用户名: 密码: 验证码:
毛乌素沙地油蒿群落土壤水分分布与动态
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地处农牧交错带的毛乌素沙地是我国北方重要的生态屏障。油蒿(Artemisia ordosicaKrasch)是毛乌素沙地最重要的建群植物之一,其群落面积约占沙区总面积的31.2%,是毛乌素沙地面积最大的群落类型。油蒿具有耐旱、耐沙埋、耐贫瘠、抗风蚀、易繁殖等特性,在维持毛乌素沙地生态系统稳定中起着重要作用。在毛乌素沙地,油蒿群落经历着从流动沙地先锋物种阶段——半固定沙地稀疏阶段——固定沙地建成阶段——老固定沙地退化阶段——流动沙地,这样一个循环演替的过程。已有的研究认为土壤水分是驱动油蒿群落演替的重要因素,然而目前对毛乌素沙地油蒿群落土壤水分的研究多是定时、定点取样,数据量少,且缺少连续性,无法反映土壤水分动态。本研究通过对固定、半固定和流动沙地上分别处于建成阶段、稀疏阶段和先锋物种阶段的油蒿群落土壤水分长期连续监测,分析不同固定程度油蒿群落土壤水分特征、降水对土壤水分的补给状况、生物结皮对降水再分配过程的影响;同时结合油蒿的生理生态特征,深入探讨土壤水分在油蒿群落演替过程中的作用,以期为毛乌素沙地植被的合理保护提供科学依据。主要研究结论如下:
     1.3种样地土壤水分均存在时间和空间上差异,流动沙地各层土壤含水率均显著高于固定和半固定沙地;土壤含水率受降水影响较大,降水量大小是影响土壤水分补给深度的重要因素,小于10mm的降水主要被表层土壤吸收,10~20mm的降水对土壤水分的补给深度超过30cm,不及60cm,大于30mm而小于40mm的降水补给深度大于60cm,但不及100cm;30cm及其上层土壤水分波动剧烈,60cm处土壤水分主要受大于20mm降水事件影响,波动较小,100cm以下土壤水分只受较大降水事件的影响,土壤含水率较稳定;降水补给深度及植被根系需水的层次差异是导致3种样地土壤水分时间和空间上异质性的重要因素。
     2.水分是干旱、半干旱区生态系统中最重要的限制因子,而根系是植物吸收水分的重要器官。固定、半固定和流动沙地油蒿根系均以粗根最多,中粗根次之,细根最少,且随着土层深度的增加,3种级别的根量均呈指数递减;固定、半固定和流动沙地0~40cm范围内细根所占比重分别为:79.11%、74.71%和53.23%,固定和半固定沙地油蒿植株主要利用0~40cm范围内的土壤水分,而流动沙地油蒿植株能更多地利用40cm以下土层中的水分。3种样地油蒿的叶水势均在日出前5:00最高,中午13:00左右达到最低值,此后随着太阳高度角的降低,叶水势又逐渐开始升高;油蒿叶水势变化主要受大气温度和光合有效辐射强度的影响;中午13:00以前3种样地油蒿叶水势的基本情况是流动沙地>半固定沙地>固定沙地,而15:00-17:00这段时间3种油蒿叶水势与中午相反,这主要是由不同固定程度沙地上油蒿植株的年龄差异及浅层土壤水分的差异导致的。
     3.毛乌素沙地油蒿群落中固定沙地生物结皮平均盖度为83.74%,半固定沙地生物结皮平均盖度为23.54%,固定沙地中苔藓、地衣和澡类结皮所占比例分别为28%、21%和51%,半固定沙地中苔藓、地衣和藻类结皮所占比例分别为6.3%、2.5%和91.2%;油蒿群落中半固定沙地生物结皮绝大部分是处于初期发育阶段的澡类结皮,而固定沙地苔藓和地衣结皮所占比例接近总盖度的一半。无论降水量大小,相同深度有结皮覆盖处(BSC)土壤水分的响应时间均显著大于无结皮覆盖处(NBSC),且同一降水事件下,BSC的初始入渗系数和平均入渗系数均显著低于NBSC,说明生物结皮的存在阻碍降水入渗,在小降水事件时这种阻碍作用表现的更为明显;油蒿的吸收根主要分布在40cm以上土层中,主要利用这个层次内的土壤水分,而生物结皮的发育对小于20mm的降水事件具有较强的阻碍作用,在研究区降水事件以小于20mm降水为主的情况下,导致40cm以上土层水分恶化,久之将导致固定沙地油蒿群落的衰退;同时研究区降水格局的改变将对土壤水分及植被演替产生重要影响。
Mu Us sandy land is an important ecological barrier in Northern China. Artemisiaordosica is the dominant species in Mu Us sandy land, which covers31.2%of the total area.With tolerance to drought, sand buried, resistance to barren and wind erosion, and easybreeding, A. ordosica plays an important role in maintaining the local ecosystem stability. Thesuccession of A. ordosica community in Mu Us sandy land experiences the following stages:pioneer stage in shifting sand dunes--sparse stage in semi-fixed sand dunes--build phase infixed sand dunes--degradation stage in old fixed sand dunes--shifting sand dunes. Previousstudies considered that soil moisture was an important factor which driving the cyclesuccession of A. ordosica community. However, at present, most of the researches on soilmoisture in Mu Us sandy land were timing, fixed-point sampling, the dates were little and lackof continuity, which couldn’t reflect the dynamic of soil moisture. In this experiment weobserved the soil moisture of A. ordosica community of pioneer stage in shifting sand dunes,sparse stage in semi-fixed sand dunes and build stage in fixed sand dunes with a long-termcontinuous monitoring, analyzed the characteristics of soil moisture of different successionstages of A.ordosica community, supplied conditions of precipitation to soil moisture and theredistribution of biological soil crust (BSC) to precipitation; At the same time combined thephysiological and ecological characteristics of A. ordosica, in order to better understand therole of soil moisture in the succession process of A. ordosica community in Mu Us sandy land,which could provide a scientific and reasonable way for local government to rebuild vegetationin Mu Us sandy land. The main conclusions can be drawn as follows:
     1. There were horizontal and vertical difference of soil moisture with all of the three kindsof samples, soil moisture of shifting sand dunes in every layer were significantly higher thanthe fixed and semi-fixed sand dunes; soil moisture was mainly influenced by rainfall, the depthof infiltration was determined by the amount of rainfall, most of less than10mm rainfalls wereabsorbed by top soil while10-20mm rainfall could infiltration deeper than30cm, the rainfall more than30mm and less than40mm could reach depth more than60cm but less than100cm;soil moisture less than30cm was dramatically, but soil moisture at60cm was less dramaticallywhich was mainly affected by rainfall events more than30mm, soil moisture at100cm and160cm were stability which almost not affected by rainfall; the heterogeneity of soil moisturebetween fixed, semi-fixed and shifting sand dunes was mainly caused by the differences ofinfiltration depth of rainfall and roots distribution of vegetation.
     2. Water is the most important limited factor in the arid and semi-arid ecosystems, whileroots are the important organs for plant to uptake soil moisture. In the three kinds ofsand-dunes, the most A. ordosica roots were all coarse roots, followed by medium-coarse rootsand fine roots, and the three kinds of roots biomass were all exponential-like decreased withthe increase of soil depth. The proportion of fine roots range of0~40cm in the fixed,semi-fixed and drifting sand-dunes were79.11%,74.71%and53.23%, respectively. A.ordosicain the fixed, semi-fixed sand-dunes mainly uses the0~40cm soil moisture while A. ordosica inthe drifting sand-dunes could use more soil moisture below40cm. The leaf water potential ofA. ordosica in all of the three kinds of samples had the peak value at5:00, then decreasing withthe augmentation of the of the solar radiation intensity, reaching the lowest value around13:00,after that, the leaf water potential gradually began to rise again with the decreasing of the angleof the sun; the correlation analysis showed that the leaf water potential of A. ordosica had anegative correlation to the air temperature and the photosynthetic available radiation, but therewere no significant correlation with atmospheric relative humidity and soil moisture; the basictrend of leaf water potential of A. ordosica in the three kind of sample were in the followingorder: shifting sand dune> semi-fixed sand dune> fixed sand dune, but the trend wereopposite between15:00-17:00, which were mainly caused by age difference of A.ordosica andthe shallow soil moisture.
