用户名: 密码: 验证码:
一维速度结构和三维有限频全波层析成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盆岭体系是板块构造演化中的两个主要末端,在岩石圈结构构造及其演化中扮演中重要的角色。本文针对对我国东西部两个不同区域的盆岭体系,以北天山东部与准噶尔盆地结合区域和华北首都圈区域为例,结合各自不同的数据基础特点,优化地壳一维速度模型以及应用全三维有限频方法进行全波层析成像,这将有助于我们深入理解盆岭体系中相邻板块间的相互作用以及构造与地震活动性之间的关系。
     三维地震层析成像是目前世界上研究地壳速度结构广泛使用的直接又有效的手段。精确的反演数据基础和先进的反演理论及方法技术都是提高反演结果可靠性的有力保障。数据基础中的初始参考速度结构和震源参数对层析成像的结果有着重要的影响。不合适的初始速度结构除了将影响震源参数确定的准确性,还将给层析成像带来虚假的结果。因此我们结合初始速度结构和震源参数耦合的特性,在目前尚缺乏充分研究的北天山东部与准噶尔盆地结合区域,采用新疆乌鲁木齐遥测台网和10个宽频带流动地震台站记录的173个良好约束的近震的1370个P波和1396个S波走时数据,应用“最小一维速度模型”方法,联合反演初始速度结构和震源参数,并选用多个参考模型库和地震事件库以避免出现反演得到“局部极小值”的问题,最终得到优化的区域地壳一维速度模型。
     结果表明,我们建立的北天山东部地壳一维P波和S波速度模型以及台站修正值,较好地反映了区域的大致地质构造特征。比较前人的地壳一维速度结构研究结果,我们的结果分别在地壳浅层0~10km、深度约30km的中地壳、下地壳底部45km深度的区域波速表现出较强烈的低速异常性质;并在深度48km以下存在地震波速度逐渐增加的壳幔过渡带,厚度约为12km,与横跨天山造山带的的转换波探测和地震成像剖面以及深地震测深剖面测量结果较为一致。基于优化后的地壳一维速度模型对研究区1988~2005年间2370个地震进行了重新定位,最后获得了781个地震事件分布,相对于基于已有的一维速度结构采用完全相同的定位参数的定位结果,我们的定位结果在水平和深度的平均误差有了较大幅度的改善。结果表明:地震事件大部分位于玛纳斯-吐谷鲁背斜和博格达山前推覆构造带以南的区域,并且可能预示着隐伏断层的分布和块体边界的存在。地震的平均深度为16.8km,大部分的地震位于深度5-25km。
     地质构造的恰当反映和精确定位结果的改善都表明了我们建立的该区域的地壳参考一维速度模型的可靠性,为将来积累充足的数据以开展地壳三维层析成像等相关地震科学研究打下基础,为推进该地区研究盆岭构造的演化和油气资源的探寻提供有效参考依据。
     另一方面,三维地震层析成像中传统的射线理论中存在着以下局限:低速体造成的射线路径徽、波前愈合问题、成像分辨率存在极限(?)(第一菲涅尔带宽度)、极高频近似造成波形信息的缺失等等。新近发展的全波有限频反演理论针对地震波频带本身所具有的有限频宽的真实物理特性,更多地考虑了地球内部介质非均匀性,提取地震波带来的更多结构信息,提高了对地球内部更精细构造的分辨能力。但受数据量不充分的局限,本文尚不能进一步在北天山地区开展地壳三维结构的有限频反演研究。相对地,首都圈地区有已有相当的数据基础,前人开展的速度结构研究可以为本文提供良好反演的所需数据。
     本研究在集群计算服务系统的支持下,在有限频全波反演理论框架中,基于三维速度模型计算了首都圈50个宽频地震台的应变格林张量(strain Green's tensor,简称SGT);然后通过三维交错网格有限差分法(3-Dstaggered-grid finite-difference method)计算得到了震源到台站的理论地震图;继而测量得到了与实际地震波形的到时差数据;根据SGT计算走时扰动的三维Frechet核,避开了时间与频率域的FFT变换造成的误差,并通过震源-台站问的互易原理(reciprocity),改善数值模拟计算的效率;由于该方法对数据质量的要求较高,首都圈近十年的地震波形数据经过处理筛选,尚不能提供方法所需的足够测量数据。最后择优选取分析了首都圈区域内1°×1°平面精度的波形层析成像初步结果,并在首都圈地区的东北区域在深度15km以上获得了较好的分辨率。经过LSQR迭代计算,走时测量数据的总体均方跟残差从反演前的0.756秒下降到反演后的0.710秒。
     结果显示研究区域内的中上地壳中,P波速度结构存在明显的横向不均匀性,上地壳的速度图像很好地反映了地表地质、地形和岩性的特征,凹陷或山间盆地呈现低速,而隆起的山区或基岩出露区显示为高速。块体的边界区域及渤海地区,特别是张家口-渤海断陷带主要表现为低速异常,与前人的研究结果具有一定的一致性。在太平洋板块至东向西俯冲产生的挤压的大环境中,受华北区域的最大主压应力的联合作用下,浅层5km处的渤海盆地的低速带在坚硬的燕山隆起影响,分别向北往燕山隆起的东部和向西往燕山隆起的南部蔓延。燕山隆起南部向华北盆地过渡的浅层区域并未如前人的结果一般显示高速分布,而是向北直到北京密云区域(北纬40.5°)附近的范围才渐渐显示明显的高速异常,而从断层的分布图显示,在燕山隆起南部向华北盆地过渡区的低速带区域分布着大量的断层带。
     虽然由于数据的限制导致成像分辨率的不足,但三维有限频全波有限频反演理论的优越性依然在分辨率改善和速度结构的细节上得到反映。这是国内首次应用全三维有限频全波层析成像方法在反演地壳的精细速度结构,即基于三维初始速度模型构建有限频三维敏感核,进行全波层析成像反演研究。本文在首都圈地区开展的试验性研究对该理论方法的应用和发展提供了一个良好的开端。
The basin and range province is two primary tectonic unit in the of plate tectonics, and play important role in the lithospheric structure and its evolution. In this paper, two different basin and range system at northwest and north China, one is collision area between east part of the north Tianshan Mountains and Junggar Basin (TSM-JGB), the other is the North China metropolitan area, where to improve1-D crustal velocity model and conducte full-wave tomograply on full3-D finite-frequency theory, respectively, will help us further understand the interaction between adjacent plates in the basin and range system, and the relationship between tectonic structure and seismic activity.
