中热质迁移的研究进展,2001,23(1):92~97.
    [11]令锋,吴紫汪.渗流对多年冻土区路基温度场影响的数值模拟,1999,21(2):115~119.
    [12]盛煜,福田正己,金学三,今村辙.未冻水含量对含废弃轮胎碎屑冻土超声波速度的影响.岩土工程学报,2000,22(6):716~719.
    [13] Winkler E.M. Frost damage to stone and concrete:geological considerations [J].Engineering Geology,1968,2(5):315~323.
    [14] Kostromitinov K.B, NikolenkoV., Nikitin. Testing the strength of frozen rocks onsamples of various forms,Increasing the effectiveness of mining industry in Yakutia[M].Novosibirsk,1974.
    [15] InadaY. K., Yokota. Some studies of low temperature of rock strength [J]. Int. J. RockMech. Min,Sci.&GeomechAbstr,1984,21(3):145~153.
    [16] Kenji Aoki, Keisuke Hibiya,Takehisa Yoshida. Storage of Refrigerated Liquefied Gasesin Rock Caverns:Characteristics of Rock Under Very Low Temperatures[J].Tunnellingand Underground Space Technology,1990,5(4):319~325.
    [17] YamabeT.,K.M.,NeauPane. Determination of some thermo–mechanical properties ofSirahama sandstone under subzero temperature conditions[J]. International Journal ofRock Mechanic&Mining Science,2001.38(7):1029~1034.
    [18] Park C.,SynnJ.H, ShinH.S. Experimental study on the thermal characteristics of rock atlow temperatures [J]. International Journal of Rock Mechanics and Mining Science,2004,41(3):81~86.
    [19] Goriaev V.E.,ReinerV.V, Kiev,N.D. Studying frozen gorund evcvation by electric thermalmeans(In Russian)[A]. In Thermo-mechanical Methods of Rock Shattering[C],1972.
    [20] Misnik I.U, Kiev N.D. Basic problems of frozen rock evcvation by electric thermal drills(In Russian)[A].In Thermomechanical Methods of Rock Shattering[C],1972.
    [21] Mekrasov L.B., MisnikI.M., MovshinaS.D. Technical and economic evaluation ofhigh-frequency electrical thermo-hammers for breaking frozen rocks(In Russian).Development of Minning Resoucres of the North [M].Leningrad,1972.
    [22]李宁,张平,程国栋.冻结裂隙砂岩低周循环动力特性试验研究[J].自然科学进展,2001,11(11):1175~1180.
    [23]何国梁,张磊,吴刚.循环冻融条件下岩石物理特性的试验研究[J].岩土力学,2004,25(S2):52~56.
    [24]徐光苗.寒区岩体低温、冻融损伤力学特性及多场耦合研究[博士学位论文D].武汉:中国科学院武汉岩土力学所,2006.
    [25]杨更社,奚家米,李慧军.三向受力条件下冻结岩石力学特性试验研究[J].岩石力学与工程学报,2010,29(3):459~464.
    [26]唐明明,王芝银,孙毅力.低温条件下花岗岩力学特性试验研究[J].岩石力学与工程学报,2010,29(4):787~794.
    [27]刘莹,汪仁和,陈军浩.负温下白垩系岩石的物理力学性能试验研究[J].煤炭工程,2011,1:82~84.
    [28]李云鹏,王芝银.花岗岩低温强度参数与冰胀力的关系研究[J].岩石力学与工程学报,2010,29(2):4113~4118.
    [29]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [30]董瑞琨,许兆义,杨成永.青藏高原冻融侵蚀动力特征研究[J].水土保持学,2000,12(4):12~16.
    [31]王晓春,张倬元.寒区工程与冻融力学[J].地学前缘,2002,8(7):99~104.
    [32]李金玉,曹建国,徐文雨.混凝土冻融破坏机理的研究[J].水利学报,1999,1(1):41~49.
