用户名: 密码: 验证码:
高致病小RNA病毒病毒样颗粒的制备及部分颗粒的免疫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小RNA病毒科目前包含有17个病毒属如口蹄疫病毒属(Aphthovirus)、肠病毒属(Enterovirus)、鼻病毒属(Rhinovirus)和肝病毒属(Hepatovirus)等。病毒无包膜,正二十面体球形结构。病毒衣壳蛋白由VP1,VP2,VP3,VP4等4个结构蛋白所组成。该病毒科较常见的高致病病毒包括Enterovirus71(EV71)、柯萨奇病毒(Coxsackievirus)、脊髓灰质炎病毒(Poliovirus)和甲肝病毒(HepatitisAvirus,HAV)等。EV71和柯萨奇病毒如柯萨奇病毒A16型(Coxsackievirus,CVA16)的感染可诱发手足口病、脑干脑炎和脑膜脑炎等多种严重疾病。而脊髓灰质炎病毒和甲肝病毒的感染可分别导致脊髓灰质炎和甲型肝炎等严重疾病。目前,EV71和CVA16病毒还没有疫苗来预防其感染。而脊髓灰质炎病毒和甲肝病毒虽分别有减毒和灭活型预防性疫苗,但减毒的脊髓灰质炎疫苗具有可引起疫苗相关麻痹性脊髓灰质炎的缺陷,而灭活的脊髓灰质炎疫苗和甲肝疫苗则因成本高而极大地限制其广泛的应用。
     随着现代生物技术的快速发展,基因工程疫苗成为了近年来新型病毒预防性疫苗主要的发展趋势。其中,基于病毒样颗粒的基因工程疫苗因病毒样颗粒(virus-like particles,VLPs)具有与天然病毒衣壳蛋白相似或相同的空间构型及抗原表位且不含病毒的基因组,而且具有完整的免疫原性和较高的安全性而备受关注。本研究开展了针对小RNA病毒科的几类常见的高致病的病毒如EV71、CVA16、脊髓灰质炎病毒和甲肝病毒的病毒样颗粒的制备技术的研究。探索了利用现代分子生物学技术制备预防上述4种病毒的基于病毒样颗粒的基因工程疫苗的新方法。
     本课题利用酿酒酵母表达系统来制备4种病毒的VLPs。酵母表达系统是大规模生产表达重组蛋白的理想模式。具有成本低,产量高等特点。我们首先对EV71的结构蛋白P1基因和蛋白酶3CD基因进行了密码子优化,使其能够高效利用酿酒酵母自身的翻译系统,利用分子克隆技术构建了共表达P1和3CD基因的表达载体,将表达载体通过化学法转至酿酒酵母胞内,诱导外源蛋白的表达,收获并破碎菌体后,通过密度梯度离心对发酵产物进行了初步纯化,通过Western Blot检测了EV71蛋白的表达,通过透射电镜观测到与真实病毒大小一致的EV71VLPs。为了验证表达载体质粒是否能在酿酒酵母胞内稳定存在,我们还通过Real-TimePCR法对质粒拷贝数的稳定性进行了检测,实验结果表明,在酿酒酵母培养及诱导过程中,质粒表达载体丢失率较低。为了提高EV71VLPs的表达量,接下来,我们还对酿酒酵母表达系统的培养条件进行了优化,延长酿酒酵母的对数生长期并使其菌密度显著提高,实验结果表明优化培养条件后,收获的酿酒酵母菌量比未优化前增加了30%,并且EV71VLPs的表达量有了明显的提高。
     此外,我们还对CVA16,Poliovirus I型的结构蛋白P1和蛋白酶基因进行了优化,构建了CVA16及Poliovirus I的酿酒酵母表达载体,诱导表达、收获纯化后,通过透射电镜和Westen Blot鉴定,表明了酿酒酵母表达系统同样成功表达并组装形成了CVA16及Poliovirus I型的VLPs。我们还尝试利用酿酒酵母表达系统表达未优化的HAV LA-1疫苗株的结构蛋白及蛋白酶,利用酿酒酵母表达系统,经过和以上病毒同样的培养及纯化过程,实验结果表明,未优化的HAV基因酿酒酵母胞内虽然成功组装形成了HAV VLPs,但产量较低,因此对目的基因进行密码子优化,对于其是否能高效表达是十分必要的。
     在以上实验的基础上,我们还对EV71VLPs的免疫原性进行初步评价。用纯化后的EV71VLPs免疫小鼠BALB/c,肌肉注射,首次注射2周后加强免疫一针,通过检测血清中特异性IgG抗体的应答水平以及血清的中和抗体保护效力,表明EV71VLPs免疫诱导了机体产生了体液免疫。当用致死剂量的EV71病毒与VLPs免疫血清中和并对乳鼠进行攻击时,发现89%的乳鼠获得保护,其保护效力与BPL灭活处理的EV71病毒相当。结果表明EV71VLPs具有良好的免疫原性。
     本论文成功地在酿酒酵母系统中建立了表达EV71、CVA16、Poliovirus和HAV VLPs的方法,并对EV71VLPs的免疫原性进行了初步评价。结果表明酿酒酵母表达的EV71VLPs具有良好的免疫原性,可以诱导出中和EV71病毒的中和抗体,为预防小RNA病毒的新型疫苗的研究提供了新思路。
The family Picornaviridae consists of17genera, such as aphthovirus,enterovirus, rhinovirus and hepatovirus. Picornaviruses are non-enveloped withanicosahedral capsid. Viral capsid is composed of4polypeptides known as VP (viralprotein)1,2,3and4. The most common highly pathogenic viruses of this familyinclude enterovirus71(EV71), coxsackievirus, poliovirus and hepatitis A virus (HAV).EV71and coxsackievirus A16(CVA16) are etiological agents of hand, foot andmouth