     3. The BSC coverage was83.74%on average in fixed sand dunes, and in semi-fixed sanddunes the BSC cover was23.54%on average. The distribution proportion of mosses, lichensand alga dominated BSC were28%,21%and51%in fixed sand dunes, and6.3%,2.5%and91.2%in semi-fixed sand dunes, respectively. Most of the BSC in semi-fixed sand dunes was alga crust which belongs to the initial developmental stage. The development of BSC inA.ordosica communities could significantly improve the soil physicochemical properties andaffect the redistribution process of precipitation. Regardless of precipitation size, the responsetimes of BSC were significantly greater than NBSC at the same depth, the initial infiltrationcoefficient and the mean infiltration coefficient of BSC were all significantly lower than NBSCat the same precipitation, which means the presence of BSC hindered the infiltration ofprecipitation, this situation was more obviously in small precipitations; most of the absorbingroots of A. ordosica were within the40cm soil, primarily take advantage of soil water in thislevel, but the development of biological soil crust seriously impediment the less than20mmprecipitations, which is the most common precipitation events, that would resulting in thedeterioration of soil moisture within40cm, and led to the recession of A.ordosica in the fixedsand dunes in a long time; at the same time, the change of precipitation pattern could have animportant impact on soil moisture and vegetation succession.
引文
Bell C, Mclntyre N, Cox S, et al.2008. Soil microbial responses to temporal variations of moisture andtemperature in a Chihuahuan desert grassland [J]. Microb Ecol,56:153-167.
    Bell C, Acosta-Martinez V, Nancy E. et al.2009. Linking microbial community structure and function toseasonal differences in soil moisture and temperature in a Chihuahua desert grassland [J]. Microb Ecol,58:827-842.
    Belnap J.1995. Surface disturbances, their roles in accelerating desertification [J]. Environ Monit Assess,37:39-57.
    Belnap J, Phillips S L, Miller M E.2004. Response of desert biological soil crusts to alterations inprecipitation frequency [J]. Oecologia,141:306-316.
    Bhatnagar A, Makandar M B, Garg M K, et al.2008. Community structure and diversity of cyanbacteria andgreen algae in the soils of Thar Desert [J]. Journal of Arid Environmental,72(2):73-83.
    Bogena H R, Huisman J A, Oberdorster C, et al.2007. Evaluation of a low-cost soil water content sensorfor wireless network applications [J]. Journal of Hydrology,344:32-42.
    Bowers S A, Hanks R J.1965. Reflection of radiant energy from soils [J]. Soil Science,100(2):130-138.
    Brotherson J D, Rushforth S R.1983. Influence of cryptogamic crusts on moisture relationships of soils inNavajo National Monument, Arizona [J]. Great Basin Naturalist,43:73-78.
    Budel B, Darienko T, Deutschewitz K, et al.2009. Southern African biological soil crusts are ubiquitous andhighly diverse in drylands, being restricted by rainfall frequency [J]. Microb Ecol,57:229-247.
    Budel B.2005. Microorganisms in Soils: Roles in Genesis and Functions//Buscot F, Varma A. Soil Biology[M]. Springer-Verlag Berlin Heidelberg,3:307-323.
    Cao S X.2008. Why large-scale afforestation efforts in china have failed to solve the desertification problem[J]. Environmental science and technology,1826-1831.
    Cao S X.2010. Questionable value of planting thirsty trees in dry regions[J]. Nature (opinion):465.
    Cardenas-Lailhacar B, Dukes M D.2010. Precision of soil moisture sensor irrigation controllers under fieldconditions [J]. Agricultural Water Management,97:666-672.
    Chen J, Zhang Y M, Wang L, et al.2005. A new index for mapping lichen-dominated biological crust indesert areas [J]. Remote Seining of Environment,96:165-175.
    Chen R Y, Zhang Y M, Li Y, et al.2009. The variation of morphological features and mineralogicalcomponents of biological soil crusts in the Gurbantunggut desert of Northwestern China [J]. EnvironGeol,57:1135-1143.
    Chen Y N, Wang Q, Li W H, et al.2007. Microbiotic crusts and their interrelations with environmentalfactors in the Gurbantonggut desert, western China [J]. Environ Geol,52:691-700.
    DeFalco L A, Detling J K, Tracy C R, et al.2001. Physiological variation among native and exotic winterannual plants associated with microbiotic crusts in the Mojave Desert [J]. Plant and Soil,234:1-14.
    Deines L, Rosentreter R, Eldridge D J, et al.2007. Germination and seedling establishment of two annualgrasses on lichen-dominated biological soil crusts [J]. Plant Soil,295:23-35.
    DeLuca T H, Zackrisson O.2007. Enhanced soil fertility under Juniperus communis in arctic ecosystems [J].Plant Soil,294:147-155.
    Dickmann D I. Nguyen P V. Pregitzer K S.1996. Effects of irrigation and coppicing on above-groundgrowth, physiology, and fine-root dynamics of two field-grown hybrid poplar clones [J]. Forest Ecologyand Management,80:163-174.
    Dougill A J. Thomas A D.2004. Kalahari sand soil: spatial heterogeneity, biological soil crusts and landdegradation [J]. Land Degradation and Development,15:233-242.
    Eldridge D J, Greene R S B.1994. Microbiotic soil crusts: a review of their roles in soil and ecologicalprocesses in the rangelands of Australia [J]. Australia Journal of Soil Research,32:389-415.
    Eldridge D J, Freudenberger D, Koen T B.2006. Diversity and abundance of biological soil crust in relationto fine and coarse-scale disturbances in a grassy eucalypt woodland in eastern Australia [J]. Plant andSoil,281:255-268.
    Eldridge D J, Zaady E, Shachak M.2002. Microphytic crusts, shrubs and water harvesting in the NegevDesert: the Shikim system [J]. Landscape Ecology,17:587-597.
    Escudero A, Martinez I, Cruz A, et al.2007. Soil lichens have species-specific effects on the seedlingemergence of three gypsophile plant species [J]. Journal of Arid Environments,70(1):18-28.
    Fermani P, Mataloni G, Vijver B V.2007. Soil microalgal communities on an Antarctic active volcano(Deception Island, South Shetlands)[J]. Polar Biol,30:1381-1393.
    Garcia-Pichel F, Johnson S L, Youngkin D, Belnap J.2003. Small-scale vertical distribution of bacterialbiomass and diversity in biological soil crusts from arid lands in the Colorado plateau [J]. MicrobialEcology,46:312-321.
    Greene R S B, Chartres C J, Hodgkinson K C.1990. The effects of fire on the soil in degraded semiaridwoodland. Cryptogam cover and physical and micro morphological properties [J]. Australian Journal ofSoil Research,28(5):755-777.
    Grishkan I, Nevo E, Wasser S P.2003. Soil micromycete in the hyper saline Dead Sea coastal area, Israel [J].Mycological Progress,2(1):19-28.
    Grote E, Belnap J, Housman D C, et al.2010. Carbon exchange in biological soil crust communities underdifferential temperatures and soil water contents: implications for global change [J]. Global Changebiology,16(10):2763-2774.