    [33] Nicholson H, Dawn T, Nicholson F.Physical deterioration of sedimentary rocks subjectedto experimental freezing-thawing weathering [J]. Earth Surface Processes andLandforms,2000,25(12):1295~1308.
    [34] Fukuda, M., Rock weathering by freeze-thaw cycles [J]. Low-Temp Sci. Series A. Phys.Sci.,1974,32:243~249.
    [35]徐光苗,刘泉声.岩石冻融破坏机理分析及冻融力学实验研究.岩石力学与工程学报,2005,24(17):3076~3082.
    [36] Fahey B.D., Frost action andhydration as rock weathering mechanisms on schist: alaboratory study[J].Earth Surface Processrd and Landfonns,1983,8(6):535~545.
    [37] Prick A. Dilatometrical behaviour of porous calcareous rock samples subjected tofreeze-thaw cycles [J].Catena,1995,25:7~20.
    [38] Matsuoka N. Mechanisms of rock breakdown by frost action: an experimental approach[J]. Cold Regions Science and Technology,1990,17:253~270.
    [39] Hall K. A laboratory simulation of rock breakdown due to freeze-thaw in a MaritimeAntarctic enviromnent[J]. Earth Surface Processes and Landfonns,1988,13:369~382.
    [40] Bellanger M. F, Homand J.M, Remy. Water behaviour in limestones as a function ofpores structure:Application to frost resistance of some Lorraine limestones[J].Engineering Geology,1993,36(1-2):99~108.
    [41] Nicholson D.T, Nicholson F.H. Physical deterioration of sedimentary rocks subjected toexperimental freeze-thaw weathering [J]. Earth Surface Processes and Landforms,2000,25:1295~1307.
    [42] Chen T.C., M.R. Yeung, N. Moric. Effect of water saturation on deterioration of weldedtuff due to freeze-thaw action[J]. Cold Regions Science and Technology,2004,38:127~136.
    [43] Walder J., B. Hallet. A theoretical model of the fracture of rock during freezing[J].Geological Society of America Bulletin,1985,96(3):336~346.
    [44] Hori M. Micromechanical analysis on deterioration due to freezing and thawing inporous brittle materials[J]. International Journal of Engineering Science,1998,36(4):511~522.
    [45]张全胜.冻融条件下岩石细观损伤力学特性研究初探[硕士学位论文][D].西安:西安科技大学,2003.
    [46]杨更社,蒲毅彬,马巍.寒区冻融环境条件下岩石损伤扩展研究探讨[J].实验力学,2002,17(2):220~226.
    [47]王俐,杨春和.不同初始含水率红砂岩冻融损伤的试验研究及其机理分析[硕士学位论文D].武汉:中国科学院武汉岩土力学研究所,2006.
    [48]徐光苗.寒区岩体低温、冻融损伤力学特性及多场耦合研究[博士学位论文D].武汉:中国科学院武汉岩土力学研究所,2006.
    [49]刘成禹,何满潮,王树仁等.花岗岩低温冻融损伤特性的实验研究.湖南科技大学学报(自然科学版),2005,20(1):37~40.
    [50]张继周,缪林昌,杨振峰.冻融条件下岩石损伤劣化机制和力学特性研究.岩石力学与工程学报,2008,27(8):1688~1694.
    [51]张慧梅,杨更社.冻融与荷载耦合作用下岩石损伤模型的研究.岩石力学与工程学报,2010,29(3):471~476.
    [52]康永水.裂隙岩体冻融损伤力学特性及多场耦合过程研究[博士学位论文D].武汉:中国科学院武汉岩土力学研究所,2012.
    [53] Teda,黄树华.岩石力学研究中的AE和CT装置的应用[J].岩土力学,1989,10(1):83~86.
    [54] Martin R.J, Price R.H, Boyd P.J, Noel J.S. International Journal of Rock Mechanics andMining Sciences&Geomechanics Abstracts[J],1993,30(7):1507~1510.
    [55] Kawakata H, Cho A.,Yanagidani T. The Obser2vations of Faulting in Westerly Graniteunder Triaxial Compression by X-ray CT Scan[J]. International Journal of RockMechanics and Mining,1997,34(3-4):151~162.
