用户名: 密码: 验证码:
安徽铜陵凤凰山铜矿成矿规律与隐伏矿体预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凤凰山铜矿位于长江中下游成矿带中东部,阳新-常州深断裂北部,是本区重要的矽卡岩-斑岩复合型矿床。本论文在充分收集总结前人研究成果的基础上,通过野外地质调查、区域地质调研、矿床地质剖析、构造地质解析、岩相学研究、主微量元素分析、流体包裹体示踪以及地球物理探测技术等多学科理论的交叉和多手段的运用,以地质-地球物理的研究为主线,对各种深边部勘查技术方法的有效性进行研究,为最终有效的综合勘查提供科学依据。
     研究表明凤凰山矿区存在3类矿床类型,即与新屋里花岗闪长岩岩体有关的矽卡岩型铜铁矿床、南区产于石英二长闪长斑岩体中的斑岩型铜金(钼)矿床、北区与闪长斑岩有关的铜铅锌矿床。划分了矽卡岩型成矿期及斑岩型成矿期2个成矿期和9个成矿阶段。通过矿物流体包裹体分析,探讨了成矿流体的成份特征及其演化,分析了成矿作用的温度和压力条件,认为地下水的混入是成矿作用发生的重要原因。
     分析了矿区主要含矿地层、岩浆岩的特征,指明了有利的控矿地层与岩体。重点研究了成矿构造条件,分析了成矿构造应力场;将矿体的分布特征和形态特征与不同级别的褶皱构造相联系,探讨成矿的分带性;研究矿区角砾岩的分形特征,分析角砾状矿体的成因。开展了凤凰山铜矿区矿床的成因分析,探讨了成矿定位机理,总结了矿床成矿规律,建立了成矿模式。
     开展了凤凰山铜矿南区构造地球化学多元素组合异常结构模式研究,获得良好的效果。进行瞬变电磁法、高频大地电磁测深和高精度磁测等找矿技术方法的探测研究,对三种方法在该区的找矿有效性做出判断和评价。
     总结和归纳了凤凰山矿区矿床的地质-地球物理和地球化学综合找矿标志。根据地质、遥感、地球物理和地球化学的综合研究和各种找矿标志的分析,圈定凤凰山铜矿区深边部找矿预测靶区4处。
Fenghuangshan copper deposit is situated at east central of the Middle-Lower Yangtze metallogenic belt, the northern of Yangxin-Changzhou deep-seated fault, and it is one of the most significant skarn-porphry deposits in the area. This research mainly paid attention to geological, geochemical and geophysical research and aims at evaluating the validity of various exploration methods and the Prediction of three-dimensional visualization in deep and around the Fenghuangshan deposit, and then offer the most effective and comprehensive exploration methods. Based on the vast previous research, the following methods are utilized:field observation, regional geological survey, analysis of economic geology and structure, petrography research, major and trace elements analysis, the trace of fluid inclusions, the technology of geophysical survey, etc.
     There are three types of deposits, skarn-type Cu-Fe deposit associated with Xinwuli granodiorite, porphyry-type Cu-Au (Mo) deposit related to quartz monzobioritic porphyry in the south, and porphyry-type Cu-Pb-Zn deposit in connection with dioritic porphyry. And two mineralization periods (skarn and porphyry) and nine stages have been divided. The composition characteristics of ore-forming fluids, evolution, the pressure and temperature of mineralization have been analyzed and discussed, according to fluid inclusions research. It is demonstrated that the mixture of underground water is essential for mineralization.
     The mineralized strata and igneous which are apt to mineralize have been pointed out by analyzing major mineralized strata and characteristics of igneous in this region. The following three aspects in terms of ore genesis were put much emphasis on:the conditions and stress fields of metallotectonics, the discussion of metallogenic zoning via the relationship between the distribution, forms of orebodies, and the folds of different scale, fractal features for the breccias and the genesis of brecciated ores. Thus, the metallogenic regularity has been summarized and genetic model has been built.
     Good effects were obtained when applying the multi-elements anomalies of tectonogeochemistry method in southern Fenghuangshan deposit. Also, the validity of Transient Electromagnetic Method, High Frequency Magnetotelluric Sounding Survey and High-precision Magnetic Survey has been evaluated in this region's mineral exploration.