disease, brainstem encephalitis and aseptic meningitis. Poliovirus and HAV arecausative agents of poliomyelitis and hepatitis, respectively. There are no vaccinesavailable to prevent the infection of EV71and CVA16. Inactivated and live-attenuatedvaccines are available in commercial market against poliovirus and hepatitis A virus.However, live-attenuated of oral polio vaccine (OPV) revert to neurovirulence andcause vaccine-associated paralytic poliomyelitis in vaccinees and inactivated vaccinesare restricted by their high-costs.
     Engineered vaccines are representing the trend of the development of vaccinefollowing the rapid improvement of biotechnologies. Vaccines based on virus-likeparticle (VLP) attracted great attentions by its similar structure with wild-type virus,which harbors both conformational and sequential epitopes. The formation of theVLPs of EV71, CVA16, poliovirus and HAV was investigated in our current studies,which could provide the new insights in the development of engineered vaccines ofvirus of the family Picornaviridae.
     Saccharomy cescerevisiae was used to produce the VLPs, which is characterizedby the high productivities and low costs. In our studies, the genes encoding EV71structural protein P1and protease3CD were initially optimized to increase proteinexpression by efficiently usage of the internal transcription and translation system ofsaccharomy cescerevisiae. After codon optimization, the EV71VLPs expressionvectors was constructed and confirmed by sequencing. Saccharomy cescerevisiaecells were transfected with validated vectors and the expression of P1and3CD genesof EV71was induced. Yeast cells were harvested and lysed and the cell lysis wasprimarily purified by ultracentrifugation. The expression of EV71proteins in purifiedproducts was detected by Western Blot, and the formation of EV71VLPs with the sizesimilar to that of EV71was observed by transmission electron microscope. In order toverify the stability of vectors in saccharomyces cerevisiae, Real-Time PCR was usedto detect the copy numbers of plasmid. The experimental results show that theplasmid expression vector has a low lossing rate during culturing. Furthermore, inorder to improve the yield of EV71VLPs, the culture conditions of saccharomyces cerevisiae was optimized. The result shows that after the optimization of cultureconditions, the yield of saccharomyces cerevisiae increased by30%than before andthe expression of EV71VLPs could be successfully improved.