    [56] Kawakata H, Cho A, Kiyama T. Three dimensional Observations of Faulting Process inWesterly Granite underUniaxial and Triaxial Conditions by X2ray CTScan[J].Tectonophysics,1999,313(3):293~305.
    [57] Klobes P., Riesemier H, Meyer K, Goebbels J. Rock porosity determina-tion bycombination of X~ray computerized tomography with mercury porosimetryFresenius[J]. Journal of Analytical Chemistry,1997,357:543~547.
    [58] Doi N., Kaot O., Sakagawa Y., Akaku K., Uchida, T.Characterisation of fracture and rockproperty of the Kakkonda granite by FMI and other loggnigs[J]. Jounal of theGeothermal Research Society Japan,1998.
    [59] Ohtani T., Nakashima Y., Muaroka, H.Three dimensional miarolitic cavity distribution inthe Kakkonda granite from borehole WD~la using X~ray computerized tomography[J].Engineering Geology,2000,56:1~9.
    [60] Ruiz de Argandona V.G. Rodriguez Rey A.Celorio C. Suarez del Rio L.M. Calleja L.Llavona J.,Characterization by computed X-ray tomography of the evolution of the porestructure of a dolomite rock during freeze-thaw cyclic tests,Physics and Chemistry ofthe Earth Part A:Solid Earth and Geodesy[J],1999,24(7):633~637.
    [61] Wang L.B, Frost J.D, Voyiadjis G.Z, Harman T.P. Quantification damage parametersusing X-ray tomography images,Mechanics Materials[J],2003,35(8):777~790.
    [62] Wildenschild D, Hopmans JW, Waz CMP, Rivers ML, Rikard, Christensen BSB. UsingX~ray computed tomography in hydrology: systems, resolutions, and limitations[J].Journal of Hydrology,2002,267:285~297.
    [63] Goodwin AK, O’Nell MA, Anderson WF. The use of X~ray computer topography toinvestigate particulate interactions within opencast coal mine backfills[J]. EngineeringGeology,2003,70:331~341.
    [64] Verhelest F, Vervoot A, Debosscher P H,etal.X-ray Computerized tomography:etermination of Heterogeneities in Rock Samples[A].Sakuraied S.Proceeding of the8thInternational Cogress on Rock Mechnics[C]. Rotterdam: AA Balkema,1995.105~108.
    [65]杨更社,谢定义,张长庆等.岩石损伤扩展力学特性的CT分析.岩石力学与工程学报,1999,18(3):250~254.
    [66]杨更社,谢定义,张长庆,岩石损伤CT数分布规律的定量分析.岩石力学与工程学报,1998,17(3):279~285.
    [67]杨更社,谢定义,张长庆等.煤岩体损伤特性的CT检测.力学与实践,1996(2):19~21.
    [68]杨更社,谢定义,张长庆.岩石单轴受力CT识别损伤本构关系的探讨.岩土力学,1997(2):29~33.
    [69]任建喜,葛修润.单轴压缩岩石损伤演化细观机理及其本构模型研究.岩石力学与工程学报,2001,20(4):425~431.
    [70]葛修润,任建喜,蒲毅彬等.煤岩三轴细观损伤演化规律的CT动态试验.岩石力学与工程学报,1999,18(5):497~502.
    [71]葛修润,任建喜,蒲毅彬等.岩石疲劳损伤扩展规律CT细观分析初探.岩石工程学报,2001,23(2):191~195.
    [72]葛修润,任建喜,蒲毅彬.节理岩石卸载损伤破坏过程CT实时检测.岩土力学,2002,23(5):575~578.
    [73]简浩,朱维申等.类节理岩体单轴压缩损伤演化的CT试验研究.岩石力学与工程学报,2002,21(6):2115~2120.
    [74]简洁,朱维申,李术才等.模拟节理岩体水压致裂的CT实时试验初探.岩石力学与工程报,2002,21(11):1655~1662.