     The synthesized prospecting criteria of geology, geochemistry and geophysics have been summarized. Furthermore, four prediction targets have been located in the deep and around Fenghuangshan Cu deposit, according to comprehensive research of geology, remote sensing, geochemistry and geophysics, and the various prospecting criteria.
引文
[1]Bakker, R.J.,2003, Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties:Chemical Geology, v.194, p.2-23.
    [2]Berube D, Jebrak M. Fractal descriptors for the classification of Sudbury breccias:Geological Association of Canada-Mineralogical Association of Canada[A]. In:Annual Meeting Abstract Winnipeg[C].1996,21,A-8
    [3]Bodnar, R.J.,1993, Revised equation and table for determining the freezing point depression of H2O-NaCl solutions:Geochimica et Cosmochimica Acta, v.57, p.682-684.
    [4]Bodnar, R.J., Sterner, S.M., and Hall, D.L.,1989, SALTY:a FORTRAN program to calculate compositions of fluid inclusions in the system NaCl-KCl-H2O: Computers and Geosciences, v.15, p.14-41.
    [5]Brown, P.E.,1989, FLINCOR:A microcomputer program for the reduction and investigation of fluid inclusion data:American Mineralogist, v.74, p.1390-1393.
    [6]Brown, P.E., and Lamb, W.M.,1989, P-V-T properties of fluids in the system H2O-CO1.NaCl:New graphical presentations and implications for fluid inclusion studies:Geochimica et Cosmochimica Acta, v.53, p.1204-1221.
    [7]Chi, G, and Ni, P.,2006, Equations for calculation of NaCl/(NaCl+ CaCl2) ratios and salinities from hydrohalite-melting and ice-melting temperatures in the H2O-NaCl-CaCl2 system:Acta Petrologica Sinica, in press.
    [8]Diamond, L.W.,2003, Systematics of H2O inclusions:In:Samson, I., Anderson, A., and Marshall, D., Fluid Inclusions, Analysis and Interpretation, Chapter 3: Mineralogical Association of Canada, p.55-79.
    [9]IO.C.雷斯.地电化学勘探法[M].北京:地质出版社,1986.1-244
    [10]Ishihara, S.,1977, The magnetite-series and ilmenite-series granitic rocks: Mining Geology, v.27, p.292-305.
    [11]Jebrak M. Hydrothermal breccias in vein-typeore deposits:A review ofmechanisms, morphology and size distritution[J]. Ore Geology Revies,1997, 12:111-134
    [12]Jianqing Lai & Guoxiang Chi,2007, CO1-rich fluid inclusions with chalcopyrite daughter mineral from the Fenghuangshan Cu-Fe-Au deposit, China: implications for metal transport in vapor. Mineralium Deposita.42:293-299
    [13]Jianqing Lai, Guoxiang Chi, Shenglin Peng, Yongjun Shao, Bin Yang,2007, Fluid Evolution in the Formation of the Fenghuangshan Cu-Fe-Au Deposit, Tongling, Anhui, China. Economic Geology, v.102,944-970
    [14]Liu, L., and Peng, S.,2004, Prediction of hidden ore bodies by synthesis of geological, geophysical and geochemical information based on dynamic model in Fenghuangshan ore field, Tongling district, China:Journal of Geochemical Exploration, v.81, p.81-98.
    [15]Mandelbort B B. The fractal geometry of nature[M]. New York:W H Feemanm, 1982
    [16]Mandelbrot B.B. Self-affine fractal sets. In:Fractals in Physics[M]. North-Holland, Amsterdram,1986,3-28
    [17]Orford J.D, Whalley W.B. The quantitative description of highly irregular sedimentary particles:the use of the fractal dimension[A]. In:Marshall JR(Eds):Clastic Particles[C]. Van Norstrand Reinhold Co. New York, 1987:267-280
    [18]Pan, Y, and Dong, P.,1999, The lower Changjiang (Yangze/Yangtze River) metallogenic belt, Easter Central China:intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits:Ore Geology Reviews, v.15, p.177-242.
    [19]Pei, R., and Hong, D.,1995. The granites of South China and their metallogeny: Episode, v.18, p.77-86.
    [20]Power W L, Tullis T E, Weeks JD. Roughness and wear during[J]. JGeophys Res, 1988,93:15268-15278
    [21]Roedder, E., and Bodnar, R.J.,1980, Geologic pressure determinations from fluid inclusion studies:Annual Review of Earth and Planetary Sciences, v.8, p.262-301.
