用户名: 密码: 验证码:
miR159和miR172表达对大岩桐花发育的调控作用及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MicroRNA (miRNA)是一类长度在20~24个核苷酸的非编码RNA,主要在转录后水平或者翻译水平特异性调控靶基因的表达。在模式植物拟南芥中已经发现了200多个miRNA,其中与开花相关的有三个,分别为miR156, miR172和miR159,这些miRNA对植物的成花转变起到重要的调控作用。目前,针对非模式植物,特别是花卉植物中miRNA调控花发育的研究很少。本文以观赏性花卉大岩桐为材料,研究miR159和miR172对成花途径中关键靶基因的调控作用及其机理分析,探索通过操纵miRNA表达改变花卉植物花发育和花期的基因工程分子育种新策略。获得主要试验结果如下:
     1miR159表达对大岩桐花发育的影响
     GAMYB基因全序列的克隆及miR159剪切位点的验证根据GAMYB家族的序列保守性,利用5'RACE和3'RACE的方法克隆得到了大岩桐GAMYB cDNA全序列。利用RLM5'RACE方法,鉴定出SsGAMYB基因的964-985bp区域的第11位碱基是miR159的直接剪切位点,证实该基因是miR159的靶基因。在野生型大岩桐中,miR159在幼苗时期的叶片以及萼片中高表达,在雄蕊中的表达量最低;而GAMYB在雄蕊中的表达最高,而在萼片中的表达量最低。GAMYB与miR159的不同表达模式说明miR159负调控大岩桐GAMYB的表达。
     利用农杆菌介导法获得miR159转基因大岩桐株系本研究采用拟南芥miR159a前体的茎环序列构建组成型过表达载体35S:miR159a,同时构建抑制miR159作用的MIM159表达载体35S:MIM159.运用农杆菌介导的转基因方法,获得32株miR159a过表达株系,28株35S:MIM159转基因株系,并用RT-PCR进行了转录水平的鉴定。
     miR159转基因株系的表型观察及其表达检测在短日照条件下,大岩桐35S:miR159a过表达株系花期延迟37(±4.93)天,而35S:MIM159转基因株系花期提前20(±3.5)天。定量RT-PCR检测发现35S:miR159a过表达株系中miR159成熟体序列大量积累,GAMYB基因的mRNA水平降低;而在35S:MIM159株系中,miR159a的积累明显下降,GAMYB基因的mRNA水平上升。说明改变miR159的表达水平可以调控靶基因GAMYB的表达,从而提前或延迟大岩桐的开花时间。
     利用qRT-PCR的方法检测转基因株系中GAMYB下游基因的表达变化qRT-PCR结果显示,在35S:miR159a过表达株系的花原基中LFY基因的表达量显著下降,而在35S:MIM159株系中LFY基因的表达量显著上调.MADS-box基因(SsAG, SsAP,和SsAP3)表达水平在miR159过表达植株中上升,而在miR159抑制植株中下降。表明miR159介导的GAMYB表达调控了成花关键基因LFY的表达水平,并进一步调控下游MADS-box基因的表达。说明35S:miR159a和35S:MIM159转基因株系花期的变化很大程度上与LFY基因表达水平相关。
     LFY基因异常表达引起大岩桐花器官形态的变化35S:miR159a过表达株系的花形态与野生型相似,而35S:MIM159转基因株系中,高表达LFY基因的株系出现了萼片和花瓣的相互转化,即萼片花瓣化以及花瓣萼片化。qRT-PCR试验结果表明在花瓣化的萼片中SsAPs表达量明显上升;而萼片化的花瓣中SsAP,表达量显著上升,SsAP3表达量明显下降。表明萼片和花瓣的相互转化可能与第一轮和第二轮花器官中SsAP,和SsAP,异常表达相关。
     2miR172表达对大岩桐花发育的影响
     大岩桐AP2基因部分cDNA片段的克隆根据GenBank上已登录的拟南芥、番茄和葡萄的AP2类基因的同源序列设计兼并引物,利用野生型大岩桐花蕾的cDNA做模版,克隆得到SsAP2的部分片段。经核酸序列比对发现SsAP2与拟南芥,番茄以及葡萄的AP2基因具有高度同源性。
     miR172转基因大岩桐的获得利用农杆菌介导法成功转化大岩桐的叶片,经过4轮潮霉素抗性筛选以及基因组DNA-PCR鉴定,成功获得了35S:miR172a过表达株系24株以及抑制miR172作用的35S:MI MIM72株系21株。
     miR172转基因大岩桐的表型观察在长日照条件下,35S:miR172a过表达株系花期比野生型提前47(±2.16)天;35S:MIM172株系花期延迟7(士4.28)天,而且35S:MIM172株系,植株相对矮小。在35S:miR172a过表达株系中miR172的表达水平明显上升,其靶基因SsAP2的表达量明显下降;35S:MIM172株系中raiR172的积累水平受到抑制,而SsAP2的表达量明显上升,表明miR172介导调控SsAP2的表达对大岩桐成花转变具有促进作用。
     miR172转基因大岩桐的形态学变化在大岩桐35S:miR172a过表达株系中出现萼片花瓣化;而在35S:MIM172株系中出现花瓣比野生型卷曲。这些花器官异常的株系中,AP2的表达量均发生明显变化,表明在大岩桐中SsAP2类基因的表达异常影响花器官的正常发育。
     综上所述,本研究结果表明在短日照条件下,通过转基因改变miR159的表达可以有效的调控靶基因GAMYB以及下游成花关键基因LFY的表达水平,进而显著提前或延迟了大岩桐的开花时间;而在长日照条件下,通过改变miR172的表达可以调控其靶基因AP2mRNA水平,也能明显提前或延迟大岩桐的花期。说明调控开花相关miRNA的表达水平可以改变大岩桐的花发育进程。基于植物miRNA序列的高度保守性,通过转基因的方法调控开花相关miRNA表达将为观赏性花卉的花发育和花期控制提供一条分子遗传育种的新途径。
MicroRNAs are endogenous20~24nt noncoding RNAs that regulate their target genes via post-transcriptional repression or complementary sequences degradation. In Arabidopsis, about200miRNA have been identified. Among numerous miRNAs, only three families are involved in flowering time control:miR156, miR172and miR159, which play crucial roles in flowering pathway. Current knowledge about miRNA regulation of flowering time control in non-model plant, especially in ornament plants is still largely unknown. The aim of this study is to investigate whether genetic modification of miR159and miR172expression can offer an effective approach for regulation of flowering characteristics in gloxinia.
     1Function of miR159in flower development