     The widely used three-dimensional seismic tomography is a direct and effective means to study the crustal velocity structure in the world. The precise inversion data base, advanced inversion theory and technology are necessary guarantee to improve the reliability of the inversion results. The data base as the initial reference velocity model and source parameters has an strong impact for seismic tomography. Inappropriate initial velocity structure could affect determining of the source parameters inaccurately, and also bring unreal results for tomography. Therefore, to improve1-D crustal velocity model for TSM-JGB region, considering coupling of the initial velocity structure and source parameters, we selected1370P-wave and1396S-wave travel time data of172high quality local earthquake recorded Urumqi Telemetry Network and10temprary broadband seismic stations, apply the'minimum1-D model'approach to carry out jointly inversion of the initial velocity structure and hypocenter. Particularly, we prepared several reference models and seismic events datebase to avoid'local minima'problem during inversion, and eventually achieved optimized the regional1-D crustal velocity model
     The results show that the one-dimensional P-wave and S-wave velocity model we build as well as the stations correction well represent the general geological characteristics for regional structure of the area. Compared with previous model, our result indicated relative low velocity at shallow depth range (0-10km), middle crust (about30km) and lower crust (about45km), respectively. Additional, we revealed several transition layers with thickness about12km below lower crust (about48km) which may imply complexity of uppermost mantle, which is consistent with deep seismic sounding measurements by the converted wave detection and seismic imaging profiles across the Tianshan orogenic belt. Then we relocated2370earthquakes occurred from1988to2005on this improve1-D crustal model. The most relocated output781epicenters are distinctly aligned south of the surface trace of the Manas-Tugulu anticline and foldbelts of north Bogda piedmont, and distributed at depth from5to25km with the average depth16.8km. The average horizontal and vertical error outputted by method were reduced greatly, which suggests that we improve the accuracy of hypocenter determination by this new model.
     Properly reflecting the geological structure and the improvement of precise location suggest that we have established the regional one-dimensional crustal velocity model is reliable, which lay the foundation for future3D crustal seismic tomography with sufficient data and other related seismology research, provide evidence for evolution of basin and range tectonics and exploration of oil and gas resources.
     Additionally,3-D seismic tomography in traditional ray theory has the following limitations:extremely high frequency approximation, the ray path migration caused by low velocity zone, wave front healing problem, imaging resolution cannot beyond λL (width of the first Fresnel zone), waveform information invalidity, etc. Recent developments in the full-wave finite-frequency theory reveal more information for real physical characteristics of the seismic wave and its propagation in the earth, which could extract more structure information from seismic waves, thus improve resolution of the earth interior medium. However, we could not further conduct3-D finite-frequency inversion in the TSM-JGB area with limitations of inadequate date. Comparing with the TSM-JGB region, there is relatively richer database and previous structural study in the North China metropolitan area.
     We calculated50Strain Green Tensors (SGTs) on3-D velocity model for broadband seismic station with the full-wave finite-frequency theory on cluster computing sever; then achieved calculated seismograms on previous3-D velocity structure through3-D staggered-grid finite-difference method; and measured the delay travel time by cross-correlation between the observed and calculated seismic waveforms; and then we computed the3-D Frechet sensitive kernel for delay travel time by SGTs with lateral velocity variation, which avoid the error caused by FFT transform in time-frequency domain, and improve the efficiency of the numerical simulation by the hypocenter-station reciprocity principle; Due to the high quality requirements for the seismic waveform data recorded for nearly a decade in the metropolitan area, however, after careful selection we could not afford sufficient measurements to gain higher resolution than before. As a result, finally, we conducted full3-D waveform tomography with1°×1°horizontal resolution, and produced good resolution for northeast study area above15km depth. After LSQR iteration, the total RMS travel time residual of measurement dropped to0.710sec from0.756sec after inversion.
     The results show that the P-wave velocity structure presents significant lateral heterogeneity in the mid-upper crust, the image in upper crust show good coherence with surface geology and lithology, like low-velocity anomalies beneath depression or mountain basin area, high-velocity anomalies beneath uplift mountains or exposed bedrock area. And distinct low-velocity anomalies exist beneath some board area of regional block and Bohai region, especial under Zhangjiakou-Bohai depression belt zone, which is similar to preview research. Under the combined effects of the extrusion stress produced by the Pacific Plate subduction from west to east and the maximum principal stress in the North China region, the low-velocity zone below Bohai Basin at5km depth spread to north by the east side of Yanshan Mountains, and to west by the south side of the Yanshan Mountains, respectively, when colliding with the hard uplift Yanshan Mountains tectonic block. And the shallow transition zone between Yanshan Mountains from and the North China basin indicate low velocity, not as previous studies with high-velocity distribution, where distribute a large number of fault zones,and gradually appear distinct high-speed anomaly from south to the north until near the range of the Beijing Miyun region (latitude40.5°).