    Gundlapally S R, Garcia-Pichel F.2006. The community and phylogenetic diversity of biological soil crustsin the Colorado plateau studied by molecular fingerprinting and intensive cultivation [J]. MicrobialEcology,52:345-357.
    Guo Y R, Zhao H L, Zuo X A, et al.2008. Biological soil crust development and its topsoil properties in theprocess of dune stabilization, Inner Mongolia, China [J]. Environmental geology,54(3/4):653-662.
    Hawkes C V, Flechtner V R.2002. Biological soil crusts in a xeric Florida shrub land: compositionabundance, and spatial heterogeneity of crusts with different disturbance histories [J]. Microb Ecol,43:1-12.
    Hawkes C V.2004. Effects of biological soil crusts on seed germination of four endangered herbs in a xericFlorida shrub land during drought [J]. Plant Ecology,170:121-134.
    Hendrick R L, Pregitzer K S.1996. Temporal and depth related patterns of fine root dynamics in northernhardwood forests [J]. Journal of Ecology,84:167-176.
    Hu C X, Zhang D L, Huang Z B, et al.2003. The vertical microdistribution of cyanobacteria and green algaewithin deserts and the development of the algal crusts [J]. Plant and Soil,257:97-111.
    Issa O M, Defarge C, Bissonnais Y L, et al.2007. Effects of the inoculation of cyanobacteria on themicrostructure and the structural stability of a tropical soil [J]. Plant Soil,290:209-219.
    Issa O M, Defarge C, Trichet J, et al.2009. Microbiotic soil crusts in the Sahel of western Niger and theirinfluence on soil porosity and water dynamics [J]. Catena,77:48-55.
    Jia R L, Li X R, Liu L C, et al.2008. Responses of biological soil crusts to sand burial in a revegetated areaof the Tengger Desert, Northern China [J]. Soil Biology and Biochemistry,40:1827-2838.
    Jiao W J, Zhu Q K, Zhang Y Q, et al.2008. Factors affecting distribution of microbiotic crusts in thegrain-for-green land of the loess region, northern Shaanxi, China [J]. Front. For. China,3(2):165-170.
    Kastovska K, Elster J, Stibal M, et al.2005. Microbial assemblages in soil microbial succession after glacialretreat in Svalbard (High Arctic)[J]. Microbial Ecology,50:396-407.
    Kizito F, Campbell C S, Campbell G S, et al.2008. Frequency, electrical conductivity and temperatureanalysis of a low-cost capacitance soil moisture sensor [J]. Journal of Hydrology,352:367-378.
    Lalley J S, Viles H A.2008. Recovery of lichen-dominated soil crusts in a hyper-arid desert [J]. Biodiversityand Conservation,17:1-20.
    Langhans T M, Storm C, Schwabe A.2009. Community assembly of biological soil crusts of differentsuccessional stages in a temperate sand ecosystem, as assessed by direct determination and enrichmenttechniques [J]. Microb Ecol,58:394-407.
    Li J R, Okin G S, Alvarez L, et al.2008. Effects of wind erosion on the spatial heterogeneity of soil nutrientsin two desert grassland communities [J]. Biogeochemistry,88:73-88.
    Li X R, He M Z, Zerbe S, et al.2010. Micro-geomorphology determines community structure of BSCs atsmall scale [J]. Surface Processes and Landforms,35:932-940.
    Li X R, Tian F, Jia R L, et al.2010. Do biological soil crusts determine vegetation changes in sandy deserts?Implications for managing artificial vegetation [J]. Hydrological Processes,24:3621-3630.
    Li X R, Wang X P, Li T, et al.2002. Microbiotic soil crusts and its effects on vegetation and habitat onartificically stabilized desert dunes in Tengger Desert, North China [J]. Boil Fertil Soils,35:147-154.
    Li X R, Jia X H, Long L Q, et al.2005. Effects of biological soil crusts on seed bank, germination andestablishment of two annual plant species in the Tengger Desert (N China)[J]. Plant and Soil,277:375-385.
    Lichner L, Hallett P D, Feeney D S, et al.2007. Field measured of soil water repellency and its impact onwater flow under different vegetation [J]. Biologia, Bratislava,62(5):537-541.
    Loden P, Qi H, Porta L, et al.2009. A wireless sensor system for validation of real-time automaticcalibration of groundwater transport models [J]. The Journal of Systems and Software,82:1859-1868.
    Lubchenco J.1998. Entering the century of the environment: a new social contract for science [J]. Science,279(5350):491-497.
    Maester F T, Martin N, Diez B, et al.2006. Watering, fertilization, and slurry inoculation promote recoveryof biological crust function in degraded soils [J]. Microbial Ecology,52:365-377.
    Maestre F T, Cortina J.2002. Spatial patterns of surface soil properties and vegetation in a Mediterraneansemi-arid steppe [J]. Plant and Soil,241:279-291.
    Maqubela M P, Mnkeni P N S, Malam O, et al.2009. Nostoc cyanobacterial inoculation in South Africanagricultural soil enhances soil structure, fertility, and maize growth [J]. Plant Soil,315:79-92.
    Mouazen A M, Ramon H.2006. Development of on-line measurement system of bulk density based onon-line measured draught, depth and soil moisture content [J]. Soil and Tillage Research,86(2):218-229.
    Neave M, Rayburg S.2007. A field investigation into the effects of progressive rainfall-induced soil seal andcrust development on runoff and erosion rates: The impact of surface cover [J].Geomorphology,87:378-390.
    Neave M, Rayburg S.2007. Nonlinear biofluvial responses to vegetation change in a semiarid environment[J]. Geomorphology,89:217-239.
    Nemali K S, Montesano F, Dove S K, et al.2007. Calibration and performance of moisture sensors insoilless substrates: ECH2O and Theta probes [J]. Scientia Horticulturae,112:227-234.
    Noti M, Aaner H M, Ducarme X, et al.2003. Diversity of soil oribatid (Acari: Oribatida) from High Katanga(Democratic Republic of Conge) a multiscale and multifactor approach [J]. Biodiversity andConservation,12:767-785.
    O’Bryan K E, Prober S M, Lunt I D, et al.2009. Frequent fire promotes diversity and cover of biologicalsoil crusts in deriver temperate grassland [J]. Oceologia,159:827-838.
    Okoro C K, Brown R, Jones A L, et al.2009. Diversity of culturable actinomycetes in hyper-arid soils of theAtacama Desert, Chile [J]. Antonie van Leeuwenhoek,95:121-133.
    Prasse B, Bornkamm R.2000. Effects of Microbiotic soil surface crusts on emergence of vascular plants [J].Plant Ecology,150:65-75.
    Prasse R, Bornkamm R.2008. Vascular plants response to microbiotic soil surface crusts//S.W. Breckle, et al.Arid dune ecosystem [M]. Springer-Verlag Berlin Heidelberg,337-351.
    Ram A, Aaron Y.2007. Negative and positive effects of topsoil biological crusts on water availability along arainfall gradient in a sandy arid area [J]. Catena,70:437-442.
    Read C F, Duncan D H, Vesk P A, et al.2008. Biological soil crust distribution is related to patterns offragmentation and landuse in a dryland agricultural landscape of southern Australia [J]. LandscapeEcology,23:1093-1105.
    Rehman A, Abbasi A Z, Islam N, et al.2011. A Review of Wireless Sensors and Networks’ Applications inAgriculture [J]. Computer Standards and Interfaces,(3):4-19.
    Reid I.1973. The influence of slope orientation upon the soil moisture regime and its hydro-geomorphologicsignificance [J]. Journal of hydrology,19:309-321.