     Furthermore, the gene of structural protein P1and protease was optimized andthe VLPs expression vector of CVA16, poliovirus I were constructed and validated bysequencing. Saccharomy cescerevisiae cells were transfected with validated vectorsand the expression of viral proteins was induced. After purification, the viral proteinsof CVA16and poliovirus I were detected by Western Blot, and the formation of VLPswas observed by transmission electron microscope. The formation of the VLPs ofHAV was observed by similar method. But, the expression of viral proteins was lowerwithout codon optimizations, indicating that the codon optimization is necessary forefficient expression of foreign proteins.
     The purified EV71VLPs was used to immune BALB/c mouse by muscleinjection and boosted at2nd week. Blood was collected and separated. The specificIgG antibody titers and neutralization titers in serum was measured. Our resultsshowed that EV71VLPs was capable of eliciting neutralization response in mice,indicating that EV71VLPs are highly immunogenic.
     In conclusion, the VLPs of highly pathogenic picornavirus, such as EV71,CVA16, poliovirus and HAV were successfully produced in yeast, and theimmunogenicity of EV71VLPs was preliminarily evaluated, which could eliciteneutralizing immunity againt EV71. Thus, EV71VLPs expressed by saccharomycescerevisiae system have good immunogenicity and safety. Our current studies havea great potential for engineered vaccine design against the virus of the familyPicornaviridae.
引文
[1] Strikas R A, Anderson L J, Parker R A. Temporal and Geographic Patterns ofIsolates of Nonpolio Enterovirus in the United States,1970–1983. J Infect Dis,1986,153:346–351
    [2]李兰娟.手足口病,浙江科学技术出版社,2008.
    [3] Lee M S, Chang L Y. Development of Enterovirus71Vaccines. Expert RevVaccines2010,9:149–156
    [4] Solomon T, Lewthwarte P, Perera D, Cordosa MJ, McMinn P, Ooi MH.Virology, Epidemiology, Pathogenesis and Control of Enterovirus71. LancetInfect Dis2010,10:778–790.
    [5] Xu J, Qian Y, Wang S, et al. EV71: an Emerging Infectious Disease VaccineTarget in the Far East. Vaccine,2010,28(20):3516–3521
    [6] Lee B Y, Wateska A R, Bailey R R, et al. Forecasting the Economic Value ofan Enterovirus71(EV71) Vaccine. Vaccine,2010,28(49):7731–7736
    [7] Cameron C E, Suk Oh H, Moustafa I M. Expanding Knowledge of P3Proteinsin the Poliovirus Lifecycle. Future Microbiol,2010,5(6):867–881
    [8] Enders J F, Weller T H, Robbins F C. Cultivation of the Lansing Strain ofPoliomyelitis Virus in Cultures of Various Human Embryonic Tissues. Science,1949,109:85–87
    [9] Summers D F, Maizel J V. Evidence for Large Precursor Proteins in PoliovirusSynthesis. Proc Natl Acad SciUSA,1968,59:966–971
    [10] Hiroyuki Shinmizu, Burce Thorley, Fem Julia Paladin, et al. Circulation ofType1Vaccine-Derived Polioviurs in the Philippines in2001. J. Virol,2004,78(24):13512-13521.