    [22]Russ J.C. The image processing handbook[M].2 nd ed CRC Press,1995,674
    [23]Sterner, S.M., Hall, D.L., and Bodnar, R.J.,1988, Synthetic fluid inclusions:V. Solubility relations in the NaCl-KCl-H2O system under vapor-saturated conditions:Geochimica et Cosmochimica Acta, v.52, p.984-1005.
    [24]Taranik, J. V.,1988, Application of aerospace remote sensing technology to exploration for precious metal deposits in the Western United States:in Symposium Volume, Bulk Mineable Precious Metals Deposits of the United States, pp.551-576, Geological Society of Nevada, Reno, Nevada.
    [25]Xu, G, and Zhou, J.,2001. The Xingqiao Cu-S-Fe-Au deposit in the Tongling mineral district, China:Synorogenic remobilization of a stratiform sulfide deposit:Ore Geology Reviews, v.18, p.77-94.
    [26]Xu, S., Okay, A., Ji, S., Sengor, A.M.C., Su, W., Liu, Y., and Jiang, L.,1992, Diamond from the Dabieshan metamorphic rocks and its implication for tectonic setting:Science, v.256, p.80-82.
    [27]Yang, B., Peng, S., Mao, Z., Lai, J., and Shao, Y,2004, Analysis on mineralization system related to hydrothermal convection in Fenghuangshan deposit, Tongling:Journal of Central South University (Science and Technology edit), v.35, no. supple 1, p.13-22.
    [28]Zhao, Y, Zhang, Y, and Bi, C.,1999, Geology of gold-bearing skarn deposits in the Middle and Lower Yangtze River Valley and adjacent regions:Ore Geological Reviews, v.14, p.227-249.
    [29]安徽地矿局321地质队,1:50000区域地质调查报告(戴家汇幅)
    [30]安徽地矿局321地质队,1:50000区域地质调查报告(铜陵幅)
    [31]安徽地质矿产局,1987,安徽省区域地质志,1987,北京:地质出版社,517-518
    [32]常印佛,刘相培,吴言昌,1991,长江中下游铜铁成矿带。北京:地质出版社,1-359
    [33]陈国达,1985,成矿构造研究法,第二版。北京:地质出版社,265-405
    [34]陈国达,黄瑞华,1984,关于构造地球化学的几个问题。大地构造与成矿学,8(1):7-18
    [35]陈国达,1986,成矿构造研究法(第二版)[M]。地质出版社
    [36]陈述彭,童庆禧,郭华东,1998,遥感信息机理研究[M]。北京:科学出版社
    [37]龚斌,万力,胡伏生,等,2005,沙漠绿洲变化的遥感监测方法[J]。现代地质,19(1):152-156
    [38]何继善,1994,伪随机三频激电法研究。中国有色金属学报,4(1):1-7
    [39]赖健清,池国祥,彭省临,杨斌,邵拥军,2006,安徽铜陵凤凰山铜(金)矿床矽卡岩型与斑岩型复合成矿作用流体研究[J]。矿床地质,25:171-174
    [40]赖健清,彭省临,杨牧,邵拥军,杨斌,2007,铜陵凤凰山铜矿南区构造地球化学异常的确定与评价。地质与勘探,43(4),51-55