    [75]尚彦军,王思敬,岳中琦等.原状全风化花岗岩三轴试验CT监测研究.岩石力学与工程学报,2004,23(3):365~371.
    [76]陈蕴生,李宁,李爱国,蒲毅彬等.非贯通节理介质细观损伤演化的CT分析.岩石力学与工程学报,2000,19(6):702~706.
    [77]李玉彬,李向良.用微焦点X-CT成像研究岩石微观特征.油气采收率技术,2000,7(4):50~52.
    [78]李晓军,张登良.路基填土单轴受压细观结构CT检测分析.岩土工程学报,2000,22(2):205~209.
    [79]李晓军,张登良.CT技术在土体结构性分析中的应用初探.岩土力学,1999,20(2):62~66.
    [80]丁卫华,仵彦卿,蒲毅彬.受力岩石密度损伤增量及其数字图象.西安理工大学学报,2000,16(1):45~48.
    [81]仵彦卿,丁卫华等.岩石单轴与三轴CT尺度裂纹演化过程观测.西安理工大学学报.2003,19(2):115~119.
    [82]仵彦卿,丁卫华,蒲毅彬.压缩条件下岩石密度损伤增量的CT动态观测.自然科学进展,2000,10(9):830~835.
    [83]丁卫华,仵彦卿,蒲毅彬.基于X射线的岩石内部裂纹宽度测量.岩石力学与工程学报,2003,22(9):1421~1425.
    [84]范留明,李宁,丁卫华.数字图像伪彩色增强方法在岩土CT图像分析中的应用.岩石力学与工程学报,2004,23(13):2257~2261.
    [85]施斌,姜洪涛.在外力作用下土体内部裂隙发育过程的CT研究.岩土工程学报,2000,22(5):537~541.
    [86]赵阳升,孟巧荣,康天合.显微CT试验技术与花岗岩热破裂特征的细观研究岩石力学与工程学报,2008,27(1):28~34.
    [87]王家禄,高建,刘莉.应用CT技术研究岩石孔隙变化特征,石油学报,2009,30(6):887~893.
    [88]马文国,刘傲雄.CT扫描技术对岩石孔隙结构的研究.中外能源,2011,16:56~57.
    [89]刘京红,姜耀东,赵毅鑫.基于CT图像的岩石破裂过程裂纹分形特征分析,河北农业大学学报,2011,34(4):1104~107.
    [90]朱红光,谢和平,易成.岩石材料微裂隙演化的CT识别.岩石力学与工程学报,2011,30(6):1230~1239.
    [91]蒲毅彬,朱元林.CT用于冻结土、岩及冰的无损动态试验研究.自然科学进展,1998,8(2):251~253.
    [92]赖远明,吴紫汪,朱元林.大坂山隧道围岩冻融损伤的CT分析[J].冰川冻土,2000,22(3):206~210.
    [93]杨更社,蒲毅彬.冻融循环条件下岩石损伤扩展研究初探[J].煤炭学报,2002,27(4):357~360.
    [94]杨更社,张全胜,蒲毅彬.冻结温度影响下岩石细观损伤演化CT扫描.长安大学学报(自然科学版),2004,24(6):40~46
    [95]杨更社,张全胜,任建喜.冻结速度对铜川砂岩损伤CT数变化规律研究.岩石力学与工程,学报,2004,23(24):4099~4104.
    [96]刘增利,李洪升,朱元林.冻土初始与附加细观损伤的CT识别模型.冰川冻土,2002,24(5):676~680.
    [97]孙星亮,汪稔,胡明鉴.冻土三轴剪切过程中细观损伤演化CT动态试验.岩土力学,2005,26(8):1298~1311.
    [98]刘增利,张小鹏,李洪升.基于动态CT识别的冻土单轴压缩损伤本构模型.岩土力学,2005,26(4):542~546.
    [99] Tovey N.k..Quantitative analysis of electron micrographs of soil structure[A].In:proc.ofthe Int.Sym.on Soil Structure[C].Gothenburg.,1973.