    [11] Robertson BH, Jansen RW,Khanna B, et al. Genetic Relatedness of Hepatitis AVirus Strains Recovered from Different Geographical Regions. J Gen Virol,1992,73:1365–1377
    [12] Sitrin R D, Wampler D E, Ellis R W. Survey of Licensed Hepatitis B Vaccinesand Their Production Processes. In: Ellis RW,(ed.). Hepatitis B Vaccines inClinical Practice. New York: Marcel Dekker,1993:83–101
    [13] Ansardi D C, Luo M, Morrow C D. Mutations in the Poliovirus P1CapsidPrecursor at Arginine Residues VP4–ARG34, VP3–ARG223, andVP1–ARG129Affect Virus Assembly and Encapsidation of Genomic RNA.Virology,1994,199:20–34
    [14] Ooi M H, Wong S C, Lewthwaite P, Cardosa M J, Solomon T. ClinicalFeatures, Diagnosis and Management of Human Enterovirus71Infection.Lancet Neurol2010,9(11):1097–1105
    [15] Perez–Ve lez C M, Anderson M S, Robinson C C, McFarland E J, Nix W A,Pallansch M A, et al. Outbreak of Neurologic Enterovirus Type71Disease: aDiagnostic Challenge. Clin Infect Dis,2007,45:950–957
    [16]赵成松,赵顺英.手足口病的流行概况和应对策略.中国实用儿科杂志,2009,24(6):419–421
    [17] Chumakov, M., Voroshilova, M., Shindarov, L., et al. Enterovirus71Isolatedfrom Cases of Epidemic Poliomyelitis Like Disease in Bulgaria. Arch. Virol,1979,60:329–340
    [18] MA E, Chan K C, Cheng P, Wong C, Chuang S K. The Enterovirus71Epidemic in2008–Public Health Implications for Hong Kong. Int J Infect Dis,2010,14(9):775–780
    [19] Wu Y, Yeo A, Phoon M C, Tan E L, Poh C L, Quak S H, et al. The LargestOutbreak of Hand Foot and Mouth Disease in Singapore in2008: The Role ofEnterovirus71and Coxsackievirus1strains. Int J Infect Dis,2010,14(12):e1076–1081
    [20] Chatproedprai S, Theanboonlers A, Korkong S, Thongmee C, Wananukul S,Poovorawan Y. Clinical and Molecular Characterization ofHand–foot–and–mouth Disease in Thailand,2008–2009. Jpn J Infect Dis,2010,63(4):229–233
    [21] Zhang Y, Tan X, Wang H, et al. An Outbreak of Hand, Foot, and MouthDisease Associated with Subgenotype C4of Human Enterovirus71inShandong.China Journal of Clinical Virology,2009,44(4):262–267
    [22] Chang L Y, Tsao K C, Hsia S H, Shih S R, Huang C G, Chan W K.Transmission and Clinical Features of Enterovirus71Infections in HouseholdContacts in Taiwan. JAWA,2004,291:222–227
    [23] Hamaguchi Tsuyoshi, Fujisawa Hironori, Sakai Kenji, Okino Soichi, KurosakiNaoko, Nishimura Yorihiro, Shimizu Hiroyuki, Yamada Masahito. AcuteEncephalitis Caused by Intrafamilial Transmission of Enterovirus71in Adult.Emerg Infect Dis,2008,14(5):828–830
    [24] Chan K P, Goh K T, Chong C Y, Teo E S, Lau G, Ling AE. Epidemic Hand,Foot, and Mouth Disease Caused by Human Enterovirus71, Singapore. EmergInfect Dis,2003,9:78–85
    [25] Caspar D L, Klug A. Physical Principles in the Construction of RegularViruses. Cold Spring Harb Symp Quant Biol,1962,27:1–22
    [26] Flanegan J B, Petterson R F, Ambros V, et al. Covalent Linkage of a Protein toa Defined Nucleotide Sequence at the5’–Terminus of Virion an ReplicativeIntermediate RNAs of Poliovirus. Proc Natl Acad Sci USA,1977,74:961–965
    [27] Golini F, Semler B L, Dorner A J, et al. Protein–linked RNA of Poliovirus isCompetent to Form an Initiation Complex of Translation in Vitro. Nature,1980,287:600–603