     Identification and sequence analysis of SsGAMYB. To obtain the full length of GAMYB in gloxinia, the fragments with conserved MYB domain were cloned by rapid amplification of cDNA ends (RACE). A putative complementary site of miR159a existed in the region (964~985bp) and the cleavage site was detect by RNA ligase-mediated5'rapid amplification (RLM5'-RACE). In gloxinia, mature miR159a highly accumulated in young leaves and sepals, and lowly expressed in stamens. SsGAMYB was highly expressed in stamens and carpals, while its expression level was almost undetectable in sepals. Thus, the different expression patterns revealed that miR159negatively regulated SsGAMYB in gloxinia.
     Transgenic gloxinia was generated using Agrobacterium-mediated transformation. We used the AtmiR159a precursor to overexpress miR159a based on the conserved function in plants. In addition, we carried out target mimicry to repress the activity of the endogenous miR159a. The transgenic plantlets were detected by reverse transcription polymerase chain reaction (RT-PCR) with gene-specific primers. Distinct bands of expected size were obtained from thirty-two plantlets of AtmiR159a overexpressing35S:miR159a transgenic lines and twenty-eight transgenic plants of MIM159overexpressing35S:MIM159lines.
     Altered flowering time in transgenic gloxinia. Compared with wild-type gloxinia, under short-day conditions, overexpression of miR159delayed the timing of flowering to37(±4.93) days whereas suppression of miR159accelerated flowering to20(±3.5) days. Mature miR159a level was significantly increased in35S:miR159a lines and decreased in35S:MIM159lines. While a low level of SsGAMYB was observed in35S:miR159a lines, whereas the SsGAMYB level was significantly elevated in35S:MIM159lines. These results revealed that the alteration of miR159can regulate the mRNA level of SsGAMYB and effect flowering time in transgenic lines.
     Expression of flowering genes downstream SsGAMYB in transgenic gloxinia. Quantitative RT-PCR analysis of flower buds showed that overexpression of miR159resulted in a significant decline in SsLFY transcript level in35S:miR159a lines, while suppression of miR159caused an increase in SsLFY in35S:MIM159lines under SD conditions. Meanwhile, the mRNA levels of SsAG, SsAP1and SsAP3were decreased dramatically in35S:miR159a lines but increased in35S:MIM159lines. These results revealed that alteration of miR159in gloxinia can affect the expression level of LFY and regulate the flowering time.
     Effects of altered LFY expression on floral organ development. Phenotype observation indicated that the floral morphology of35S:miR159a appeared relatively normal compared to the wild-type. Nonetheless, abnormal morphology appeared in a few of35S:MIM159lines (3of28lines). In the flower bud stage, sepals were converted partly into petals in the35S:MIM159lines, disturbing the normal development of sepals. Quantitative RT-PCR analysis showed that AP3expression level was significantly higher in abnormal sepals, while API transcript level was notablely higher and AP3was drastically lower in abnormal petals compared to wild-type flowers. It revealed that the conversion of petals and sepals might be caused by disturbed expression levels of API and AP3between the first and second whorls.