     Although inadequate data limit image resolution, the advantages of3-D full-wave finite-frequency theory remains on the resolution improvements and the details of velocity structure. This is the first application in China of3-D finite-frequency tomography method for crustal velocity structure, which build the finite-frequency sensitive kernel based on the3-D initial velocity model to conduct full wave tomography. This pilot study for North China metropolitan area in this paper provide a meaningful practice, which is befit to utilize and develope of the promising theory.
引文
陈杰,丁国瑜.2001.中国西南天山山前的晚新生代构造与地震活动.中国地震,17(2):134-135.
    陈颙,张先康,丘学林,等.2007.陆地人工激发地震波的一种新方法.科学通报,52(11):1317-1321.
    陈宇坤,聂永安.2001.坚固体模型近地表形变场,应力场时空分布动态模拟研究.西北地震学报,23(2):105-111.
    段永红,张先康,刘志,等.2005.长白山-镜泊湖火山区地壳结构接收函数研究.地球物理学报,48(2):352-358.
    房立华,吴建平,吕作勇.2009.华北地区基于噪声的瑞利面波群速度层析成像.地球物理学报,52(3):663-671.
    冯锐,朱介寿,丁韫玉,等.1981.利用地震面波研究中国地壳结构.地震学报,3(4):335-350.
    傅淑芳,朱仁益,地球物理.1998.地球物理反演问题:地震出版社.
    高锐,肖序常.2001.新疆地学断面深地震反射剖面揭示的西昆仑-塔里木结合带岩石圈细结构.地球学报,22(006):547-552.
    葛粲,郑勇,熊熊.2011.华北地区地壳厚度与泊松比研究.地球物理学报,54(10):2538-2548.
    郭飚,刘启元,陈九辉,等.2006.中国境内天山地壳上地幔结构的地震层析成像.地球物理学报,49(6):1693-1700.
    郭慧丽,徐佩芬.2011.地震层析成像在华北克拉通地区的研究进展.地球物理学进展,26(5):1557-1565.
    韩竹军,徐杰,冉勇康,等.2003.华北地区活动地块与强震活动.中国科学:D辑,33(B04):108-118.
    何正勤,叶太兰,丁志峰.2009.华北东北部的面波相速度层析成像研究.地球物理学报,52(5):1233-1242.
    黄金莉,顾小虹.2001.国家数字地震台网中心应用地震波形数据格式及转换.地震,21(4):60-65.
    黄金莉,赵大鹏.2005.首都圈地区地壳三维P波速度细结构与强震孕育的深部构造环境.科学通报,50(4):348-355.
    黄金莉,赵大鹏,郑斯华.2001.川滇活动构造区地震层析成像.地球物理学报,44(z1).
    黄忠贤,胥颐,郝天珧,等.2009.中国东部海域岩石圈结构面波层析成像.地球物理学报,52(3):653-662.
    嘉世旭,齐诚,王夫运,等.2005.首都圈地壳网格化三维结构.地球物理学报,48(6):1316-1324.
    嘉世旭,张成科,赵金仁,等.2009.华北东北部裂陷盆地与燕山隆起地壳结构.地球物理学报,52(1):99-110.
    江燕,陈晓非.2011.有限频与射线层析成像比较研究综述.地球物理学进展,26(5).
    姜文亮,张景发.2012.首都圈地区精细地壳结构——基于重力场的反演.地球物理学报,55(5):1646-1661.
    况军,贾希玉.2005.喜马拉雅运动与准噶尔盆地南缘油气成藏.新疆石油地质,26(2):129-133.
    雷建设,赵大鹏,苏金蓉,等.2009.龙门山断裂带地壳精细结构与汶川地震发震机理.地球物理学报,52(2):339-345.
    李乐,陈棋福,陈颙.2007.首都圈地震活动构造成因的小震精定位分析.地球物理学进展,22(1):24-34.
    李松林,邓宏钊.2001.多条人工地震测深剖面资料联合反演首都圈三维地壳结构.地球物理学报,44(3):360-368.
    李志海,赵翠萍,王海涛,等.2004.双差地震定位法在北天山地区地震精确定位中的初步应用.内陆地震,18(2):146-153.
    李志伟,胥颐,郝天珧,等.2006.环渤海地区的地震层析成像与地壳上地幔结构.地球物理学报,49(3):797-804.
    李志伟,胥颐,郝天珧,等.2006.利用DE算法反演地壳速度模型和地震定位.地球物理学进展,21(2):370-378.
    廖新玉,李杰.2008.乌鲁木齐地区现代地壳运动研究.地球物理学进展, 23(6).
    刘保金,沈军,张先康,等.2007.深地震反射剖面揭示的天山北缘乌鲁木齐坳陷地壳结构和构造.地球物理学报,50(5):1464-1472.
    刘国栋,顾群,史书林,等.1983.京津唐渤和周围地区地壳上地幔电性结构及其与地震活动性的关系.地球物理学报,26(2):149-157.
    刘和甫,李晓清,刘立群,等.2004.盆山耦合与前陆盆地成藏区带分析.现代地质,18(004):389-403.