    Reth S, Reichstein M, Falge E.2005. The effect of soil water content,soil temperature, soil PH-value and theroot mass on soil CO2efflux-A modified model[J]. Plant and soi1,268:21-23.
    Riley T C, Endreny T A, Halfman J D.2006. Monitoring soil moisture and water table height with a low-costdata logger [J]. Computers and Geosciences,32:135-140.
    Rosema A, Verhoef W, Noorbergen H, et al.1992. New forest light interaction model in support of forestmonitoring [J]. Remote Sensing of Environment,42(1):23-41.
    Seckbach J.2007. Algae and cyanobacteria in extreme environments//Valerie R. Flechtner. North Americanmicrobiotic soil crust communities: diversity despite challenge [M],537-551.
    Serpe M D, Barkes J T, Rosentreter R.2006. Germination and seed water status of four grasses onmoss-dominated micro biotic soil crusts from arid lands [J]. Plant ecology,185:163-178.
    Serpe M D, Zimmermna S J, Deine L, et al.2008. Seed water status and root tip characteristics of twoannual grasses on lichen-dominated biological soil crusts [J]. Plant Soil,303:191-205.
    Simmons M T, Archer S R, Teague W R, et a1.2008. Tree (Prosopis glandulosa) effects on grass growth: Anexperimental assessment of above-and belowground interactions in a temperate savanna [J]. Journal ofArid Environments,72(4):314-325.
    Skierucha W, Wilczek A, Alokhina O.2008. Calibration of a TDR probe for low soil water contentmeasurements. Sensors and Actuators [J]. Physical,147(2):544-552.
    Smith S M, Abed F, Garcia-Pichel.2004. Biological soil crusts of sand dunes in Cape Cod national seashore,Massachusetts, USA [J]. Microbial Ecology,48:200-208.
    Su Y G, Li X R, Cheng Y W, et al.2007. Effects of biological soil crusts on emergence of desert vascularplants in North China [J]. Plant Ecology,191:11-19.
    Wang W B, Liu Y D, Li D H, et al.2009. Feasibility of cyanobacterial inoculation for biological soil crustsformation in desert area [J]. Soil Biology and Biochemistry,41(5):926-929.
    Wang X P, Cui Y, Pan Y X, et al.2008. Effects of rainfall characteristics on infiltration and redistributionpatterns in revegetation-stabilized desert ecosystems [J]. Journal of Hydrology,2008,358:134-143.
    Watson K M.1952. The effect of final state interactions on reaction cross sections. Physical review,88(5):1163-1171.
    Wu N, Wang H L, Liang S M, et al.2006. Temporal-spatial dynamics of distribution patterns ofmicroorganism relating to biological soil crusts in the Gurbantunggut desert [J]. Chinese ScienceBulletin,51(1):124-131.
    Wu Y S, Hasi E, Wu G, et al.2012. Characteristics of surface runoff in a sandy area in southern Mu Us sandyland [J]. Chinese Science Bulletin,57(2/3):270-275.
    Yang J F, Li T, Lu Q F, et al.2010. Calibration method based on RBF neural net works for soil moisturecontent sensor [J]. Agricultural Science and Technology,11(2):140-142.
    Yang X H, Zhang K B, Hou R P, et al.2007. Exclusion effects on vegetation characteristics and theircorrelation to soil factors in the semi-arid rangeland of Mu Us sandland, China [J]. Front. Biol. China.2(2):210-217.
    Yang X H, Zhang K B.2005. A forestation using micro-catchment water harvesting system with microphyticcrust treatment on semi-arid Loess Plateau: A preliminary result[J]. Journal of Forestry Research,16(1):9-14.
    Zhang B C, Zhang Y M, Zhao J C, et al.2009. Microalgal species variation at different success ional stagesin biological soil crusts of the Gurbantunggut desert, northwestern China [J]. Boil Fertil Soils,45:539-547.
    Zhang Y M.2005. The microstructure and formation of biological soil crusts in their early developmentalstage [J]. Chinese Science Bulletin,50:117-121.
    Zhang Z C, Dong Z B, Zhao A G, et al.2008. The effect of restored microbiotic crusts on erosion of soilfrom a desert area in China [J]. Journal of Arid Environments,72(5):710-721.
    Zhang Z S, Liu L C, Li X R, et al.2008. Evaporation properties of a revegetated area of the Tengger Desert,North China [J]. Journal of Arid Environments.72(6):964-973.
    Zhao H L, Guo Y R, Zhou R L, et al.2011. The effects of plantation development on biological soil crustand topsoil properties in a desert in northern China [J]. Geoderma,160:367-372.
    Zhao J C, Zheng Y P, Zhang B C, et al.2009. Progress in the study of algae and mosses in biological soilcrusts [J]. Front. Biol. China,4(2):143-150.
    Zhao J C, Zhang B C, Zhang Y M.2008. Chlorophytes of biological soil crusts in Gurbantunggut desert,Xinjiang autonomous region, China [J]. Front. Boil. China,3(1):40-44.
    阿不都拉·阿巴斯,艾尼瓦尔·吐米尔.2006.新疆古尔班通古特沙漠南缘土壤生物结皮中地衣植物物种组成和分布[J].新疆大学学报(自然科学版),23(4):379-383.
    艾尼瓦尔·吐米尔,王玉良,阿不都拉·阿巴斯.2006.新疆准噶尔盆地南缘土壤生物结皮中地衣物种组成和分布[J].植物资源与环境学报,15(3):35-38.
    白岗栓,李志熙,张占山.2006.毛乌素沙地高等植物资源[J].草地学报,14(2):170-180.
    包海龙,贺晓,赵宏宇,等.2009.毛乌素沙地油蒿群落毛细根分布特点与土壤水分的关系[J].干旱区资源与环境,23(4):175-178.
    包志刚,陈晓燕,田有亮,等.2009.大青山区不同植被下的土壤水分动态[J].内蒙古农业大学学报,30(1):124-126.
    卜崇峰,杨建振,张兴昌.2011.毛乌素沙地生物结皮层藓类植物培养实验研究[J].中国沙漠,2011,31(4):937-941.
    柴成武,徐先英,唐卫东,等.2009.石羊河流域荒漠区主要固沙植物根系研究[J].西北林学院学报,24(4):21-26.
    陈昌笃.2009.走向宏观生态学——陈昌笃论文集[M].//陈昌笃.毛乌素沙区植被和植物资源.北京:科学出版社,85-115.
    陈荷生.1992.沙坡头地区生物结皮的水文物理特点及其环境意义[J].干旱区研究,9(1):31-38.
    陈洪松,邵明安,张兴昌,等.2005.野外模拟降雨条件下坡面降雨入渗、产流试验研究[J].水土保持学报,19(2):5-8.
    陈兰周,刘永定,宋立荣.2002.微鞘藻胞外多糖在沙漠土壤成土中的作用[J].水生生物学报,26(2):155-159.
    陈荣毅,张元明,潘伯荣,等.2007.古尔班通古特沙漠土壤养分空间分异与干扰的关系[J].中国沙漠,27(2):257-265.
    陈荣毅,张元明,魏文寿,等.2008.不同沙丘部位和不同结皮类型对土壤种子库的影响[J].干旱区研究,25(1):107-112.
    陈有君,刘钟龄.2000.内蒙古浑善达克沙地土壤水分状况的分析[J].干旱区资源与环境,14(1):80-85.
    程训强,唐家良,高美荣,等.2010. TDR系统在紫色土坡耕地径流小区土壤水分自动监测中的应用[J].中国水土保持,10:27-29.
    崔燕,吕贻忠,李保国.2004.鄂尔多斯沙地土壤生物结皮的理化性质[J].土壤,36(2):197-202.