     2Function of miR172in flower development
     Identification partial cDNA of SsAP2. Based on the conserved domain of AP2, degenerate primers are designed according to homologous genes in Arabidopsis, tomato and grape to amplify partial cDNA from gloxinia. Phylogenetic analysis showed that the polypeptide of SsAP2shared significant similarity with those of Arabidopsis, tomato and grape.
     Generation of transgenic gloxinia lines that overexpress or suppress miR172a. Transgenic gloxinia was generated using Agrobacterium-mediated transformation. After four fortnights of in vivo culture, twenty-four plantlets of35S:miR172a transgenic lines and twenty-one transgenic plants of35S:MIM172were obtained.
     Phenotype of transgenic gloxinias. Compared with wild-type gloxinia, under long-day conditions, overexpression of miR172a accelerated flowering to47(±2.16) days whereas suppression of miR172delayed the timing of flowering to7(±4.28) days. Mature miR172level was significantly increased and SsAP2was dramatically lower in35S:miR172a lines. While a low level of mature miR172and an elevated level of SsAP2were observed in35S.MIM172lines. These results revealed that miR172mediated cleavage of SsAP2can effect flowering time in transgenic lines.
     Morphological changes in transgenic gloxinias. Nonetheless, abnormal morphology appeared in a few of35S:miR172a lines (2of241ines). In the flower bud stage, sepals were converted partly into petals in the35S:miR172a lines and petals were rolled downward in35S:MIM172lines with a reduced plant height. It suggested that alteration of SsAP2activity disrupted the formation of floral organs.
     Our results suggested that regulation of GAMYB and flowering genes downstream by miR159is a functionally effective pathway in triggering flowering under short days. While manipulating expression level of miR172completely affected the expression of SsAP2and controlled the flowering time. Thus, manipulation of miRNAs involved in flowering time provides an applicable approach for commercial ornamental plants breeding.
引文
Achard, P., Herr, A., Baulcombe, D.C., and Harberd, N.P. (2004a). Modulation of floral development by a gibberellin-regulated microRNA. Development 131,3357-3365.
    Achard, P., Herr, A., Baulcombe, D.C., and Harberd, N.P. (2004b). Modulation of floral development by a gibberellin-regulated microRNA. Development 131,3357-3365.
    Achard, P., Liao, L., Jiang, C., Desnos, T., Bartlett, J., Fu, X., and Harberd, N.P. (2007). DELLAs contribute to plant photomorphogenesis. Plant Physiol 143,1163-1172.
    Achard, P., Baghour, M., Chappie, A., Hedden, P., Van Der Straeten, D., Genschik, P., Moritz, T., and Harberd, N.P. (2007). The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci U S A 104, 6484-6489.
    Allen, R.S., Li, J., Stable, M.I., Dubroue, A., Gubler, F., and Millar, A.A. (2007). Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci U S A 104,16371-16376.
    Allen, R.S., Li, J., Alonso-Peral, M.M., White, R.G., Gubler, F., and Millar, A.A. (2010). MicroR.159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects. Silence 1,18.
    Alvarez-Buylla, E.R., Pelaz, S., Liljegren, S.J., Gold, S.E., Burgeff, C., Ditta, G.S., Ribas, D.P.L., Martinez-Castilla, L., and Yanofsky, M.F. (2000). An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci U S A 97,5328-5333.
    An, H., Roussot, C., Suarez-Lopez, P., Corbesier, L., Vincent, C., Pineiro, M., Hepworth, S., Mouradov, A., Justin, S., Turnbull, C., and Coupland, G. (2004). CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131, 3615-3626.
    Arazi, T., Talmor-Neiman, M., Stav, R., Riese, M., Huijser, P., and Baulcombe, D.C. (2005). Cloning and characterization of micro-RNAs from moss. Plant J 43,837-848.
    Aukerman, M.J., and Sakai, H. (2003a). Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15,2730-2741.
    Aukerman, M.J., and Sakai, H. (2003b). Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15,2730-2741.
    Aukerman, M.J., Lee, I., Weigel, D., and Amasino, R.M. (1999). The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression. Plant J 18,195-203.
    Ausin, I., Alonso-Blanco, C., Jarillo, J.A., Ruiz-Garcia, L., and Martinez-Zapater, J.M. (2004). Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat Genet 36,162-166.
    Aya, K., Ueguchi-Tanaka, M., Kondo, M., Hamada, K., Yano, K., Nishimura, M., and Matsuoka, M. (2009). Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21,1453-1472.
    Balasubramanian, S., Sureshkumar, S., Lempe, J., and Weigel, D. (2006). Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2, e106.