    刘和甫,夏义平,殷进垠,等.1999.走滑造山带与盆地耦合机制.地学前缘,6(3):121-132.
    刘训.2005.从新疆地学断面的成果讨论中国西北盆-山区的地壳构造演化.地球学报,26(2):105-112.
    刘伊克,常旭.2000.地震层析成像反演中解的定量评价及其作用.地球物理学报,43(2):251-256.
    马建文,秦思娴.2012.数据同化算法研究现状综述.地球科学进展,27(7):747-757.
    马杏垣,吴大宁,刘德良.1988.中国新生代的伸展构造.地质科技情报,7(2):1-12.
    梅世蓉.1995.地震前兆场物理模式与前兆时空分布机制研究(一):坚固体孕震模式的由来与证据.地震学报,17(003):273-282.
    梅世蓉,胡长和,朱传镇,1982.一九七六年唐山地震,北京:地震出版社.
    米宁,王良书,李华,等.2005.天山和塔里木盆山接合部地壳上地幔速度结构研究.科学通报,50(4):363-368.
    潘佳铁,吴庆举,李永华,等.2011.华北地区瑞雷面波相速度层析成像.地球物理学报,54(001):67-76.
    裴顺平,许忠淮,汪素云,等.2002.新疆及邻区Pn速度层析成像.地球物理学报,45(2):218-225.
    齐诚,赵大鹏,陈,等.2006.首都圈地区地壳p波和s波三维速度结构及其与大地震的关系.地球物理学报,49(3):805-815.
    钱辉,姜枚,肖文交,等.2011.天山-准噶尔地区地震层析成像与壳幔结 构.地震学报,33(3):327-341.
    乔学军,陈顒,王琪,等.2008.首都圈地区现今地壳运动的GPS观测与构造活动模拟.武汉大学学报:信息科学版,33(7):692-696.
    邱瑞照,邓晋福,周肃,等.2004.华北地区岩石圈类型:地质与地球物理证据.中国科学:D辑,34(8):698-711.
    邵济安,张长厚,张履桥,等.2003.关于华北盆山体系动力学模式的思考.自然科学进展,13(2):218-224.
    邵学钟,张家茹,范会吉,等.1996.天山造山带地壳结构与构造:乌鲁木齐——库尔勒地震转换波测深剖面.地球物理学报,39(3):336-346.
    石耀霖,金文.1995.面波频散反演地球内部构造的遗传算法.地球物理学报,38(2):189-198.
    舒良树,郭召杰,朱文斌,等.2004.天山地区碰撞后构造与盆山演化.高校地质学报,10(3):393-404.
    舒良树,王德滋.2006.北美西部与中国东南部盆岭构造对比研究.高校地质学报,12(1):1-13.
    孙安辉,陈棋福,陈颙,等.2011.天山东北部地震的重新定位和一维地壳速度模型的改善.中国地震,27(3):235-247.
    孙若昧,刘福田.1995.京津唐地区地壳结构与强震的发生:I.P波速度结构.地球物理学报,38(5):599-607.
    田玥,陈晓非.2006.利用拟牛顿法和信赖域法联合反演震中分布与一维速度结构.地球物理学报,49(3):845-854.
    汪素云,许忠淮,裴顺平.2003.华北地区上地幔顶部Pn波速度结构及其构造含义.中国科学:D辑,33(B04):91-98.
    王椿镛,楼海,魏修成,等.2001.天山北缘的地壳结构和1906年玛纳斯地震的地震构造.地震学报,23(5):460-470.
    王海涛,李志海,赵翠萍,等.2007.新疆北天山地区Ms≥2.0地震震源参数的重新测定.中国地震,23(001):47-55.
    王峻.2011.中国境内天山的岩石圈速度结构.[博士学位论文].中国地震局地质研究所.
    王伟君,陈凌,陈棋福,等.2007.2003年大姚地震震中区的速度和衰减结构.地球物理学报,50(3):770-779.
    王志铄,王椿镛,曾融生,等.2008.华北及邻区地壳上地幔三维速度结构的地震走时层析成像.CT理论与应用研究,17(2):15-27.
    吴建平,明跃红,王椿镛.2001.云南数字地震台站下方的S波速度结构研究.地球物理学报,44(2):228-237.
    吴庆举,曾融生.1998.用宽频带远震接收函数研究青藏高原的地壳结构.地球物理学报,41(5):669-679.
    吴晓智,王立宏.2000.准噶尔盆地南缘构造应力场与油气运聚的关系.新疆石油地质,21(002):97-100.
    夏道行,吴卓人,严绍宗.1978.实变函数论与泛函分析.北京:人民教育出版社.
    肖序常,刘训,高锐.2004.中国新疆天山-塔里木-昆仑山地学断面图说明书.北京:地质出版社,27-37.
    谢铭哲.2009.弹性与非弹性模型参数扰动对于走时与振幅异常敏感度算核之影响.[硕士学位论文].台湾中研院地球科学研究所.
    谢祖军,郑勇,倪四道,等.2012.2011年1月19日安庆ML4.8地震的震源机制解和深度研究.地球物理学报,55(5):1624-1634.
    胥颐,Steven W. Roecker,魏若平,等.2005.天山中部的地震定位和地壳活动性分析.地球物理学报,48(6):1308-1315.
    胥颐,李志伟,刘劲松,等.2008.黄海及其邻近地区的Pn波速度与各向异性.地球物理学报,51(5):1444-1450.