    [28] Molla A, Paul A V, Wimmer E. Cell–free, de novo Synthesis of Poliovirus.Science,1991,254:1647–1651
    [29] Villa–Komaroff L, Guttman N, Baltimore D, et al. Complete Translation ofPoliovirus RNA in a Eukaryotic Cell–Free System. Proc Natl Acad Sci USA,1975,72:4157–4161
    [30] Brown D M, Cornell C T, Tran G P, et al. An Authentic3’ Noncoding Regionis Necessary for Efficient Poliovirus Replication. J Virol,2005,79:11962–11973
    [31] Todd S, Towner J S, Brown D M, et al. Replication–Competent Picornaviruseswith Complete Genomic RNA3’ Noncoding Region Deletions. J Virol,1997,71:8868–8874
    [32] Yogo Y, Teng M H, Wimmer E. Poly(U) in Poliovirus Minus RNA is5’–Terminal. Biochem Biophys Res Commun,1974,61:1101–1109
    [33] Jore J, De Geus B, Jackson R J, et al. Poliovirus Protein3CD is the ActiveProtease for Processing of the Precursor Protein P1in vitro. J Gen Virol,1988,69:1627–1636
    [34] Ypma–Wong M F, Dewalt P G, Johnson V H, et al. Protein3CD is the MajorPoliovirus Proteinase Responsible for Cleavage of the P1Capsid Precursor.Virology,1988,166:265–270
    [35] Paul A V, Cao X, Harris K S, et al. Studies with Poliovirus Polymerase3Dpol.Stimulation of poly(U) Synthesis in Vitro by Purified Poliovirus Protein3AB.J Biol Chem,1994,269:29173–29181
    [36] Plotch S J, Palant O. Poliovirus Protein3AB Forms a Complex with andStimulates the Activity of the Viral RNA Polymerase,3Dpol. J Virol,1995,69:7169–7179
    [37] Richards O C, Ehrenfeld E. Effects of Poliovirus3AB Protein on3DPolymerase–Catalyzed Reaction. J Biol P.837Chem,1998,273:12832–12840
    [38] Hope D A, Diamond S E, Kirkegaard K. Genetic Dissection of Interactionbetween Poliovirus3D Polymerase and Viral Protein3AB. J Virol,1997,71:9490–9498
    [39] Badorff C, Lee G H, Lamphear B J, et al. Enteroviral Protease2A CleavesDystrophin: Evidence of Cytoskeletal Disruption in an AcquiredCardiomyopathy. Nat Med,1999,5:320–326
    [40] Andino R, Rieckhof G E, Trono D, et al. Substitutions in the Protease (3Cpro)Gene of Poliovirus Can Suppress a Mutation in the5’ Noncoding Region. JVirol,1990,64:607–612
    [41] Jacobson M F, Baltimore D. Morphogenesis of Poliovirus I Association of theViral RNA with Coat Protein. J Mol Biol,1968,3:369–378
    [42] Basavappa R, Syed R, Flore O, et al. Role and Mechanism of the MaturationCleavage of VP0in Poliovirus Assembly: Structure of the Empty CapsidAssembly Intermediate at2.9A Resolution. Protein Sci,1994,3:1651–1669
    [43] Nugent CI, Kirkegaard K. RNA Binding Properties of Poliovirus SubviralParticles. J Virol,1995,69:13–22
    [44] Xiangxi W, Wei P, Jingshan R, et al. A Sensor–Adaptor Mechanism forEnterovirus Uncoating from Structures of EV71. Nat Struct Mol Biol,2012,19(4):424–429
    [45] Hellen CUT, Wimmer E. Enterovirus Structure and Assembly. In: Rotbart HA,et al. Human Enterovirus Infections. Washington, DC: American Society forMicrobiology,1995:155–174
    [46] Fout G S, Medappa K C, Mapoles J E, et al. Radiochemical Determination ofPolyamined in Poliovirus and Human Rhinovirus14. J Biol Chem,1984,259:3639–3643
    [47] Yip C C, Lau S K, Zhou B, et al. Emenrgence of Enterovirus71―Double–Recombinant‖Strains Belonging to a Novel Genotype D Originatingfrom Southern China: First Evidence for Combination of Intratypic andIntertypic Recombination Events in EV71. Arch Virol,2010,155(9):1413–1424