    [41]李金铭,卢军,严良俊,1998,地电化学提取法的理论与实验研究[J]。地学前缘,5(1):208-217
    [42]刘文灿,高德臻,储国正,1996,安徽铜陵地区构造变形分析及成矿预测。北京:地质出版社,1-133
    [43]卢焕章,池国祥,王中刚,1995,典型金属矿床的成因及其构造环境。北京:地质出版社,1-275
    [44]卢焕章,范宏瑞,倪培,欧习光,沈昆,张文淮,2004,流体包裹体。北京:科学出版社,1-487页
    [45]卢振权,吴必豪,强祖基,等,2005,中国近海海域卫星热红外亮温增温异常探讨[J]。现代地质,19(1):74-82
    [46]罗先熔,1999,寻找金、银、铜、铅、锌等金属矿床的新方法一地球电化学勘查[J]。有色金属矿产与勘查,8(6):676-677
    [47]罗先熔,1994,再论地球电化学测量法寻找隐伏矿床[J]。桂林冶金地质学院学报,14(3):295-302
    [48]罗先熔,1994,我国地电提取测量法的应用现状及研究方向[J]。桂林工学院学报,15(1):34-39
    [49]马振东,单光祥,1997,长江中下游地区多位一体大型、超大型铜形成机制的地质、地球化学研究。矿床地质,16(3):225-234
    [50]毛政利,刘之葵,赖健清,杨斌,2008,铜陵凤凰山铜矿区多源信息综合集成成矿预测模型探讨。地质找矿论丛,23(1)58-61
    [51]毛政利,杨斌,赖健清,2004,铜陵凤凰山铜矿区角砾岩体特征及成因分析[J]。矿物岩石,3(24):29-32
    [52]毛政利,张宏敏,赖健清,彭省临,2007,基于GIS的凤凰山铜矿区成矿预测系统的开发与实现。地质与勘探,43(3)92-96
    [53]彭省临,刘亮明,赖健清,王志强,2005,层次分析法在矿床大比例尺定位预测中的应用——以铜陵凤凰山铜矿为例[J]。大地构造与成矿学。29(1):71-77
    [54]彭省临,刘亮明等,2003,大型矿山接替资源探查技术与示范研究[M]。北京:地质出版社
    [55]邵拥军,李品杰,杨自安,张建东,张贻舟,2008,铜山铜矿矿体定位机理研究。见陈毓川,薛春纪,张长青主编,第九届全国矿床会议论文集,地质出版社,658-659
    [56]邵拥军,彭省临,赖健清,刘亮明,张贻舟,张建东,2007,凤凰山铜矿床两类成矿岩体的厘定及其成因分析。岩石学报,23(10)2471-2482
    [57]邵拥军,彭省临,赖健清,刘亮明,张贻舟,张建东,2007,凤凰山铜矿床两类成矿岩体的厘定及其成因分析[J]。岩石学报,23(10):2471-2482
    [58]邵拥军,彭省临,赖健清,吴淦国,2003,铜陵凤凰山铜矿成矿动力学机制分析[J]。矿产与地质,8(4):508-510
    [59]谭克仁,2000,金矿地电化学勘查新技术、新方法研究进展[J]。黄金科学技术,8(1):23-31。
    [60]田淑芳,王小牛,2001,遥感技术在山西阳高地区金矿成矿预测中的应用[J]。现代地质,15(1):64-68。
    [61]王雄军,彭省临,赖健清,杨斌,邵拥军,2008,铜陵凤凰山铜多金属矿床花岗岩侵入与成矿关系。地质与勘探,44(6)49-55
    [62]阎积慧,康慧,陈怀亮,1995,TM图像地质应用原理与方法[M]。冶金工业出版社。
    [63]叶珂,杨斌,王雄军,梁恩云,2008,铜陵矿集区遥感蚀变异常分析与找矿预测。见陈毓川,薛春纪,张长青主编,第九届全国矿床会议论文集,地质出版社,632-633
    [64]翟裕生,姚书振,林新多等,1992,长江中下游地区铁铜(金)成矿规律。北京:地质出版社,1-233
    [65]翟裕生,张湖,宋鸿林等,1997,大型构造与超大型矿床。北京:地质出版社,
    [66]翟裕生,彭润民,向运川,2004,区域成矿研究法[M]。北京;中国大地出版社。
    [67]张达,李东旭,1998,铜陵凤凰山矿田成矿构造应力场模拟研究[J]。地质力学学报,6(02):91-96
    [68]张建东,彭省临,邵拥军,2008,安徽铜陵集区矿床控矿因素分析研究。见陈毓川,薛春纪,张长青主编,第九届全国矿床会议论文集,地质出版社,672-673
    [69]赵一呜,林文蔚,毕承思,1990,中国矽卡岩矿床。北京:地质出版社,1-354
    [70]诸骥,杨志佳,黄许,1993,安徽铜陵铜冬瓜山、大团山铜矿床。见:中国铜矿找矿新进展,北京:中国有色金属工业总公司地质勘查总局,260-280
    [71]李进文,2004,铜陵矿集区矿田构造控矿与成矿化学动力学研究。中国地质科学院博士论文。1-142
    [72]陆三明,2007,安徽铜陵狮子山铜金矿田岩浆作用与流体成矿。合肥工业大学博士论文。1-158.