    Baurle, I., Smith, L., Baulcombe, D.C., and Dean, C. (2007). Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing. Science 318,109-112.
    Blazquez, M.A., and Weigel, D. (2000). Integration of floral inductive signals in Arabidopsis. Nature 404,889-892.
    Blazquez, M.A., Ahn, J.H., and Weigel, D. (2003). A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet 33,168-171.
    Blazquez, M.A., Soowal, L.N., Lee, I., and Weigel, D. (1997a). LEAFY expression and flower initiation in Arabidopsis. Development 124,3835-3844.
    Blazquez, M.A., Soowal, L.N., Lee, I., and Weigel, D. (1997b). LEAFY expression and flower initiation in Arabidopsis. Development 124,3835-3844.
    Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R., and Weigel, D. (1998a). Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter. Plant Cell 10,791-800.
    Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R., and Weigel, D. (1998b). Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter. Plant Cell 10,791-800.
    Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M., and Benning, C. (1998). AGO1 defines a novel locus of Arabidopsis controlling leaf development. Embo J 17,170-180.
    Bond, D.M., Dennis, E.S., Pogson, B.J., and Finnegan, E.J. (2009). Histone acetylation, VERNALIZATION INSENSITIVE 3, FLOWERING LOCUS C, and the vernalization response. Mol Plant 2,724-737.
    Breakfield, N.W., Corcoran, D.L., Petricka, J.J., Shen, J., Sae-Seaw, J., Rubio-Somoza, I., Weigel, D., Ohler, U., and Benfey, P.N. (2012). High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in Arabidopsis. Genome Res 22,163-176.
    Cardon, G., Hohmann, S., Klein, J., Nettesheim, K., Saedler, H., and Huijser, P. (1999). Molecular characterisation of the Arabidopsis SBP-box genes. Gene 237,91-104.
    Chen, X, (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303,2022-2025.
    Corbesier, L., Lejeune, P., and Bernier, G. (1998). The role of carbohydrates in the induction of flowering in Arabidopsis thaliana:comparison between the wild type and a starchless mutant. Planta 206,131-137.
    De Bodt, S., Raes, J., Florquin, K., Rombauts, S., Rouze, P., Theissen, G., and Van de Peer, Y. (2003). Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. J Mol Evol 56,573-586.
    de Lucas, M., Daviere, J.M., Rodriguez-Falcon, M., Pontin, M., Iglesias-Pedraz, J.M., Lorrain, S., Fankhauser, C., Blazquez, M.A., Titarenko, E., and Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature 451,480-484.
    Earley, K.W., and Poethig, R.S. (2011). Binding of the cyclophilin 40 ortholog SQUINT to Hsp90 protein is required for SQUINT function in Arabidopsis. J Biol Chem 286,38184-38189.
    Eastmond, P.J., van Dijken, A.J., Spielman, M., Kerr, A., Tissier, A.F., Dickinson, H.G., Jones, J.D., Smeekens, S.C., and Graham, I.A. (2002). Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29,225-235.
    Eriksson, S., Bohlenius, H., Moritz, T., and Nilsson, O. (2006). GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18,2172-2181.
    Fairchild, C.D., and Quail, P.H. (1998). The phytochromes:photosensory perception and signal transduction. Symp Soc Exp Biol 51,85-92.
    Franklin, K.A., and Whitelam, G.C. (2005). Phytochromes and shade-avoidance responses in plants. Ann Bot 96,169-175.
    Fu, C., Sunkar, R., Zhou, C., Shen, H., Zhang, J.Y., Matts, J., Wolf, J., Mann, D.G., Stewart, C.J., Tang, Y., and Wang, Z.Y. (2012). Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnol J 10,443-452.
    Fu, X., and Harberd, N.P. (2003). Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421,740-743.
    Gendall, A.R., Levy, Y.Y., Wilson, A., and Dean, C. (2001a). The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107,525-535.
    Gendall, A.R., Levy, Y.Y., Wilson, A., and Dean, C. (2001b). The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107,525-535.
    Gocal, G.F., Poole, A.T., Gubler, F., Watts, R.J., Blundell, C., and King, R.W. (1999). Long-day up-regulation of a GAMYB gene during Lolium temulentum inflorescence formation. Plant Physiol 119,1271-1278.
    Gocal, G.F., Sheldon, C.C., Gubler, F., Moritz, T., Bagnall, D.J., MacMillan, C.P., Li, S.F., Parish, R.W., Dennis, E.S., Weigel, D., and King, R.W. (2001). GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol 127,1682-1693.
    Griffiths, J., Murase, K., Rieu, I., Zentella, R., Zhang, Z.L., Powers, S.J., Gong, F., Phillips, A.L., Hedden, P., Sun, T.P., and Thomas, S.G. (2006). Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18,3399-3414.
    Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. (1994). Regulation of the arabidopsis floral homeotic gene APETALA1. Cell 76,131-143.
    Halliday, K.J., Salter, M.G., Thingnaes, E., and Whitelam, G.C. (2003). Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J 33, 875-885.
    Han, M.H., Goud, S., Song, L., and Fedoroff, N. (2004). The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci U S A 101,1093-1098.
    Harberd, N.P., Belfield, E., and Yasumura, Y. (2009). The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism:how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments. Plant Cell 21,1328-1339.
    Hartmann, U., Hohmann, S., Nettesheim, K., Wisman, E., Saedler, H., and Huijser, P. (2000). Molecular cloning of SVP:a negative regulator of the floral transition in Arabidopsis. Plant J 21, 351-360.
    He, Y., Michaels, S.D., and Amasino, R.M. (2003). Regulation of flowering time by histone acetylation in Arabidopsis. Science 302,1751-1754.
    Hepworth, S.R., Valverde, F., Ravenscroft, D., Mouradov, A., and Coupland, G. (2002a). Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. Embo J 21,4327-4337.
    Hepworth, S.R., Valverde, F., Ravenscroft, D., Mouradov, A., and Coupland, G. (2002b). Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. Embo J 21,4327-4337.
    Hisamatsu, T., and King, R.W. (2008). The nature of floral signals in Arabidopsis. Ⅱ. Roles for FLOWERING LOCUS T (FT) and gibberellin. J Exp Bot 59,3821-3829.
    Honma, T., and Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409,525-529.
    Hornyik, C., Terzi, L.C., and Simpson, G.G. (2010). The spen family protein FPA controls alternative cleavage and polyadenylation of RNA. Dev Cell 18,203-213.
    Huijser, P., and Schmid, M. (2011). The control of developmental phase transitions in plants. Development 138,4117-4129.
    Iki, T., Yoshikawa, M., Meshi, T., and Ishikawa, M. (2012). Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. Embo J 31,267-278.
    Imaizumi, T., Schultz, T.F., Harmon, F.G., Ho, LA., and Kay, S.A. (2005). FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309,293-297.
    Iturriaga, G., Suarez, R., and Nova-Franco, B. (2009). Trehalose metabolism:from osmoprotection to signaling. Int J Mol Sci 10,3793-3810.
    Jacobsen, S.E., and Olszewski, N.E. (1993). Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell 5,887-896.
    Jung, J.H., Ju, Y., Seo, P.J., Lee, J.H., and Park, C.M. (2012). The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant J 69,577-588.
    Jung, J.H., Seo, Y.H., Seo, P.J., Reyes, J.L., Yun, J., Chua, N.H., and Park, C.M. (2007). The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19,2736-2748.
    Kaufmann, K., Pajoro, A., and Angenent, G.C. (2010). Regulation of transcription in plants: mechanisms controlling developmental switches. Nat Rev Genet 11,830-842.
    Kaufmann, K., Wellmer, F., Muino, J.M., Ferrier, T., Wuest, S.E., Kumar, V., Serrano-Mislata, A., Madueno, F., Krajewski, P., Meyerowitz, E.M., Angenent, G.C., and Riechmann, J.L. (2010). Orchestration of floral initiation by APETALA1. Science 328,85-89.
    Kidner, C.A., and Martienssen, R.A. (2005). The role of ARGONAUTE1 (AGO1) in meristem formation and identity. Dev Biol 280,504-517.
    Kim, J.J., Lee, J.H., Kim, W., Jung, H.S., Huijser, P., and Ahn, J.H. (2012). The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiol 159, 461-478.
    Kim, J.Y., Song, H.R., Taylor, B.L., and Carre, I.A. (2003). Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY. Embo J 22,935-944.
    Kim, S., Choi, K., Park, C., Hwang, H.J., and Lee, I. (2006). SUPPRESSOR OF FRIGIDA4, encoding a C2H2-Type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. Plant Cell 18,2985-2998.
    Kircher, S., Kozma-Bognar, L., Kim, L., Adam, E., Harter, K., Schafer, E., and Nagy, F. (1999). Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11,1445-1456.
    Kobayashi, Y., and Weigel, D. (2007). Move on up, it's time for change--mobile signals controlling photoperiod-dependent flowering. Genes Dev 21,2371-2384.
    Komeda, Y. (2004). Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol 55,521-535.
    Koornneef, M., Hanhart, C.J., and van der Veen, J.H. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229,57-66.
    Kurihara, Y., Takashi, Y., and Watanabe, Y. (2006). The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. Rna 12, 206-212.
    Lariguet, P., and Dunand, C. (2005). Plant photoreceptors:phylogenetic overview. J Mol Evol 61, 559-569.