    [48]金奇.医学分子病毒学.北京:科学出版社,2001:606–613
    [49] Yuyun Li, Runan Zhu, Yuan Qian, et al. Comparing Enterovirus71withCoxsackievirus A16by Analyzing Nucleotide Sequences and Antigenicity ofRecombinant Proteins of VP1s and VP4s.. BMC Microbiology2011,11:246
    [50] Perera D, Yusof M A, Podin Y, et al. Molecular Phylogeny of ModernCoxsackievirus A16. Arch Virol,2007,152(6):1201–1208
    [51] Zhang Y, Wang D, Yan D, et al. Molecular Evidence of Persistent Epidemicand Evolution of Subgenotype B1Coxsackievirus A16Associated Hand, Foot,and Mouth Disease in China.J Clin Microbiol,2010,48(2):619–627
    [52] Arita M, Nagata N, Iwata N, et al. An Attenuated Strain of Enterovirus71Belonging to Genotype A Showed a Broad Spectrum of Antigenicity withAttenuated Neurovirulence in Cynomolgus Monkeys. J Virol,2007,81:93869395
    [53] Wang Y F, Chou C T, Lei H Y, et al. A Mouse Adapted Enterovirus71StrainCauses Neurological Disease in Mice After Oral Infection. J Virol,2004,78(15):7916–7924
    [54]朵建英,王卫,佟巍.肠道病毒71型(EV71)对ICR小鼠的感染.中国比较医学杂志.2009,19(5):41–46
    [55] Yao–Chi Chunga, Mei–Shang Hob, Jaw–Chin Wuc, et al. Immunization withVirus–Like Particles of Enterovirus71Elicits Potent Immune Responses andProtects Mice Against Lethal Challenge. Vaccine,2008,26:1855—1862
    [56] Sandoval C, Curtis H, Congote L F. Enhanced Proliferative Effects of aBaculovirus Produced Fusion Protein of Insulin Like Growth Factor and AlphaProteinase Inhibitor and Improved Antielastase Activity of the Inhibitor withGlutamate at Position351. Protein Eng,2002,15(5):413–418
    [57] Chen H L, Wang L C, Chang C H, et al. Recombinant Porcine LactoferrinExpressed in the Milk of Transgenic Mice Protects Neonatal Mice from aLethal Challenge with Enterovirns Type71. Vaccine,2008,26:891–898
    [58] Lin Y L, Yu C I, Hu Y C, et al. Enterovirus type71Neutralizing Antibodies inthe Serum of Macaque Monkeys Immunized with EV71Virus–Like Particles.Vaccine,2012,30(7):1305–12
    [59] Tung W S, Bakar S A, Sekawi Z, et al. DNA Vaccine Constructs AgainstEnterovirus71Elicit Immune Response in Mice. Genetic Vaccines andTherapy,2007,5:6
    [60] Wu T C, Wang Y F, Lee Y P.Immunity to Avirulent Enterovirus71andCoxsackie A16Virus Protects Against Enterovirus71Infection in Mice.Journal of Virology,2007,81:10310–10315
    [61]李晓楠,罗德炎,赵忠鹏等.手足口病CVA16型VP1亚单位疫苗的构建制备及免疫原性初步分析.中华微生物学和免疫学杂志,2010,30(3):250–255
    [62] Committee on Typing of the National Foundation for Infantile Paralysis.Immunologic Classification of Poliomyelitis Viruses: a Cooperative Programfor the Typing of one Hundred Strains. Am J Hyg,1951,54:191–274
    [63] Stanley A. Plotkin, Walter A. Orenstein, Paul A. Offit Vaccines, Fifth Edition,2011:685–691
    [64] Horstmann D M. Clinical aspects of acute poliomyelitis. Am J Med,1949,6:592–605
    [65] Ramlow J, Alexander M, Laporte R, et al. Epidemiology of PostpolioSyndrome. Am J Epidemiol,1992,136:769–786
    [66] Centers for Disease Control and Prevention(CDC). Progress to Ward Interruptof Wild Poliovirus Transmission–World Wide, January2010–March2011.MMWR Morb Mortal Wkly Rep,2011,60(18):582–586