    [73]Agterberg F P and Kelly A M.1971. Geomathematical methods for use in prospecting[J]. Canadian Mining Journal.92 (5):61-72
    [74]Agterberg F P.1974. Geomathematics:Mathematical background and geo-science applications [M]. New York:Elsevier Scientific Pub. Co.1-596
    [75]Allais M and Chung C F.1957. Methods of appraising economic prospects of mining exploration over large territories:Algerian Sahara case study[J]. Management Science. (3):284-345
    [76]Arens C, Stoter J and Van Oosterom P.2005. Modelling 3D spatial objects in a geo-DBMS using a 3D primitive[J]. Computers & Geosciences,31(2):164-177.
    [77]Asadi H H and Hale M. A predictive GIS model for mapping potential gold and base metal mineralization in Takab area, Iran [J]. Computers & Geosciences, 2001,27 (8):901-912
    [78]Barry G S and Freyman A J. Mineral endowment of the Canadian Northwest:A subjective probability assessment [J]. Canadian Mining and Metallurgical Bulletin.1970,63 (701):1031-1042
    [79]Bonham-Carter G F, Agterberg F P and Wright D F. Weights of evidence modelling:a new approach to mapping mineral potential [J]. Geological Survey of Canada Paper,1990,89 (9):171-183.
    [80]Carranza E J M, Ruitenbeek F J A, Hecker C, et al.2008. Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain[J]. International Journal of Applied Earth Observation and Geoinformation,10:374-387.
    [81]Cassard D, Billa M, Lambert A, Picot J C, et al.2008. Gold predictivity mapping in French Guiana using an expert-guided data-driven approach based on a regional-scale GIS[J]. Ore Geology Reviews,34 (3):471-500
    [82]Chen Y L.2004. MRPM:three visual basic programs for mineral resource potential mapping[J]. Computers & Geosciences,30 (7):969-983.
    [83]Cheng Q and Agterberg F P.1999. Fuzzy weights Of evidence method and its application in mineral potential mapping[J], Natural Resources Research,8(1): 27-35
    [84]Fisher T R and Wales R Q.1992. Three-dimensional solid model of geo-objects using non-uniform rational B-splines (NURBS)[A]. In:Turner A K, ed. Three-dimensional modeling with geoscientific information systems[C], NATO ASI Series 354. Dordrecht:Kluwer Academic Publishers.85-105
    [85]Gong J Y, Cheng P G and Wang Y D.2004. Three-dimensional modeling and application in geological exploration engineering [J]. Computers & Geosciences, 30(4):391-404
    [86]Griffiths J C, Menzie D W and Labovitz M L.1975. Exploration for and evaluation of natural resources [A]. In:American Society of Mechanical Engineers, ed. AAPG Res Symp, Probab Methods in Oil Explor, Notes [C]. Stanford:American Society of Mechanical Engineers.21-25.
    [87]Harris D P, Freyman A J and Barry G S.1970. Methodology employed to estimate potential mineral supply of the Canadian Northwest [J]. Dep Energy, Can, Mines Resour, Miner Resour Div, Miner Inform Bull.105:1-56
    [88]Harris J R, Wilkinson L and Grunsky E C.2000. Effective use and interpretation of lithogeochemical data in regional mineral exploration programs:application of Geographic Information Systems (GIS) technology [J]. Ore Geology Reviews,16: 107-143.
    [89]Harris J R, Sanborn-Barrie M, Panagapko D A, et al.2006. Gold prospectivity maps of the Red Lake greenstone belt:application of GIS technology[J]. Canadian Journal of Earth Sciences,43 (7):865-893.
    [90]Houlding S W.1992. The application of new 3-D computer modeling techniques to mining[A]. In:Turner A K, ed. Three-dimensional modeling with geoscientific information systems, NATO ASI Series 354[C]. Dordrecht:Kluwer Academic Publishers.303-325
    [91]Houlding S W.1994.3D geoscience modeling-computer techniques for geological characterization[M]. Berlin:Springer-Verlag, 1-309
    [92]Katz S S.1991. Emulating the Prospector Expert System with a raster GIS[J]. Computers & Geosciences,17 (7):1033-1050.
    [93]Knox-Robinson C M and Wyborn L A I.1997. Towards a holistic exploration strategy:using geographic information systems (GIS) as a tool to enhance exploration [J]. Australian Journal of Earth Sciences,44 (4):453-463
    [94]Mao X C and Chen G G. 1991. Three-dimensional mathematical models of Xianghualing tin deposit and prognosis of blind ore bodies occurring in margins and depths[J]. Journal of Central-south Institute of Mining and Metallurgy,22 (4): 351-360.