    胥颐,刘福田,刘建华,等.2000.中国大陆西北造山带及其毗邻盆地的地震层析成像.中国科学(D辑),30(2):113-122.
    胥颐,刘建华,刘福田,等.2006.天山一帕米尔结合带的地壳速度结构及地震活动研究.地球物理学报,49(2):469-476.
    胥颐,朱介寿.1994.新疆天山及邻区地壳上地幔三维速度图象.地震学报,16(4):480-487.
    徐锡伟,吴卫民,张先康.2002.首都圈地区地壳最新构造变动与地震.北 京:科学出版社.
    许向彤,许忠淮.1995.求震源机制P波初动解的格点尝试概率法.地震地磁观测与研究,16(4):34-42.
    薛新克,王廷栋,张虎权,等.2006.准噶尔盆地深部地壳构造特征与油气勘探方向.地质与勘探,26(10):1-5.
    杨峰,黄金莉,杨挺.2010.应用远震有限频率层析成像反演首都圈上地幔速度结构.地球物理学报,53(008):1806-1816.
    杨理华,刘德林,赵喜柱,等.1989.北京,天津,河北地震构造.中国岩石圈动力学地图集,30.
    杨文采.2002.非线性地球物理反演方法:回顾与展望.地球物理学进展,17(2):255-261.
    杨晓平,冯先岳.1998.北天山地区活动逆断裂-褶皱带构造与潜在震源区估计.地震地质,20(3):193-200.
    姚振兴,李白基,梁尚鸿,等.1981.青藏高原地区瑞利波群速度和地壳构造.地球物理学报,24(3):287-295.
    于湘伟,陈运泰,张怀.2010.京津唐地区地壳三维P波速度结构与地震活动性分析.地球物理学报,53(8):1817-1828.
    袁学诚.1996.秦岭岩石圈速度结构与蘑菇云构造模型.中国科学D辑,26(3):209-215.
    袁学诚.2007.再论岩石圈地幔蘑菇云构造及其深部成因.中国地质,34(5):737-758.
    袁学诚,李廷栋.2009.中国岩石圈三维结构雏型.中国地质,26(1):29-52.
    张风雪.2012.有限频体波走时层析成像及其在华北地区的应用.国际地震动态,(1):36-37.
    张国民,马宏生,王辉,等.2004.中国大陆活动地块与强震活动关系.中国科学D辑,34(7):591-599.
    张红艳,谢富仁,荆振杰.2009.京西北盆岭构造区现代构造应力场的非均匀特征.地球物理学报,52(12).
    赵大鹏,J. Kayal.2001.地震层析成像对地球科学的影响.世界地震译丛,6: 1-8.
    赵俊猛,李植纯,程宏岗,等.2004.天山造山带岩石圈密度与磁性结构研究及其动力学分析.地球物理学报,47(6):1061-1067.
    赵俊猛,张先康,赵国泽,等.1999.不同构造环境下的壳-幔过渡带结构.地学前缘,6(3):165-172.
    赵旭,李强,蔡晋安.2007.三峡库首区最小一维速度模型研究.大地测量与地球动力学,27(F06):1-7.
    郑建常,顾瑾平,张元生.2007.联合反演研究华北地区三维速度结构.地球物理学进展,22(6):1706-1714.
    周龙泉,刘福田,刘劲松,等.2005.利用τ-p波场反演法确定东沙群岛的地壳速度模型.地球物理学进展,20(2):503-506.
    Aki, K. and Lee W.,1976. Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes 1. A homogeneous initial model. Journal of geophysical research,81(23):4381-4399.
    Aki, K. and Richards P. G.,2002. Quantitative seismology. Sausalito, Calif., University Science Books.
    An, M., Feng M., Zhao Y.,2009. Destruction of lithosphere within the north China craton inferred from surface wave tomography. Geochemistry Geophysics Geosystems,10(8):Q08016.
    Baig, A., Dahlen F., Hung S. H.,2003. Traveltimes of waves in three-dimensional random media. Geophysical Journal International,153(2): 467-482.
    Bijwaard, H. and Spakman W.,1999. Tomographic evidence for a narrow whole mantle plume below Iceland. Earth and Planetary Science Letters, 166(3):121-126.
    Brenders, A. and Pratt R.,2007. Full waveform tomography for lithospheric imaging:Results from a blind test in a realistic crustal model. Geophysical Journal International,168(1):133-151.
    Chen, P.2005. A unified methodology for seismic waveform analysis and inversion, doctoral dissertation, University of Southern California.
    Chen, P.,2011. Full-wave seismic data assimilation:theoretical background and recent advances. Pure and Applied Geophysics,168(10):1527-1552.
    Chen, P., Jordan T. H., Lee E. J.,2010. Perturbation kernels for generalized seismological data functionals (GSDF). Geophysical Journal International, 183(2):869-883.
    Chen, P., Jordan T. H., Zhao L.,2007a. Full three-dimensional tomography:a comparison between the scattering-integral and adjoint-wavefield methods. Geophysical Journal International,170(1):175-181.
    Chen, P., Zhao L., Jordan T. H.,2007b. Full 3D tomography for the crustal structure of the Los Angeles region. Bulletin of the Seismological Society of America,97(4):1094-1120.
    Chevrot, S. and Zhao L.,2007. Multiscale finite-frequency Rayleigh wave tomography of the Kaapvaal craton. Geophysical Journal International, 169(1):201-215.
    Courboulex, F., Larroque C., Deschamps A., et al.,2003. An unknown active fault revealed by microseismicity in the south-east of France. Geophys. Res. Lett,30(15):1782.