    崔利强,吴波,杨文斌,等.2010.毛乌素沙地东南缘不同植被盖度下土壤水分特征分析[J].干旱区资源与环境,24(2):177-182.
    董梅,贺康宁,张益源,等.2010.黄土高寒区不同土壤水分条件下银水牛果幼苗光响应研究[J].中国农学通报,26(18):165-169.
    段争虎,刘新民,屈建军.1996.沙坡头地区土壤结皮形成机理的研究[J].干旱区研究,12(2):31-36.
    方海燕,屈建军,俎瑞平,等.2005.防沙工程的结皮效应研究[J],水土保持学报,19(2):17-20.
    方向文,李凤民,张海娜,等.2011.树锦鸡儿、柠条锦鸡儿、小叶锦鸡儿和鹰嘴豆干旱适应能力比较[J].生态学报,31(9):2437-2443.
    冯起,程国栋.1999.我国沙地土壤水分分布状况及其意义[J].土壤学报,36(2):225-236.
    冯学赞,张万军.2005.干旱半干旱区人工地衣集雨面营建潜力探析[J].中国生态农业学报,13(1):156-159.
    付聪明,王茜.2009.库布齐沙漠防风固沙植被生态系统土壤水分状况分析与评价[J].内蒙古农业大学学报,30(4):119-125.
    付广军,廖超英,孙长忠.2010.毛乌素沙地土壤结皮对水分运动的影响[J].西北林学院学报,25(1):7-10.
    高天鹏,王春燕,张勇,等.2009.播种深度和土壤水分对黄花补血草种子萌发的影响[J].中国沙漠,29(3):529-535.
    高志明,魏怀东,丁峰,等.2004.民勤绿洲的荒漠化过程及其驱动模式[J].中国沙漠,24(增刊):20-24.
    葛结林,何家庆,孙晓方,等.2010.入侵植物加拿大一枝黄花对土壤水分变化的生态学响应[J].西北植物学报,30(3):575-585.
    弓成,温存.2008.宁夏盐池平沙地主要植物群落土壤水分季节动态[J].水土保持通报,28(3):39-43.
    郭柯.2000.毛乌素沙地油蒿群落的循环演替[J].植物生态学报,24(2):243-247.
    郭柯,懂学军,刘志茂.2000.毛乌素沙地沙丘土壤含水率特点——兼论老固定沙地上油蒿衰退原因[J].植物生态学报,24(3):275-279.
    郭轶瑞,赵哈林,赵学勇,等.2007a.科尔沁沙地结皮发育对土壤理化性质影响的研究[J].水土保持学报,21(1):135-139.
    郭轶瑞,赵哈林,赵学勇,等.2007b.科尔沁沙地人工林下结皮发育对表土特性影响的研究[J].中国沙漠,27(6):1000-1006.
    郭轶瑞,赵哈林,左小安,等.2007c.科尔沁沙地生物结皮的土壤种子库特征[J].水土保持学报,21(6):187-192.
    郭忠升,邵明安.2003.半干旱区人工林草地土壤旱化与土壤水分植被承载力[J].生态学报,23(8):1640-1647.
    郭忠升,邵明安.2003.雨水资源、土壤水资源与土壤水分植被承载力[J].自然资源学报,18(5):522-528.
    郭忠升.2004.黄土丘陵半干旱区土壤水分植被承载力研究[D].西北农林科技大学博士学位论文.
    韩磊,贺康宁,芦新建,等.2008.青海高寒半干旱区蒙古莸叶水势变化及其与环境因素的关系[J].水土保持通报,28(6):1-5.
    何芳兰,李治元,赵明,等.2010.民勤绿洲盐碱化退耕地植被自然演替及土壤水分垂直变化研究[J].中国沙漠,30(6):1374-1380.
    何明珠,李新荣,张景光,等.2006.生物土壤结皮蒸散特征研究[J].中国沙漠,26(2):159-164.
    何志斌,赵文智.2002.半干旱区流动沙地土壤湿度变异及其对降水的依赖[J].中国沙漠,22(4):359-362.
    侯庆春,韩蕊莲,韩仕峰.1999.黄土高原人工林草地“土壤干层”问题初探[J].中国水土保持,5:11-14.
    胡春香,刘永定,宋立荣,等.2000.半荒漠藻结皮中藻类的种类组成和分布[J].应用生态学报,11(1):61-65.
    胡春香,刘永定.2003a.土壤藻生物量及其在荒漠结皮的影响因子[J].生态学报,23(2):284-291.
    胡春香,张斌才,马红樱,等.2003b.兰州北山生物结皮中陆生藻种类组成与群落结构[J].西北师范大学学报(自然科学版),39(1):59-63.
    胡良军,邵明安.2002.黄土高原植被恢复的水分生态环境研究[J].应用生态学报,13(8):1045-1048.
    胡霞,蔡强国,刘连友,等.2005.人工降雨条件下几种土壤结皮发育特征[J].土壤学报,42(3):504-507.
    胡小龙,张文军,樊文颖,等.1996.毛乌素沙地不同盖度油蒿群落土壤水分特征研究[J].内蒙古林业科技,(3/4):32-37.
    胡新华,杜筱玲,全根元.2010.人工与自动土壤水分平行观测资料对比分析[J].气象科技,38(2):239-242.
    胡月楠,贺康宁,巩玉霞,等.2008.库不齐沙地杨柴叶水势的研究[J].西部林业科学,37(3):66-71.
    黄利江,于卫平,张广才,等.2004.盐池沙地水分与植被恢复关系的研究[J].林业科学研究,17(B12):l48-l51.
    霍艾迪,康相武,张广军,等.2010.基于MODIS数据的毛乌素沙地土壤水分模型的建立[J].干旱地区农业研究,28(4):19-23.
    贾宝全,张红旗,张志强,等.2003.甘肃省民勤沙区土壤结皮理化性质研究[J].生态学报,23(7):1142-1148.
    姜汉侨,段昌群,杨树华,等.2004.植物生态学[M].北京:高等教育出版社.
    姜鹏,李国春,蒋娇娇,等.2010.基于MODIS数据反演辽西地区土壤水分的研究[J],现代农业科技,8:275-278.
    焦雯珺,朱清科,张宇清,等.2007.陕北黄土区退耕还林地生物结皮分布及其影响因子研究[J].北京林业大学学报,2007,29(1):102-107.
    雷泽勇,刘心玲,刘聪.2009.科尔沁沙地典型植被群落土壤水分异质性[J].辽宁工程技术大学学报(自然科学版),28(增刊):271-273.
    雷志栋,杨诗秀,谢森传.1988.土壤水动力学[M].北京:清华大学出版社.
    李宝富,熊黑钢,张建兵,等.2010.两种植被盖度下土壤水分和盐分的空间变异性研究[J].新疆农业科学,47(1):168-173.
    李和平,牛海,赵萌莉,等.2008.毛乌素沙地土壤水分日动态变化分析[J].灌溉排水学报,27(4):102-105.
    李林芝,张德罡,辛晓平,等.2009.呼伦贝尔草甸草原不同土壤水分梯度下羊草的光合特性[J].生态学报,29(10):5251-5259.
    李守中,肖洪浪,李新荣,等.2004.干旱、半干旱区微生物结皮土壤水文学的研究进展[J].中国沙漠,24(4):500-506.
    李守中,肖洪浪,罗芳,等.2005.沙坡头植被固沙区生物结皮对土壤水文过程的调控作用[J].中国沙漠,25(2):228-233.
    李守中,郑怀舟,李守丽,等.2008.沙坡头植被固沙区生物结皮的发育特征[J].生态学杂志,27(10):1675-1679.