    Laubinger, S., Marchal, V., Le Gourrierec, J., Wenkel, S., Adrian, J., Jang, S., Kulajta, C, Braun, H., Coupland, G., and Hoecker, U. (2006). Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133, 3213-3222.
    Lee, H., Yoo, S.J., Lee, J.H., Kim, W., Yoo, S.K., Fitzgerald, H., Carrington, J.C., and Ahn, J.H. (2010). Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Res 38,3081-3093.
    Lee, J.H., Yoo, S.J., Park, S.H., Hwang, I., Lee, J.S., and Ahn, J.H. (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21,397-402.
    Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75,843-854.
    Levy, Y.Y., Mesnage, S., Mylne, J.S., Gendall, A.R., and Dean, C. (2002). Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297,243-246.
    Li, C., and Dubcovsky, J. (2008). Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J 55,543-554.
    Li, D., Liu, C., Shen, L., Wu, Y., Chen, H., Robertson, M., Helliwell, C.A., Ito, T., Meyerowitz, E., and Yu, H. (2008). A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell 15,110-120.
    Li, J., Yang, Z., Yu, B., Liu, J., and Chen, X. (2005). Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Curr Biol 15,1501-1507.
    Li, Q.H., and Yang, H.Q. (2007). Cryptochrome signaling in plants. Photochem Photobiol 83,94-101.
    Lim, M.H., Kim, J., Kim, Y.S., Chung, K.S., Seo, Y.H., Lee, I., Kim, J., Hong, C.B., Kim, H.J., and Park, C.M. (2004). A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16,731-740.
    Liu, C., Zhou, J., Bracha-Drori, K., Yalovsky, S., Ito, T., and Yu, H. (2007). Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development 134, 1901-1910.
    Liu, C., Chen, H., Er, H.L., Soo, H.M., Kumar, P.P., Han, J.H., Liou, Y.C., and Yu, H. (2008). Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135, 1481-1491.
    Liu, F., Quesada, V., Crevillen, P., Baurle, I., Swiezewski, S., and Dean, C. (2007). The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC. Mol Cell 28,398-407.
    Liu, L.J., Zhang, Y.C., Li, Q.H., Sang, Y., Mao, J., Lian, H.L., Wang, L., and Yang, H.Q. (2008). COP 1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20,292-306.
    Llave, C., Kasschau, K.D., Rector, M.A., and Carrington, J.C. (2002). Endogenous and silencing-associated small RNAs in plants. Plant Cell 14,1605-1619.
    Lokhande, S.D., Ogawa, K., Tanaka, A., and Hara, T. (2003). Effect of temperature on ascorbate peroxidase activity and flowering of Arabidopsis thaliana ecotypes under different light conditions. J Plant Physiol 160,57-64.
    Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., Westphal, L., Murphy, G., Sherson, S., Cobbett, C., and Dean, C. (1997). FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89,737-745.
    Mallory, A.C., Elmayan. T., and Vaucheret, H. (2008). MicroRNA maturation and action--the expanding roles of ARGONAUTEs. Curr Opin Plant Biol 11,560-566.
    Mathieu, J., Yant, L.J., Murdter, F., Kuttner, F., and Schmid, M. (2009). Repression of flowering by the miR172 target SMZ. PLoS Biol 7, e1000148.
    Michaels, S.D., and Amasino, R.M. (2001). Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13,935-941.
    Michaels, S.D., Himelblau, E., Kim, S.Y., Schomburg, F.M., and Amasino, R.M. (2005). Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol 137,149-156.
    Moon, J., Suh, S.S., Lee, H., Choi, K.R., Hong, C.B., Paek, N.C., Kim, S.G., and Lee, I. (2003). The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35,613-623.
    Mouradov, A., Cremer, F., and Coupland, G. (2002). Control of flowering time:interacting pathways as a basis for diversity. Plant Cell 14 Suppl, S111-S130.
    Murase, K., Hirano, Y., Sun, T.P., and Hakoshima, T. (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456,459-463.
    Naqvi, A.R., Sarwat, M., Hasan, S., and Roychodhury, N. (2012). Biogenesis, functions and fate of plant microRNAs. J Cell Physiol 227,3163-3168.
    Noh, B., Lee, S.H., Kim, H.J., Yi, G., Shin, E.A., Lee, M., Jung, K.J., Doyle, M.R., Amasino, R.M., and Noh, Y.S. (2004). Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell 16,2601-2613.
    Oda, A., Fujiwara, S., Kamada, H., Coupland, G., and Mizoguchi, T. (2004). Antisense suppression of the Arabidopsis PIF3 gene does not affect circadian rhythms but causes early flowering and increases FT expression. Febs Lett 557,259-264.