    Crosson, R. S.,1976. Crustal structure modeling of earthquake data 1. Simultaneous least squares estimation of hypocenter and velocity parameters. Journal of geophysical research,81(17):3036-3046.
    Dahlen, F., Hung S. H., Nolet G.,2000. Fr6chet kernels for finite-frequency traveltimes - I. Theory. Geophysical Journal International,141(1): 157-174.
    De Hoop, M. V. and Van Der Hilst R. D.,2005. Reply to comment by FA Dahlen and G. Nolet on 'On sensitivity kernels for 'wave-equation' transmission tomography'. Geophysical Journal International,163(3): 952-955.
    Dines, K. A. and Lytle R. J.,1979. Computerized geophysical tomography. Proceedings of the IEEE,67(7):1065-1073.
    Dorigo, M., Maniezzo V, Colorni A.,1996. Ant system:optimization by a colony of cooperating agents. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,26(1):29-41.
    Eaton, G. P.,1982. The Basin and Range Province:origin and tectonic significance. Annual Review of Earth and Planetary Sciences,10: 409-440.
    Ellsworth, W. L.1977. Three-dimensional structure of the crust and mantle beneath the island of Hawaii, doctoral dissertation, Massachusetts Institute of Technology.
    Engdahl ER and Gubbins D.,1987. Simultaneous travel time inversion for earthquake location and subduction zone structure in the central Aleutian Islands. Journal of geophysical research,92(B13):13855-13862.
    Fenneman, N. M.,1928. Physiographic divisions of the United States. Annals of the Association of American Geographers,18(4):261-353.
    Gee, L. S. and Jordan T. H.,1992. Generalized seismological data functionals. Geophysical Journal International,111(2):363-390.
    Golub, G. H. and Reinsch C.,1970. Singular value decomposition and least squares solutions. Numerische Mathematik,14(5):403-420.
    Herman, G. T.,1979. Image Reconstruction from Projections:Implementation and Applications,Topics in Applied Physics, Springer,32.
    Hirahara, K.,1977. A large-scale three-dimensional seismic structure under the Japan Islands and the sea of Japan. Journal of Physics of the Earth,25(4): 393-417.
    Hirahara, K.,1988. Detection of three-dimensional velocity anisotropy. Physics of the Earth and Planetary Interiors,51(1):71-85.
    Holland, J. H.,1975. Adaptation in natural and artificial systems, University of Michigan press.
    Horn, B. K. P.,1978. Density reconstruction using arbitrary ray-sampling schemes. Proceedings of the IEEE,66(5):551-562.
    Huang, J. L. and Zhao D. P.,2009. Seismic imaging of the crust and upper mantle under Beijing and surrounding regions. Physics of the Earth and Planetary Interiors,173(3-4):330-348.
    Huang, Z., Li H., Zheng Y., et al.,2009. The lithosphere of North China Craton from surface wave tomography. Earth and Planetary Science Letters, 288(1):164-173.
    Humphreys, E. and Clayton R.,1988. Adaptation of back projection tomography to seismic travel time problems. J. Geophys. Res,93: 1073-1085.
    Hung, S. H., Dahlen F., Nolet G.,2000. Frechet kernels for finite-frequency traveltimes-Ⅱ. Examples. Geophysical Journal International,141(1): 175-203.
    Hung, S. H., Garnero E. J., Chiao L. Y., et al.,2005. Finite frequency tomography of D" shear velocity heterogeneity beneath the Caribbean. J. Geophys. Res,110:B07305.
    Hung, S. H., Shen Y, Chiao L. Y,2004. Imaging seismic velocity structure beneath the Iceland hot spot:A finite frequency approach. J. Geophys. Res, 109(10.1029).
    Ibrahim, R.,2007.1-D velocity model for syria from local earthquake data.
    Kissling, E., Ellsworth W. L., Eberhart-phillips D., et al.,1994. Initial Reference Models in Local Earthquake Tomography. J. Geophys. Res., 99(B10):19635-19646.
    Kissling, E., Solarino S., Cattaneo M.,1995. IMPROVED SEISMIC VELOCITY REFERENCE MODEL FROM LOCAL EARTHQUAKE DATA IN NORTHWESTERN ITALY. Terra Nova,7(5):528-534.
    Kohler, M., Magistrale H., Clayton R.,2003. Mantle heterogeneities and the SCEC reference three-dimensional seismic velocity model version 3. Bulletin of the Seismological Society of America,93(2):757-774.
    Kulesh, M., Holschneider M., Diallo M.,2008. Geophysical wavelet library: Applications of the continuous wavelet transform to the polarization and dispersion analysis of signals. Computers & Geosciences,34(12): 1732-1752.
    Laske, G., Masters G., Reif C.,2001. CRUST 2.0:A new global crustal model at 2x 2 degrees. Institute of Geophysics and Planetary Physics, The University of California, San Diego, website: http://mahi.ucsd.edu/Gabi/rem.dir/crust/crust2.html.
    Lei, J. S., Xie F. R., Lan C. X., et al.,2008. Seismic images under the Beijing region inferred from P and PmP data. Physics of the Earth and Planetary Interiors,168(3-4):134-146.
    Levander, A. R.,1988. Fourth-order finite-difference PW seismograms. Geophysics,53(11):1425.
    Li, H., Michelini A., Zhu L., et al.,2007. Crustal velocity structure in Italy from analysis of regional seismic waveforms. Bulletin of the Seismological Society of America,97(6):2024-2039.