    [67] Jenkins H E, Aylward R B, Gasasira A, et al. Implications of a CirculatingVaccine–Derived Poliovirus in Nigeria. N Engl J Med,2010,362(25):2360–2369
    [68] Minor P D. Antigenic Strcture of Picomaviruses. Curr Top Microbiol Immunol,1990,161:121–154
    [69] Castello A, Alvarez E, Carrasco L. The Multifaceted Poliovirus2A Protease:Regulation of Gene Expression by Picornavirus Proteases. J BiomedBiotechnol,2011:369–648
    [70] Cameron C E, Suk Oh H, Moustafa IM. Expanding Knowledge of P3Proteinsin the Poliovirus Lifecycle. Future Microbiol,2010,5(6):867–881
    [71] Melnick J L, Ashkenazi A, Midulla V C, et al. Immunogenic Potency ofMgCl2–Stabilized Oral Poliovaccine. JAMA,1963,185:406–408
    [72] Verdijk P, Rots N Y, Bakker W A. Clinical Development of a NovelInactivated Poliomyelitis Vaccine Based on Attenuated Sabin Poliovirusstrains.Expert Rev Vaccines,2011,10(5):635–644
    [73] Park N, Katikaneni P, Skern T, et al. Differential Targeting of Nuclear PoreComplex Proteins in Poliovirus–Infected Cells. J Virol,2008,82(4):1647–1655
    [74] Arya S C, Agarwal N. Prospective Inactivated or Live Poliovirus Vaccine:Effectiveness in the21st Century. Expert Rev Vaccines,2009,8(2):127–130
    [75] Liu H M, Zheng D P, Zhang L B, et al. Rapid Divergence of Wild Type1Poliovirus into Separate Lineages by Recombination and Mutation. InAbstracts of the Annual Meeting of the American Society for Virology, Ft.Collins, CO,2000:114
    [76] Belnap D M, McDermott B M, FIlman D J, et al. Three–DimensionalStructure of Poliovirus Receptor Bound to Poliovirus. Proc Natl Acad SciUSA,2000,97:73–78
    [77] Almstead, L. L., P. Sarnow. Inhibition of U snRNP Assembly by aVirus–Encoded Proteinase. Genes Dev,2007,21:1086–1097
    [78] Ren R, Constantini F, Gorgaca E, et al. Transgenic Mice Expressing a HumanPoliovirus Receptor: a New Model for Poliomyelitis. Cell,1990,63:353–362
    [79] Racaniello V R, Ren R. Poliovirus Biology and Pathogenesis. Curr TopMicrobiol Immunol,1996,206:305–325
    [80] Agol Vi, Drozdov SG. Russian Contribution to OPV. Biologicals,1993,21:321–325
    [81] WHO Collaborative Study Group on Oral and Inactivated Poliovirus Vaccines.Combined Immunization of Infants with Oral and Inactivated PoliovirusVaccines: Results of a Randomized Trial in The Gambia, Oman, and Thailand.J Infect Dis175(suppl1),1997:215–227
    [82] Grassly N C, Wenger J, Durrani S, et al. Protective Efficacy of a MonovalentOral Type1Poliovirus Vaccine: Acase–Control Study. Lancet,2007,369:1356–1362
    [83] Sutter R W, Prevots D R. Vaccine–Associated Paralytic Poliomyelitis AmongImmuno-Deficient Persons. Infect Med,1994,11:426,429–430,435–438
    [84] Verdijk P, Rots N Y, Bakker W A. Clinical Development of a NovelInactivated Poliomyelitis Vaccine Based on Attenuated Sabin PoliovirusStrains. Expert Rev Vaccines,2011,10(5):635–644
    [85] Bakker W A, Thomassen Y E, van't Oever A G, et al. Inactivated PolioVaccined Evelopment for Technology Transfer Using Attenuated SabinPoliovirus Strains Toshift from Salk–IPV to Sabin–IPV. Vaccine,2011,29(41):7188–7196
    [86] John T J, Jain H, Ravishankar K, et al. Monovalent Type1Oral PoliovirusVaccine among Infants in India: Report of Two Randomized Double–BlindControlled Clinical Trials. Vaccine,2011,29(34):5793–5801