    Ohto, M., Onai, K., Furukawa, Y., Aoki, E., Araki, T., and Nakamura, K. (2001). Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol 127,252-261.
    Palatnik, J.F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J.C., and Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature 425,257-263.
    Parcy, F., Bomblies, K., and Weigel, D. (2002). Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development 129, 2519-2527.
    Park, W., Li, J., Song, R., Messing, J., and Chen, X. (2002a). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12,1484-1495.
    Park, W., Li, J., Song, R., Messing, J., and Chen, X. (2002b). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12,1484-1495.
    Quail, P.H., Boylan, M.T., Parks, B.M., Short, T.W., Xu, Y., and Wagner, D. (1995). Phytochromes:photosensory perception and signal transduction. Science 268,675-680.
    Quesada, V., Macknight, R., Dean, C., and Simpson, G.G. (2003). Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. Embo J 22,3142-3152.
    Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B., and Bartel, D.P. (2002). MicroRNAs in plants. Genes Dev 16,1616-1626.
    Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403,901-906.
    Richter, R., Behringer, C., Muller, I.K., and Schwechheimer, C. (2010). The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes Dev 24,2093-2104.
    Roldan, M., Gomez-Mena, C., Ruiz-Garcia, L., Salinas, J., and Martinez-Zapater, J.M. (1999). Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant J 20,581-590.
    Saijo, Y., Sullivan, J.A., Wang, H., Yang, J., Shen, Y., Rubio, V., Ma, L., Hoecker, U., and Deng, X.W. (2003). The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev 17,2642-2647.
    Samaeh, A., and Wigge, P.A. (2005). Ambient temperature perception in plants. Curr Opin Plant Biol 8,483-486.
    Schomburg, F.M., Patton, D.A., Meinke, D.W., and Amasino, R.M. (2001). FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13, 1427-1436.
    Schwarz, S., Grande, A.V., Bujdoso, N., Saedler, H., and Huijser, P. (2008). The micro RNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67, 183-195.
    Schwechheimer, C., and Willige, B.C. (2009). Shedding light on gibberellic acid signalling. Curr Opin Plant Biol 12,57-62.
    Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Krober, S., Amasino, R.A., and Coupland, G. (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20,898-912.
    Shimada, A., Ueguchi-Tanaka, M., Sakamoto, T., Fujioka, S., Takatsuto, S., Yoshida, S., Sazuka, T., Ashikari, M., and Matsuoka, M. (2006). The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J 48,390-402.
    Simpson, G.G. (2004). The autonomous pathway:epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol 7,570-574.
    Simpson, G.G., Dijkwel, P.P., Quesada, V., Henderson, I., and Dean, C. (2003). FY is an RNA 3' end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113, 777-787.
    Smith, M.R., Willmann, M.R., Wu, G., Berardini, T.Z., Moller, B., Weijers, D., and Poethig, R.S. (2009). Cyclophilin 40 is required for microRNA activity in Arabidopsis. Proc Natl Acad Sci U S A 106,5424-5429.
    Srikanth, A., and Schmid, M. (2011). Regulation of flowering time:all roads lead to Rome. Cell Mol Life Sci 68,2013-2037.
    Sun, J., Cardoza, V., Mitchell, D.M., Bright, L., Oldroyd, G., and Harris, J.M. (2006). Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J 46,961-970.
    Sun, T.P. (2010). Gibberellin-GID1-DELLA:a pivotal regulatory module for plant growth and development. Plant Physiol 154,567-570.
    Sun, T.P., and Kamiya, Y. (1994). The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6,1509-1518.
    Sundstrom, J.F., Nakayama, N., Glimelius, K., and Irish, V.F. (2006). Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis. Plant J 46,593-600. Sung, S., and Amasino, R.M. (2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427,159-164.
    Sung, S., Schmitz, R.J., and Amasino, R.M. (2006). A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis. Genes Dev 20,3244-3248.
    Swain, S.M., Tseng, T.S., and Olszewski, N.E. (2001). Altered expression of SPINDLY affects gibberellin response and plant development. Plant Physiol 126,1174-1185.
    Swiezewski, S., Liu, F., Magusin, A., and Dean, C. (2009). Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462,799-802.
    Terzi, L.C., and Simpson, G.G. (2008). Regulation of flowering time by RNA processing. Curr Top Microbiol Immunol 326,201-218.
    Theissen, G. (2001). Development of floral organ identity:stories from the MADS house. Curr Opin Plant Biol 4,75-85.
    Todesco, M., Rubio-Somoza, I., Paz-Ares, J., and Weigel, D. (2010). A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 6, e1001031.
    Tsuji, H., Aya, K., Ueguchi-Tanaka, M., Shimada, Y., Nakazono, M., Watanabe, R., Nishizawa, N.K., Gomi, K., Shimada, A., Kitano, H., Ashikari, M., and Matsuoka, M. (2006). GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J 47,427-444.