    Li, X. D. and Romanowicz B.,1995. Comparison of global waveform inversions with and without considering cross-branch modal coupling. Geophysical Journal International,121(3):695-709.
    Marcinkovich, C. and Olsen K.,2003. On the implementation of perfectly matched layers in a three-dimensional fourth-order velocity-stress finite difference scheme. J. Geophys. Res,108(B5):2276.
    Marquering, H., Dahlen F., Nolet G.,1999. Three-dimensional sensitivity kernels for finite-frequency traveltimes:the banana-doughnut paradox. Geophysical Journal International,137(3):805-815.
    Marquering, H., Nolet G., Dahlen F.,1998. Three-dimensional waveform sensitivity kernels. Geophysical Journal International,132(3):521-534.
    Megnin, C. and Romanowicz B.,1999. The effects of the theoretical formalism and data selection on mantle models derived from waveform tomography. Geophysical Journal International,138(2):366-380.
    Michael, A. J.,1988. Effects of three-dimensional velocity structure on the seismicity of the 1984 Morgan Hill, California, aftershock sequence. Bulletin of the Seismological Society of America,78(3):1199-1221.
    Midzi, V, Saunders I., Brandt M. B. C., et al.,2010.1-D Velocity Model for Use by the SANSN in Earthquake Location. Seismological Research Letters,81(3):460-466.
    Mohamed, H. and Miyashita K.,2001. One-dimensional P-wave velocity structure in the northern Red Sea area, deduced from travel time data. Earth Planets and Space,53(7):695-702.
    Montelli, R., Nolet G., Dahlen F., et al.,2006. A catalogue of deep mantle plumes:new results from finite-frequency tomography. Geochem. Geophys. Geosyst,7(11):7.
    Montelli, R., Nolet G., Dahlen F., et al.,2004a. Finite-frequency tomography reveals a variety of plumes in the mantle. Science,303(5656):338-343.
    Montelli, R., Nolet G., Masters G., et al.,2004b. Global P and PP traveltime tomography:rays versus waves. Geophysical Journal International,158(2): 637-654.
    Musumeci, C, Di Grazia G., Gresta S.,2003. Minimum 1-D velocity model in Southeastern Sicily (Italy) from local earthquake data:an improvement in location accuracy. Journal of Seismology,7(4):469-478.
    Nakanishi, I. and Anderson D. L.,1982. Worldwide distribution of group velocity of mantle Rayleigh waves as determined by spherical harmonic inversion. Bulletin of the Seismological Society of America,72(4): 1185-1194.
    Nolet, G.,1991. A SEISMIC TOMOGRAPHY PROGRAM FOR GEOLOGICAL INVESTIGATIONS. Joint Interpretation of Geophysical and Geological Data Applied to Lithospheric Studies,338:109.
    Nolet, G. and Dahlen F.,2000. Wave front healing and the evolution of seismic delay times. Journal of geophysical research,105(19):19043-19054.
    Ojeda, A. and Havskov J.,2001. Crustal structure and local seismicity in Colombia. Journal of Seismology,5(4):575-593.
    Olsen, K. B.1994. Simulation of three-dimensional wave propagation in the Salt Lake Basin. Dept. of Geology and Geophysics, University of Utah.
    Owens, T. J., Zandt G., Taylor S. R.,1984. Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee:A detailed analysis of broadband teleseismic P waveforms. Journal of geophysical research, 89(B9):7783-7795.
    Paige, C. C. and Saunders M. A.,1982. LSQR:An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software (TOMS),8(1):43-71.
    Pavlis, G. L. and Booker J. R.,1983. A study of the importance of nonlinearity in the inversion of earthquake arrival time data for velocity structure. Journal of geophysical research,88(B6):5047-5055.
    Pollitz, F.,2007. Finite-frequency traveltime tomography of San Francisco Bay region crustal velocity structure. Geophysical Journal International, 171(2):630-656.
    Roecker, S., Sabitova T., Vinnik L., et al.,1993. Three-dimensional elastic wave velocity structure of the western and central Tien Shan. Journal of geophysical research,98(B9):15779-15795.
    Roecker, S. W.1981. Seismicity and tectonics of the Pamir-Hindu Kush region of central Asia, doctoral dissertation, Massachusetts Institute of Technology.
    Romanowicz, B.,2003. Global mantle tomography:progress status in the past 10 years. Annual Review of Earth and Planetary Sciences,31(1):303-328.
    Sato, T., Kosuga M., Tanaka K.,1996. Tomographic inversion for P wave velocity structure beneath the northeastern Japan arc using local and teleseismic data. Journal of geophysical research,101(B8):17597-17615.
    Schaff, D. P., Bokelmann G. H. R., Beroza G. C., et al.,2002. High-resolution image of Calaveras Fault seismicity. J. Geophys. Res,107(B9): 2186-2201.
    Shearer, P. M.,2002. Parallel fault strands at 9-km depth resolved on the Imperial Fault, southern California. Geophysical Research Letters,29(14): 19-11.
    Spakman, W. and Nolet G.,1988. Imaging algorithms, accuracy and resolution in delay time tomography. Mathematical geophysics:155-187.
    Spetzler, J. and Snieder R.,2001. The formation of caustics in two-and three-dimensional media. Geophysical Journal International,144(1):175-182.
    Storn, R. and Price K.,1997. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization,11(4):341-359.
    Sun, A. H., Zhao D. P., Ikeda M., et al.,2008. Seismic imaging of southwest Japan using P and PmP data:Implications for arc magmatism and seismotectonics. Gondwana Research,14(3):535-542.