    李守中,肖洪浪.2005.沙坡头植被固沙区生物结皮对土壤水文过程的调控作用[J].中国沙漠,3(2):228-233.
    李卫红,任天瑞,周智彬,等.2005.新疆古尔班通古特沙漠生物结皮的土壤理化性质分析[J].冰川冻土,27(4):619-626.
    李新荣,陈应武,贾荣亮.2008.生物土壤结皮:荒漠昆虫食物链的重要构建者[J].中国沙漠,28(2):245-248.
    李新荣,张景光,王新平,等.2000.干旱沙漠区土壤微生物结皮及其对固沙植被影响的研究[J].植物学报,42(9):965-970.
    李新荣,张元明,赵允格.2009.生物土壤结皮研究:进展、前沿与展望[J].地球科学进展,4(1):11-24.
    李新荣,张志山,王新平,等.2009.干旱区土壤——植被系统恢复的生态水文学研究进展[J].中国沙漠,29(5):845-852.
    李新荣,贾玉奎,龙利群,等.2001.干旱半干旱区土壤微生物结皮的生态学意义及若干研究进展[J].中国沙漠,21(1):4-11.
    李秀媛,刘西平,Hang D, et al.2011.美国海滨桤木和薄叶桤木水分生理特性的比较[J].植物生态学报,35(1):73-81.
    李炎,王丹.2010.不同土壤水分测定方法的比较研究[J].安徽农业科学,38(17):9110-9112.
    李玉山.2002.苜蓿生产力动态及其水分生态环境效应[J].土壤学报,39(3):404-410.
    李志熙,廖允成,白岗全.2005.毛乌素沙地植被特征与建设[J].水土保持通报,25(5):66-70.
    梁少民,吴楠,王红玲,等.2005.干扰对生物土壤结皮及其理化性质的影响[J].干旱区地理,28(6):818-823.
    梁少民,张希明,曾凡江,等.2010.沙漠腹地乔木状沙拐枣对灌水量的生理生态响应[J].中国沙漠,30(6):1348-1353.
    廖行,王百田,武晶.2007.不同水分条件下核桃蒸腾速率与光合速率的研究[J].水土保持研究,14(4):30-34.
    凌裕泉,屈建军,胡玟.1993.沙面结皮形成于微环境变化[J].应用生态学报,4(4):393-398.
    刘冰,赵文智,常学向,等.2011.黑河流域荒漠区土壤水分对降水脉动响应[J].中国沙漠,31(3):716-722.
    刘广全,土小宁,王鸿哲,等.2005.沙棘苗木根系生长发育特征研究[J].西北林学院学报,20(3):26-30.
    刘慧霞,郭正刚,郭兴华,等.2009.不同土壤水分条件下硅对紫花苜蓿水分利用效率及产量构成要素的影响[J].生态学报,29(6):3075-3080.
    刘立超,李守中,宋耀选,等.2005.沙坡头人工植被区微生物结皮对地表蒸发影响的试验研究[J].中国沙漠,25(2):191-195.
    刘绍民,孙睿,孙中平,等.2004.基于互补相关原理的区域蒸散量估算模型比较[J].地理学报,59(3):331-340.
    刘拓,张克斌,林琼.2006.中国土地荒漠化防治策略[M].北京:中国林业出版社.
    刘晓婧,李新平,杨勤科,等.2010.基于地形因子的土壤水分反演研究-——以延河流域为例[J].干旱地区农业研究,28(5):218-223.
    刘元波,高前兆.1997.沙地水分动力学研究新视角[J].中国沙漠,17(1):95-98.
    龙利群,李新荣.2003.土壤微生物结皮对两种一年生植物幼苗存活和生长的影响[J].中国沙漠,23(6):656-660.
    卢琦.2000.中国沙情[M].北京:开明出版社:8-11.
    卢启福,吴慕春,胡月明,等.2009.基于TDR-3的土壤水分传感器标定模型研究[J].传感技术学报,22(7):1066-1070.
    卢晓杰,李瑞,张克斌.2008.农牧交错带地表覆盖物对土壤入渗的影响[J].水土保持通报,28(1):1-5.
    卢晓杰,张克斌,李瑞.2007.北方农牧交错带生物结皮的主要影响因子探讨[J].水土保持研究,14(6):1-4.
    芦新建,贺康宁,巩玉霞,等.2008.内蒙古库不齐沙漠四翅滨藜叶水势研究[J].水土保持研究,15(2):184-88.
    吕华芳,尚松浩.2009.土壤水分特征曲线测定实验的设计与实践[J].实验技术与管理,26(7):44-46.
    吕晶洁,胡春元,贺晓.2005.采煤塌陷对固定沙丘土壤水分动态的研究[J].干旱区资源与环境,19(7):152-155.
    吕贻忠,杨佩国.2004.荒漠结皮对土壤水分状况的影响[J].干旱区资源与环境,18(2):76-79.
    罗永忠,成自勇.2011.水分胁迫对紫花苜蓿叶水势、蒸腾速率和气孔导度的影响[J].草地学报,19(2):215-222.
    牛海,李和平,赵萌莉,等.2008.毛乌素沙地不同水分梯度根系垂直分布与土壤水分关系的研究[J].干旱区资源与环境,22(2):157-163.
    潘颜霞,王新平,苏延桂,等.2009.荒漠人工固沙区土壤水分的时空异质性[J].生态学报,29(2):993-1000.
    潘艳霞,王新平,苏延桂,等.2009.荒漠人工固沙植被区浅层土壤水分动态的时间稳定性特征[J].中国沙漠,29(1):81-86.
    齐雁冰,常庆瑞,惠泱河.2006.高寒地区人工植被恢复过程中沙表生物结皮特性研究[J].干旱地区农业研究,24(6):98-102.
    秦艳,王林和,张国胜,等.2008.毛乌素沙地臭柏与油蒿群落细根生物量的季节动态及其空间变化[J].中国沙漠,28(3):455-461.
    裘正军,何勇,葛晓峰,等.2003.基于GPS定位的土壤水分快速测量仪的研制[J].浙江大学学报,29(2):135-138.
    桑玉强,郭芳,张劲松,等.2009.毛乌素沙地新疆杨蒸腾变化规律及其影响因素[J].林业科学,45(9):66-71.
    邵玉琴,赵吉.2004a.不同固沙区结皮中微生物生物量和数量的比较研究[J].中国沙漠,24(1):68-71.
    邵玉琴,赵吉.2004b.草原沙地微生物结皮与固沙作用的研究[J].农业环境科学学报,23(1):94-97.
    司建华,冯起,张小由.2005.极端干旱区胡杨水势及影响因子研究[J].中国沙漠,25(4):505-510.
    苏延桂,李新荣,陈应武,等.2007a.生物土壤结皮对荒漠土壤种子库和种子萌发的影响[J].生态学报,27(3):938-946.
    苏延桂,李新荣,黄刚,等.2007b.实验室条件下两种生物土壤结皮对荒漠植物种子萌发的影响[J].生态学报,27(5):1845-1851.
    苏延桂,李新荣,贾荣亮,等.2007c.腾格里沙漠东南缘苔藓结皮对荒漠土壤种子库的影响[J].应用生态学报,18(3):504-508.
    苏延桂,李新荣,张景光,等.2006.生物土壤结皮对土壤种子库的影响[J].中国沙漠,26(6):997-1001.
    孙建华,刘建军,康博文,等.2009.陕北毛乌素沙地土壤水分时空变异规律研究[J].干旱地区农业研究,27(2):244-247.
    田桂泉,白学良,徐杰,等.2005.固定沙丘生物结皮层藓类植物形态结构及其适应性研究[J].中国沙漠,25(2):249-255.