    [100]施斌,姜洪涛.粘性土的微观结构分析技术研究.岩石力学与土木工程学报,2001,20(6):864~870.
    [101]蒲毅彬,陈万业,廖全荣.陇东黄土湿陷过程的CT结构变化研究.岩土工程学报,2000,22(1):49~54.
    [102]田宗勇.数字图像处理技术在地震CT中的应用.人民长江,1996,27(3):31~34.
    [103]周渤然,田中原,赵碧华.用CT技术确定砂岩的孔隙度.测井技术,1994,18(3):178~184.
    [104]李晓军,张肖宁,武建民.沥青混合料单轴重复加卸载破损CT识别.哈尔滨工业大学学报,2005(9):1228~1230.
    [105] Yue Z Q, Bekking W, Morin I. Application of digital image processing to quantitativestudy of asphalt concrete microstructure[A].Transportation Research Record1492,Transportation Research Board,National Research Council Washington[C].199.
    [106]尹小涛,党发宁,丁卫华.基于图像处理技术和CT试验的裂纹量化描述.试验力学,2005,20(3):448~454.
    [107]赵永红,梁海华,熊春阳.用数字图像处理相关技术进行岩石损伤的变形分析.岩石力学与工程学报,2002,21(1):73~76.
    [108]邵龙潭,王助贫,韩国城.三轴试验土样径向变形的计算机图像测量.岩土工程学报,2001,23(3):337~341.
    [109]邵龙潭,王助贫,刘永禄.三轴土样局部变性数字图像测量方法.岩土工程学报,2002,24(2):159~163.
    [110]徐文杰,胡瑞林,岳中琦.基于数字图像分析及大型直剪试验的土石混合体块石含量与抗剪强度关系研究.岩石力学与工程学,2008,27(5):996~1007.
    [111] Paul Sardini, Stephane Sammartino, Etienne Tevissen. An image analysis contributionto the study of transport properties of low permeability crystalline rocks. Computers&Geosciences,2001(27):1051~1059.
    [112]岳中琦,陈沙,郑宏.岩土工程材料的数字图像有限元分析[J].岩石力学与工程学报,2004,23(6):889~897.
    [113]陈沙,岳中琦,谭国焕.基于数字图像的非均质岩土工程材料的数值分析方法.岩土工程学报,2005,27(8):957~963.
    [114]李晓军,张金夫,刘凯年,张肖宁.基于CT图像处理技术的岩土材料有限元模型,岩土力学,2006,27(8):1331~1334.
    [115]朱万成,康玉梅,杨天鸿等.基于数字图像的岩石非均匀性表征技术在流固耦合分析中的应用[J].岩土工程学报,2006,28(12):2087~2091.
    [116]盛金昌,刘继山,速宝玉.基于图像数字化技术的裂隙岩石多场耦合分析.工程力学,2007,24(10):30~35.
    [117]朱珍德,杨永杰,蒋志坚.用数字图像处理技术进行膨胀红砂岩细观结构动态劣变特征研究.岩石力学与工程学报,2007,26(10):2007~2013.
    [118]杨更社,刘慧.基于CT图像处理技术的岩石损伤特性研究.煤炭学报,2007,32(5):463~468.
    [119]刘慧,杨更社,任建喜.基于数字图像处理的冻融页岩温度场的数值分析方法.岩石力学与工程学报,2007,26(8):1678~1653.
    [120]徐文杰,胡瑞林,岳中琦.土石混合体细观结构及力学特性数值模拟研究[J].岩石力学与工程学报,2007,26(2):300~311.
    [121]朱泽奇,肖培伟,盛谦.基于数字图像处理的非均质岩石材料破坏过程模拟.岩土力学,2011,32(12):3780~3786.
    [122] Γ.Π.马祖罗夫著.梁惠生,伍期建译.冻土物理力学性质[M].北京:煤炭工业出版社,1980.
    [123]徐学祖.冻土分类现状及建议[J].冰川冻土,1994,16(3):193~201.