    Turck, F., Fornara, F., and Coupland, G. (2008). Regulation and identity of florigen:FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59,573-594.
    Ueguchi-Tanaka, M., Ashikari, M., Nakajima, M., Itoh, H., Katoh, E., Kobayashi, M., Chow, T.Y., Hsing, Y.I., Kitano, H., Yamaguchi, I., and Matsuoka, M. (2005). GIBBERELLIN INSENSITIVE DWARF 1 encodes a soluble receptor for gibberellin. Nature 437,693-698.
    van Dijken, A.J., Schluepmann, H., and Smeekens, S.C. (2004). Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering. Plant Physiol 135, 969-977.
    Vaucheret, H., Vazquez, F., Crete, P., and Bartel, D.P. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18,1187-1197.
    Vazquez, F., Vaucheret, H., Rajagopalan, R., Lepers, C., Gasciolli, V., Mallory, A.C., Hilbert, J.L., Bartel, D.P., and Crete, P. (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16,69-79.
    Wagner, D., Sablowski, R.W., and Meyerowitz, E.M. (1999). Transcriptional activation of APETALA1 by LEAFY. Science 285,582-584.
    Wang, J.W., Czech, B., and Weigel, D. (2009). miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138,738-749.
    Werner, J.D., Borevitz, J.O., Uhlenhaut, N.H., Ecker, J.R., Chory, J., and Weigel, D. (2005). FRIGIDA-independent variation in flowering time of natural Arabidopsis thaliana accessions. Genetics 170,1197-1207.
    Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., and Weigel, D. (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309,1056-1059.
    Willige, B.C., Ghosh, S., Nill, C, Zourelidou, M., Dohmann, E.M., Maier, A., and Schwechheimer, C. (2007). The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell 19,1209-1220.
    Wilson, R.N., Heckman, J.W., and Somerville, C.R. (1992). Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiol 100,403-408.
    Wollmann, H., Mica, E., Todesco, M., Long, J.A., and Weigel, D. (2010). On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development 137,3633-3642.
    Wu, G., and Poethig, R.S. (2006). Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133,3539-3547.
    Wu, G., Park, M.Y., Conway, S.R., Wang, J.W., Weigel, D., and Poethig, R.S. (2009). The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750-759.
    Xie, Z., Khanna, K., and Ruan, S. (2010). Expression of microRNAs and its regulation in plants. Semin Cell Dev Biol 21,790-797.
    Yamaguchi, A., Wu, M.F., Yang, L., Wu, G., Poethig, R.S., and Wagner, D. (2009). The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell 17,268-278.
    Yang, L., Conway, S.R., and Poethig, R.S. (2011). Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156. Development 138,245-249.
    Yang, L., Wu, G., and Poethig, R.S. (2012). Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. Proc Natl Acad Sci U S A109,315-320.
    Yang, L., Liu, Z., Lu, F., Dong, A., and Huang, H. (2006). SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47,841-850.
    Yang, Z., Wang, X., Gu, S., Hu, Z., Xu, H., and Xu, C. (2008). Comparative study of SBP-box gene family in Arabidopsis and rice. Gene 407,1-11.
    Yant, L., Mathieu, J., Dinh, T.T., Ott, F., Lanz, C., Wollmann, H., Chen, X., and Schmid, M. (2010). Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 22,2156-2170.
    Yoo, S.K., Chung, K.S., Kim, J., Lee, J.H., Hong, S.M., Yoo, S.J., Yoo, S.Y., Lee, J.S., and Ahn, J.H. (2005). CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiol 139,770-778.
    Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R.W., Steward, R., and Chen, X. (2005a). Methylation as a crucial step in plant microRNA biogenesis. Science 307,932-935.
    Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R.W., Steward, R., and Chen, X. (2005b). Methylation as a crucial step in plant microRNA biogenesis. Science 307,932-935.
    Yu, H., Xu, Y., Tan, E.L., and Kumar, P.P. (2002). AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci U S A 99,16336-16341.
    Zeevaart, J.A. (2006). Florigen coming of age after 70 years. Plant Cell 18,1783-1789.
    Zhang, M.Z., Ye, D., Wang, L.L., Pang, J.L., Zhang, Y.H., Zheng, K., Bian, H.W., Han, N., Pan, J.W., Wang, J.H., and Zhu, M.Y. (2008). Overexpression of the cucumber LEAFY homolog CFL and hormone treatments alter flower development in gloxinia (Sinningia speciosa). Plant Mol Biol 67, 419-427.
    Zhu, Q.H., and Helliwell, C.A. (2011). Regulation of flowering time and floral patterning by miR172. J Exp Bot 62,487-495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700