    Tanimoto, T. and Anderson D. L.,1984. Mapping convection in the mantle. Geophysical Research Letters,11(4):287-290.
    Tarantola, A.,1988. Theoretical background for the inversion of seismic waveforms including elasticity and attenuation. Pure and Applied Geophysics,128(1):365-399.
    Tarantola, A.,2005. Inverse problem theory and methods for model parameter estimation, Society for Industrial Mathematics.
    Thurber, C. H.,1983. Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. Journal of geophysical research,88(B10):8226-8236.
    Thurber, C. H.,1992. Hypocenter-velocity structure coupling in local earthquake tomography. Physics of the Earth and Planetary Interiors,75(1): 55-62.
    Tromp, J., Tape C., Liu Q.,2005. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophysical Journal International, 160(1):195-216.
    van der Hilst, R. D. and Spakman W.,1989. Importance of the reference model in linearized tomography and images of subduction below the Caribbean plate. Geophysical Research Letters,16(10):1093-1096.
    van der Sluis, A. and van der Vorst H. A.,1986. The rate of convergence of conjugate gradients. Numerische Mathematik,48(5):543-560.
    VanDecar, J. and Crosson R.,1990. Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares. Bulletin of the Seismological Society of America,80(1):150-169.
    Vinnik, L., Roecker S., Kosarev G., et al.,2002. Crustal structure and dynamics of the Tien Shan. Geophysical Research Letters,29(22):4-1.
    Virieux, J.,1986. P-SV wave propagation in heterogeneous media; velocity-stress finite-difference method. Geophysics,51(4):889-901.
    Waldhauser, F. and Ellsworth W. L.,2000. A double-difference earthquake location algorithm:method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America,90(6): 1353-1368.
    Wei W., Sun R.M., Shi Y.L.,2010. P-wave tomographic images beneath southeastern Tibet:Investigating the mechanism of the 2008 Wenchuan earthquake. SCIENCE CHINA Earth Sciences,53(9):1252-1259.
    Wielandt, E.,1987. On the validity of the ray approximation for interpreting delay times. Seismic tomography:85-98.
    Woodhouse, J. H. and Dziewonski A. M.,1984. Mapping the upper mantle: three-dimensional modeling of Earth structure by inversion of seismic waveforms. Journal of geophysical research,89(B7):5953-5986.
    Xia, J., Miller R. D., Park C. B.,1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics,64(3):691-700.
    Xia, S., Zhao D., Qiu X., et al.,2007. Mapping the crustal structure under active volcanoes in central Tohoku, Japan using P and PmP data. Geophysical Research Letters,34(10):L10309.
    Yang, T. and Shen Y.,2006. Frequency-dependent crustal correction for finite-frequency seismic tomography. Bulletin of the Seismological Society of America,96(6):2441-2448.
    Yang, T., Shen Y, van der Lee S., et al.,2006. Upper mantle structure beneath the Azores hotspot from finite-frequency seismic tomography. Earth and Planetary Science Letters,250(1):11-26.
    Yao, Z., Roberts R., Tryggvason A.,1999. Calculating resolution and covariance matrices for seismic tomography with the LSQR method. Geophysical Journal International,138(3):886-894.
    Zhang, H. J. and Thurber C.,2005. Adaptive mesh seismic tomography based on tetrahedral and Voronoi diagrams:Application to Parkfield, California. Journal of Geophysical Research-Solid Earth,110(B4):303-315.
    Zhang, H. J. and Thurber C. H.,2003. Double-difference tomography:The method and its application to the Hayward Fault, California. Bulletin of the Seismological Society of America,93(5):1875-1889.
    Zhao, D.,2009. Multiscale seismic tomography and mantle dynamics. Gondwana Research,15(3-4):297-323.
    Zhao, D., Hasegawa A., Horiuchi S.,1992. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. Journal of geophysical research,97(B 13):19909-19928.
    Zhao, D., Hasegawa A., Kanamori H.,1994. Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events. JOURNAL OF GEOPHYSICAL RESEARCH,99:22313-22329.
    Zhao, D., Kanamori H., Negishi H., et al.,1996. Tomography of the source area of the 1995 Kobe earthquake:Evidence for fluids at the hypocenter? Science,274(5294):1891.
    Zhao, D. P., Todo S., Lei J. S.,2005. Local earthquake reflection tomography of the Landers aftershock area. Earth and Planetary Science Letters, 235(3-4):623-631.
    Zhao, L., Allen R. M., Zheng T., et al.,2009. Reactivation of an Archean craton: Constraints from P-and S-wave tomography in North China. Geophysical Research Letters,36(17):L17306.
    Zhao, L., Chen P., Jordan T. H.,2006. Strain Green's tensors, reciprocity, and their applications to seismic source and structure studies. Bulletin of the Seismological Society of America,96(5):1753-1763.
    Zhao, L. and Jordan T. H.,2006. Structural sensitivities of finite-frequency seismic waves:a full-wave approach. Geophysical Journal International, 165(3):981-990.
    Zhao, L., Jordan T. H., Chapman C. H.,2000. Three-dimensional Frechet differential kernels for seismic delay times. Geophysical Journal International,141(3):558-576.
    Zhao, L., Jordan T. H., Olsen K. B., et al.,2005. Frechet kernels for imaging regional earth structure based on three-dimensional reference models. Bulletin of the Seismological Society of America,95(6):2066-2080.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700