    [124]杨更社,张长庆.岩体损伤及检测[M].西安:陕西科学技术出版社,1998.
    [125]黄爱明,刘东权,黄中琦.医学图像DICOM格式与通用图像格式之间的相互转换.四川大学学报,2006,1~32.
    [126] Davidson G.P, Nye JF..A Photoelastic study of ice Pressure in rock cracks [J].ColdRegions Sciense and Technology,1985,11(2):141~153.
    [127]程民德,沈燮昌.图像识别导论[M].上海:上海科学技术出版社,1982.
    [128]王积分,张新荣.计算机图像识别[M].北京:中国铁道出版社,1988.
    [129]何斌,马天予,王运坚,朱红连.Visual C++数字图像处理.北京:人民邮电出版社,2002.
    [130]李朝晖,张弘.数字图像处理及应用[M].北京:机械工业出版社,2004.
    [131]朱珍德,张勇,李术才.用数字图像相关技术进行红砂岩细观裂纹损伤特性研究[J].岩石力学与工程学报,2005,24(7):1123~112.
    [132]李启炎,叶建雄,何文欣.图像处理与图像制作[M].上海:同济大学出版社,2000.
    [133]赵荣椿.数字图像处理导论[M].西安:西北工业大学出版社,1995.
    [134]付峰,应义斌.生物图像阈值分割方法的研究[J].浙江大学学报(农业与生命科学版),2003,29(1):108~112.
    [135] Pham D.L, Xu C.Y,Prince J. L.A survey of current methods in medical imagesegmentation[J]. Annual Review of Biomedical Engineering,2000,2:315~337.
    [136]田莹,苑玮琦.遗传算法在图像处理中的应用[J].中国图象图形学报,2007,12(3):389~396.
    [137]付忠良.图像阈值选取方法—Otsu方法的推广[J].计算机应用,2000,20(5):37~39.
    [138]郑静,张建州,赵楠.基于跟踪算法的肺部CT图像血管提取[J].计算机工程与应用,2007,43(32):204~206.
    [139]耿茵茵,蔡安妮,孙景鳌.自动图像阈值分割算法[J].计算机工程与应用,2002,38(17):119~122.
    [140]田莹,苑玮琦.遗传算法在图像处理中的应用[J].中国图象图形学报,2007,12(3):389~396.
    [141]沈丽,张琳,南燕.体视学在突触超微结构定量研究中的应用[J].中国体视学与图像分析杂志,1998,3(1):37~41.
    [142] Delesse M.A. Procede mecanique pour determiner la composition desroches[J].C.R.Acad. Sci.,1847,25:544~545.
    [143] Elias H.(Ed.). Stereology [M].New York:Springer-Verlag,1967.
    [144] Weibel E.R. Stereological Mehtods,Vol.1:Practical Methods for BiologicalMorphometry[M],London: Academic Perss,1979.
    [145] John C.Russ, Robert T. Dehoff.Practical stereology,2nd Edition[M].Plenum Press: NewYork,1999.
    [146] K.M.Nemati.Preserving microstructure of concerte under load using the Wood’s, metaltechnique[J]. International Jounral of Rock Mechnaics and MiningSciences,2000,37:133~142.
    [147] K.M.Nemati, P. Stroeven. Stereological Analysis of Micormechanical Behavior ofConcrete[J].Materials and Structures,200l,34(242):486~494.
    [148] Mohamed Farouk Elzafraney. Quantitative Microstructural Investigation of DmaagedConcrete[D].Michigan State University,2004.
    [149] Nersesova Z, A, Tsytovich A. Unfrozen Water in Frozen Soils [C]Proceeding of1stInternational Conference on Per-mafrost. Washington, D C: National Academy ofSciences,1963:230~234.
    [150] Williams P. J. Unfrozen Water Content of Frozen Soils and Soil Moisture Suction [J].Geotechnique,1964,14(3):231~246.