    王聪颖,孙宇瑞,张慧娟.2010.一种基于三角波窄脉冲序列的时域反射土壤水分测量方法[J].应用基础与工程科学学报,18(5):869-876.
    王迪海,赵忠,李剑.2010.土壤水分对黄土高原主要造林树种细根表面积季节动态的影响[J].植物生态学报,34(7):819-826.
    王丁,姚建,杨雪,等.2011.干旱胁迫条件下6种喀斯特主要造林树种苗木叶片水势及吸水潜能的变化[J].生态学报,31(8):2216-2226.
    王皓,李子忠.2009.坝上地区老芒麦草地土壤水分和生物量变化特征[J].干旱地区农业研究,27(3):90-95.
    王红玲,张元明.2008.古尔班通古特沙漠生物结皮中藓类植物形态解剖特征[J].干旱区研究,25(3):363-370.
    王俊,黄岁樑.2010.土壤水分特征曲线模型对数值模拟非饱和渗流的影响[J].水动力学研究与进展(A辑),25(1):16-22.
    王俊,刘文兆,钟良平,等.2009.长期连续种植苜蓿草地地上部分生物量与土壤水分的空间差异性[J].草业科学,18(4):41-46.
    王庆锁,董学军,陈旭东,等.1997.油蒿群落不同演替阶段某些群落特征研究[J].植物生态学报,21(6):531-538.
    王庆锁,李博.1994,鄂尔多斯沙地油蒿群落生物量初步研究[J].植物生态学报,18(4):347-353.
    王赛宵,李清河,徐军,等.2010.干旱半干旱区土壤水分测定研究概述[J].山西农业科学,38(9):89-92.
    王翔宇,张进虎,丁国栋,等.2008.沙地土壤水分特征及水分时空动态分析[J].水土保持学报,22(6):222-227.
    王新平,康尔泗,李新荣,等.2003.荒漠地区土壤初始状况对水平入渗的影响[J].地球科学进展,18(4):592-596.
    王新平,肖洪浪,张景光,等.2006.荒漠地区生物土壤结皮的水文物理特征分析[J].水科学进展,17(5):592-598.
    王学全,刘君梅,杨恒华,等.2012.应用神经网络RBF估算青海省东南沙区土壤蒸发[J].干旱区研究,2012,29(3):400-404.
    王延平,邵明安.2009.陕北黄土丘陵沟壑区杏林地土壤水分植被承载力[J].林业科学,45(12):1-7.
    王政权,郭大立.2008.根系生态学[J].植物生态学报,32(6):1213-1216.
    魏永林,马晓虹,宋理明.2009.青海湖地区天然草地土壤水分动态变化及对牧草生物量的影响[J].草业科学,26(5):76-80.
    吴波,苏志珠,陈仲新.2007.中国荒漠化潜在发生范围的修订[J].中国沙漠,27(6):911-917.
    吴春荣,雷瑞德,王继和,等.2007.河西固沙林群落和林下土壤的演替发育及稳定性.甘肃科技,23(12):229-232.
    吴发启,范文波.2005.土壤结皮对降雨入渗和产流产沙的影响[J].中国水土保持科学,3(2):97-101.
    吴楠,梁少民,王红玲,等.2006.动物践踏干扰对生物结皮中微生物生态分布的影响[J].干旱区研究,23(1):50-55.
    吴楠,潘伯荣,张元明,等.2005.古尔班通古特沙漠生物结皮中土壤微生物垂直分布特征[J].应用与环境生物学报,11(3):349-353.
    吴楠,张元明,张静,等.2007.生物结皮恢复过程中土壤生态因子分异特征[J].中国沙漠,27(3):397-404.
    吴文义,尉永平.2001.瓶筒法快速测定土壤含水率[J],山西水利科技,(4):20-22.
    吴玉环,高谦,于兴华.2003.生物土壤结皮的分布影响因子及其监测[J].生态学杂志,2(3):38-42.
    吴玉环,高谦.2002.生物土壤结皮的生态功能[J].生态学杂志,21(4):41-46.
    肖波,赵允格,邵明安.2007a.陕北水蚀风蚀交错区两种生物结皮对土壤饱和导水率的影响[J].农业工程学报,23(12):35-40.
    肖波,赵允格,邵明安.2007b.陕北水蚀风蚀交错区两种生物结皮对土壤理化性质的影响[J].生态学报,27(11):4462-4470.
    肖波,赵允格,许明祥,等.2008.陕北黄土区生物结皮条件下土壤养分的积累及流失风险[J].应用生态学报,19(5):1019-1026.
    肖洪浪,李新荣,段争虎,等.2003.流沙固定过程中土壤——植被系统演变[J].中国沙漠,23(6):605-611.
    肖武,李小昱,李培武,等.2009.基于近红外光谱土壤水分检测模型的适应性[J].农业工程学报,25(3):33-37.
    谢作明,刘永定,陈兰洲,等.2008.不同培养条件对具鞘微鞘藻生物量和多糖产量的影响[J].水生生物学报,2008,32(2):272-275.
    熊好琴,段金跃,王妍,等.2011.毛乌素沙地生物结皮对水分入渗和再分配的影响[J].水土保持研究,18(4):82-87.
    徐贵青,李彦.2009.共生条件下3种荒漠灌木的根系分布特征及其对降水的响应.生态学报,29(1):130-137.
    徐杰,白学良,田桂泉,等.2005a.干旱半干旱区生物结皮层藓类植物氨基酸和营养物质组成特征及适应性分析[J].生态学报,25(6):1247-1255.
    徐杰,白学良,田桂泉,等.2005b.腾格里沙漠固定沙丘结皮层藓类植物的生态功能及与土壤环境因子的关系[J].中国沙漠,25(2):234-242.
    徐杰,白学良,杨持,等.2003.固定沙丘结皮层藓类植物多样性及固沙作用研究[J].植物生态学报,27(4):545-551.
    徐敬华,王国梁,陈云明,等.2008.黄土丘陵区退耕地土壤水分入渗特征及影响因素[J].中国水土保持科学,6(2):19-25.
    许皓,李彦.2005.3种荒漠灌木的用水策略及相关的叶片生理表现[J].西北植物学报,25(7):1309-1316.
    薛英英,闫德仁,李刚铁.2007.鄂尔多斯地区沙漠生物结皮特征研究[J].内蒙古农业大学学报,28(2):102-105.
    闫德仁,季蒙,薛英英.2006.沙漠生物结皮土壤发育特征研究[J].土壤通报,37(5):990-993.
    闫德仁,薛英英,刘果厚.2008,库布齐沙漠生物结皮层土壤理化特性的研究[J].土壤,40(1):145-148.
    闫德仁,薛英英,赵春光.2007.沙漠地区生物土壤结皮层腐殖质特征[J].生态学杂志,26(12):2017-2020.
    闫德仁,杨俊平,安晓亮,等.2004.荒漠藻固沙结皮试验研究初报[J].干旱区资源与环境,18(5):147-150.
    闫峰,王艳姣.2009.基于Ts-EVI特征空间的土壤水分估算[J].生态学报,29(9):4884-4891.
    严俊霞,秦作栋,李洪建,等.2010.黄土高原地区柠条人工林土壤呼吸[J].林业科学,46(3):1-8.
    杨洪晓,张金屯,吴波,等.2004.油蒿(Artemisia ordosica)对半干旱区沙地生境的适应及其生态作用[J].北京师范大学学报(自然科学版),40(5):684-690.
    杨伟,陈晋,张元明,等.2006.古尔班通古特沙漠1970—2000年代生物结皮覆盖变化研究[J].自然资源学报,21(6):934-941.