    [95]Mao X C, Dai T G, Wu X B and Zou Y H.2009. The stereoscopic quantitative prediction of concealed ore bodies in the deep and marginal parts of crisis mines: a case study of the Dachang tin polymetallic ore deposit in Guangxi[J]. Geology in China,36(2):424-435.
    [96]McCammon R B.1976. An interactive computer graphics approach for dissecting a mixture of normal distributions [J]. Computer Graphics.10 (2):8-12
    [97]Moore R R and Johnson S E.2001. Three-dimensional reconstruction and modelling of complexly folded surfaces using Mathematica[J]. Computers & Geosciences,27(4):401-418
    [98]Shao Y J, Peng S L, Liu L M and Wu G G 2003. Analysis of the geological conditions of mineralization and the ore-control factors in Fenghuangshan field[J]. Journal of Central-south University of Technology,34 (5):562-566
    [99]Sirakova N M, Granado I and Muge F H.2002. Interpolation approach for 3D smooth reconstruction of subsurface objects[J]. Computers & Geosciences,28(8): 877-855
    [100]Sincair A J and Woodswith G I.1970. Multiple regression as a method of estimating exploration potential in an area near Terrace, British Columbia [J]. Economic Geology and the Bulletin of the Society of Economic Geologists.65: 998-1003
    [101]Singer D A.1976. RESIN, a FORTRAN IV program for determining the area of influence of samples or drill holes in resource target search[J]. Computers & Geosciences.2 (2):244-60
    [102]Singer D A.1993. Basic concepts in three-part quantitative assessments of undiscovered mineral resources [J]. Nonrenewable Resources,2 (2):64-81
    [103]Sirakova N M, Granado I and Muge F H.2002. Interpolation approach for 3D smooth reconstruction of subsurface objects[J]. Computers & Geosciences, 28(8):877-855
    [104]Slicher L B.1960. The need for a new philosophy of prospecting[J]. Mining Engineering.12 (6):570-576
    [105]Turner A K.1992. Applications of three-dimensional geoscientific mapping and modeling systems to hydrogeological studies[A]. In:Turner A K, eds. Three-Dimensional Modeling with Geoscientific Information Systems, NATO ASI Series 354[C]. Dordrecht:Kluwer Academic Publishers.327-364.
    [106]Wu L X.2004. Topological relations embodied in a generalized tri-prism (GTP) model for a 3D geoscience modeling system[J]. Computers & Geosciences,30(4):405-418.
    [107]Wu Q and Xu H.2003. An approach to computer modeling and visualization of geological faults in 3D [J]. Computers & Geosciences,29(4):503-509.
    [108]Zhao P D.1992. Theories, principles, and methods for statistical prediction of mineral deposits [J]. Journal of Mathematical Geology, (6):589-595.
    [109]彭省临,刘亮明,赖健清,邵拥军,柳建新,席振铢,王力,杨群周.2000. 大型矿山接替资源勘查技术与示范研究[M].北京:地质出版社.1-343.
    [110]邵拥军,彭省临,刘亮明,吴淦国.2003.凤凰山矿田成矿地质条件和控矿因素分析[J].中南工业大学学报(自然科学版),34(5):562-566
    [111]王全明,方一平.2001.矿产资源调查评价中的GIS[J].中国地质,28(4):38-44.
    [112]王世称,成秋明.金矿综合信息找矿模型[J].长春地质学院学报.1989,19(3):311-316
    [113]王世称,陈永良,夏立显.综合信息矿产预测理论与方法[M].北京:科学出版社,2000:1-343.
    [114]肖克炎,朱裕生,宋国耀.矿产资源GIS定量评价[J].中国地质,2000,27(7):29-32
    [115]叶天竺,肖克炎,严光生.2007.矿床模型综合地质信息预测技术研究[J].地学前缘,14(5):11-19.
    [116]赵鹏大,池顺都.初论地质异常[J].地球科学—中国地质大学学报,1991,16(3):241-248
    [117]赵鹏大,孟宪国.地质异常与矿产预测[J].地球科学—中国地质大学学报,1993,18(1):39-47
    [118]赵鹏大,胡旺亮,李紫金.矿床统计预测(第二版)[M].北京:地质出版社,1994:1-314

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700