    [151] Anderson D. M, Tice A. R. The Unfrozen Interfacial Phase in Frozen Soil WaterSystems [M] Ecological Studies: Analysis and Synthesis (Vo1.4). Berlin: SpringerVerlay,1973:105~125.
    [152] Tice A. R, Oliphant J. L, Nakano Y. Relationship Between the Ice and Unfrozen Phasesin Frozen Soil as Deter-mined by Pulsed Nuclear Magnetic Resonance and PhysicalDesorption Data [R]. USA: CRREL,1982.
    [153]徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2001.
    [154]黄筑平.连续介质力学基础[M].北京:高等教育出版社,2001.
    [155] Truesdell C. Rational Thermodynamic [M]. New York: McGraw-Hill,1969.
    [156](苏)Ⅱ,A.舒姆斯基著.结构冰学原理.中科院兰州冻土研究所,1981.
    [157]丁德文.工程海冰学概论.北京:海军出版社,1999.
    [158] Yen Y.C. Review of thermal properties of snow, ice and sea ice, CRREL Report81-10.USA Cold Report81-10,USA Cold Regions Research and EngineeringLaboratory, Hanover,NH,USA.
    [159] Koubyshkin N.V., Sazonov K.E. Evaluation of loads due to partial freezing of seawatertrapped in enclosed cavities, Proceedings of17th International Symposium on Ice,Saint Petersburg,Russia,2004,1:100~107.
    [160]宋涛.静冰荷载对水工建筑物的影响研究[硕士学位论文][D]天津:天津大学,2007.
    [161] Kong W. L, Campbell T. I. Thermal pressure due to an ice in an evevated watertank[J],Canada Journal of Civil Engineering,1987,14:519~526.
    [162]王洪刚.热弹性力学概论[M].北京:清华大学出版社,1989.
    [163]杜善义,王彪.复合材料细观力学.北京:科学出版社,1999.
    [164] Mori T, Tanaka K.1973.Average stress in matrix and average elastic energy of materialswith misfitting inclusions.Acta Met.,21:571~574.
    [165]沈观林,胡更开.复合材料力学.北京:清华大学出版社,2006.
    [166] Kamarainen J.著,李志军译.冰力学研究[M].兰州:冻土工程国家重点实验室,1995.
    [167]何平,程国栋,朱元林.冻土粘弹塑性耦合本构理论[J].中国科学(D辑),1999,29(增刊):34~39.
    [168]张全胜,杨更社,任建喜.岩石损伤变量及本构方程的新探讨[J].岩石力学与工程学报,2003,22(1):30~34.
    [169]杨天鸿,屠晓利,於斌等.岩石破裂与渗流耦合过程细观力学模型[J].固体力学学报,2005,26(3):333~337.
    [170]宁建国,朱志武.含损伤的冻土本构模型及耦合问题数值分析[J].力学学报,2007,39(1):70~76.
    [171]李慧军.冻结条件下岩石力学特性的实验研究[硕士学位论文D].西安:西安科技大学,2009.
    [172]郎林智,贾海梁,郭义.砂岩冻融破坏机理及冻融力学性质研究初探.水电能源科学,2012,30(11):118~121.
    [173]高艳,唐晓英,张军莉等.基于物体空间序法的CT图像三维重建算法的研究[J].北京生物医学工程,2003,22(3):180~183.
    [174]徐云翔,吴秀清,胡拥军.在Matlab环境下实现体绘制法的生物切片图像的三维重建[J].计算机工程,2002,27(12):114~115.
    [175]苏胜,沈德建.三维重建技术在全级配混凝土骨料随机分布中的研究与应用[J].江西科学,2007,10(5):522~531.
    [176]徐云翔,吴秀清,胡拥军.在MATLAB环境下实现体绘制法的生物切片图像的三维重建[J].计算机工程2002,27(12):114~115.
    [177]王成波,陈伟,谢兵等.DICOM图像与BMP图像的转换研究[J].医疗卫生装备,2004,(1):13~17.
    [178]张正荣.传热学.北京:高等教育出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700