    杨文斌,任建民,贾翠萍.1997.柠条抗旱的生理生态与土壤水分关系的研究[J].生态学报,17(3):239-244.
    杨晓晖,张克斌,赵云杰.2001.生物土壤结皮——荒漠化地区研究的热点问题[J].生态学报,21(3):474-480.
    姚德良,李家春,杜岳,等.2002.沙坡头人工植被区陆气耦合模式及生物结皮与植被演替的机理演变[J].生态学报,22(4):452-460.
    姚月锋,满秀玲,刘畅,等.2007.封育对沙地油蒿群落生物量及其土壤水分影响[J].东北林业大学学报,35(1):37-39.
    英慧,殷有,于立忠,等.2010.土壤水分、养分对树木细根生长动态及周转影响研究进展[J].西北林学院学报,25(3):36-42.
    于云江,林庆功,石庆辉,等.2002.包兰铁路沙坡头段人工植被区生境与植被变化研究[J].生态学报,22(3):133-139.
    原鹏飞,丁国栋,王炜炜,等.2008.毛乌素沙地降雨入渗和蒸发特征[J].中国水土保持科学,6(4):23-27.
    岳彩娟,王彩艳,余峰,等.2010.遥感技术监测土壤水分的研究进展[J].宁夏农林科技,(2):47-50.
    张丙昌,张元明,赵建成,等.2005a准噶尔盆地古尔班通古特沙漠生物结皮蓝藻研究[J].地理与地理信息科学,21(5):107-109.
    张丙昌,张元明,赵建成.2005b.古尔班通古特沙漠生物结皮藻类的组成和生态分布研究[J].西北植物学报,2005,25(10):2048-2055.
    张丙昌,赵建成,张元明,等.2007.不同生态因子对生物结皮中土生绿球藻生长的影响[J].干旱区研究,24(5):641-646.
    张超,王会肖.2003.土壤水分研究进展及简要评述[J].干旱地区农业研究,21(4):117-121.
    张国盛,王林和,董智,等.1999.毛乌素沙区风沙土机械组成及含水率的季节变化[J].中国沙漠,19(2):145-150.
    张国盛,吴国玺,王林和,等.2009.毛乌素沙地臭柏(Sabina vulgaris)和油蒿(Artemisia ordosica)群落的细根分布特征[J].生态学报,29(1):18-27.
    张红卫,陈怀亮,申双和.2009.基于EOS/MODIS数据的土壤水分遥感监测方法[J].科技导报,27(12):85-92.
    张继贤,邸醒民,王淑湘.1994.沙坡头地区防护体系建立过程中生态环境变化的特点[J].干旱区资源与环境,8(3):68-79.
    张进虎,贺康宁,段玉玺,等.2008.毛乌素沙地西南缘不同植被下的土壤水分时空变化研究[J].水土保持研究,15(1):96-102.
    张静,张元明,周智彬,等.2007.古尔班通古特沙漠生物结皮影响下土壤水分的日变化[J],干旱区研究,24(5):661-668.
    张军,单松.2010.沙地水分研究现状[J].北方环境,22(4):39-41.
    张军,黄永梅,焦会景,等.2007.毛乌素沙地油蒿群落演替的生理生态学机制[J].中国沙漠,27(6):977-983.
    张军红,吴波,杨文斌,等.2012.不同演替阶段油蒿群落土壤水分特征分析[J].中国沙漠,32(6):1597-1603.
    张军红,吴波,贾子毅,等.2010.毛乌素沙地油蒿植冠下生物结皮分布特征及其影响因素研究[J].林业科学研究,23(6):866-871.
    张军红,吴波,雷亚凯,等.2011.毛乌素沙地油蒿植株形态与结构特征分析[J].西南林业大学学报,31(5):6-9.
    张军红,吴波.2012.油蒿与臭柏沙地生物结皮对土壤理化性质的影响[J].东北林业大学学报,40(3):58-61.
    张克斌,卢晓杰,李瑞.2008.北方农牧交错带沙地生物结皮研究[J].干旱区资源与环境,22(4):147-151.
    张荣标,刘骏,张磊,等.2010. EC-5土壤水分传感器温度影响机理及补偿方法研究[J].农业机械学报,41(9):168-172.
    张新时.1994.毛乌素沙地的生态背景及其草地建设的原则与优化模式[J].植物生态学报,18(1):1-16.
    张永强,刘昌明,于强,等.2004.土壤-植被-大气系统水和热传输机理及区域蒸散模型[J].中国科学院研究生院学报,21(4):562-567.
    张友焱,周泽福,程金花,等.2002.毛乌素沙地不同沙丘部位几种灌木地土壤水分动态[J].东北农业大学学报,41(6):73-78.
    张元明,曹同,潘伯荣.2002.新疆古尔班通古特沙漠南缘土壤结皮中苔藓植物的研究[J].西北植物学报,22(1): l8-23.
    张元明,陈晋,王雪芹,等.2005.古尔班通古特沙漠生物结皮的分布特征[J].地理学报,60(1):53-60.
    张元明,潘惠霞,潘伯荣.2004.古尔班通古特沙漠不同地貌部位生物结皮的选择性分布[J].水土保持学报,18(4):61-64.
    张元明,王雪芹.2009.准噶尔荒漠生物结皮研究[M].北京:科学出版社.
    张元明,王雪芹.2010.荒漠地表生物土壤结皮形成与演替特征概述[J].生态学报,30(16):4484-4492.
    张元明,杨维康,王雪芹,等.2005.生物结皮影响下的土壤有机质分异特征[J].生态学报,25(12):3420-3425.
    张志山,何明珠,谭会娟,等.2007.沙漠人工植被区生物结皮类土壤的蒸发特性——以沙坡头沙漠试验站为例[J].土壤学报,44(3):404-410.
    赵建成,张丙昌,张元明.2006.新疆古尔班通古特沙漠生物结皮绿藻研究[J].干旱区研究,23(2):189-194.
    赵允格,许明祥,王全九,等.2006a.黄土丘陵区退耕地生物结皮对土壤理化性状的影响[J].自然资源学报,21(3):441-448.
    赵允格,许明祥,王全九,等.2006b.黄土丘陵区退耕地生物结皮理化性状初报[J].应用生态学报,17(8):1429-143.
    郑敬刚,张志山,冯丽,等.2007.饱和流沙和苔藓结皮在蒸发过程中的水分特征研究[J].中国沙漠,27(2):234-238.
    周会珍,刘绍民,白洁,等.2008.毛乌素沙地土壤水分的遥感监测[J].农业工程学报,24(10):l34-140.
    周凌云,陈志雄,李卫民.2003. TDR法测定土壤含水率的标定研究[J].土壤学报,40(1):59-64.
    周秋平,程积民,万惠娥,等.2009.干旱胁迫下本氏针茅光合特性和水分利用效率日动态研究[J].草地学报,17(7):510-514.
    周志刚,程子俊,刘志礼.1995.沙漠结皮中藻类生态的研究[J].生态学报,15(4):385-391.
    朱宝文,郑友飞,陈晓光.2009.高寒针茅草原植物生长季土壤水分动态变化规律[J].干旱地区农业研究,27(3):96-100.
    朱雅娟,贾志清,卢琦,等.2010.乌兰布和沙漠5种灌木的水分利用策略[J].林业科学,46(4):6-13.
    朱远达,蔡强国,胡霞,等.2004.土壤理化性质对结皮形成的影响[J].土壤学报,41(1):13-19.
    庄丽,陈亚宁,李卫红,等.2006.渗透胁迫条件下植物茎叶水势的变化——以塔里木河下游胡杨为例[J].中国沙漠,26(6):1002-1008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700