    [87] Sutter R W, John T J, Jain H, et al. Immunogenicity of Bivalent Types1and3Oral Poliovirus Vaccine: a Randomised, Double–Blind, Controlled Trial.Lancet,2010,376(9753):1682–1688
    [88] No authors. Advisory Committee on Poliomyelitis Eradication:Recommendations on the Use of Bivalent Oral Poliovirus Vaccine Types1and3. Wkly Epidemiol Rec,2009,84(29):289–290
    [89] Pliaka V, Filliponi M E, Kyriakopoulou Z, et al. Retrospective MolecularAndphenotypic Analysis of Poliovirus Vaccine Strains Isolated in Greece. ClinMicrobiol Infect.2011,17(10):1554–1562
    [90] World Health Organization. Poliovirus Surveillance Report,January–September2005. Polio Lab Networ Quarterly,2005,11:3–4
    [91] WHO1Int Roduction of Inactivated Poliovirus Vaccine into Oral PoliovirusVaccine Using Count Ries: WHO Position Paper. WER,2003,78(28):241–2501
    [92]褚嘉祐,张燕平.中国脊髓灰质炎疫苗的免疫策略.中华流行病学杂志,2006,27(6):464–4681
    [93] Butel J S, Lednicky J A. Cell and Molecular Biology of Simian Virus40:Implications for Human Infections and Disease. J Natl Canceer Inst,1999,91:119–134
    [94] Dang–Tan T, Mahmud S M, Puntoni R, Franco E L. Polio vaccines, SimianVirus40, and Human Cancer: the Epideminologic Evidence for a CausalAssociation. Oncogene,2004,23:6535–6540
    [95] Halliday M L, Kang L–Y, Zhou T–L, et al. An Epidemic of Hepatitis AAttributable to the Ingestion of Raw Clams in Shanghai, China. J Infect Dis,1991,164:852–859
    [96] Purcell R H, Wong D C, Shapiro M. Relative Infectivity of Hepatitis A virusby the Oral and Intravenous Routes in2Species of Nonhuman Primates. JInfect Dis,2002,185:1668–1771
    [97] Cooksley WGE. What Did we Learn from the Shanghai Hepatitis A Epidemic?J Viral Hep,2000,7:1–3
    [98] Ciocca M. Clinical Course and Consequences of Hepatitis A Infection.Vaccine,2000,18:71–74
    [99] Bauch C T, Rao A S, Pham B Z, et al. A Dynamic Model for AssessingUniversal Hepatitis A Vaccination in Canada. Vaccine,2007,25(10):1719–1726
    [100] Van Effelterre T P, Zink T K, Hoet B J, et al. A Mathematical Model ofHepatitis A Transmission in the United States Indicates Value of UniversalChildhood Immunization. Clin Infect Dis,2006,43(2):158–164
    [101] Sautu U P,Costafreda M I, Lite J, et al. Molecular Epidemiology of Hepatitis AVirus Infections in Catalonia, Spain,2005–2009: Circulation of NewlyEmerging Strains. Journal of Clinical Virology,2011,52(2):98–102
    [102] Kulkarni M A,Walimbe A M, Cherian S, et al. Full Length genomes ofGenotype IIIA Hepatitis A Virus Strains (1995–2008) from India and Estimatesof the Evolutionary Rates and Ages. Genetics and Evolution,2009,9(6):1287–1294
    [103] Young K Y, Byung C C, Ha K L, et al. Epidemiological and Genetic Analysisof a Sustained Community–Wide Outbreak of Hepatitis A in the Republic ofKorea,2008: A Hospital–Based Case–Control Study. Journal of ClinicalVirology,2009,46(2):184–188
    [104] Lemon S M, Jansen R W. Newbold JE. Infectious Hepatitis A Virus ParticlesProduced in Cell Culture Consisit of Three Distinct Types with DifferentBuoyant Densities in CsCl. J Virol1985,54:78–85.
    [105] Griffin D W. Donaldson K A, Paul J H, Rose J B. Pathogenic Human Virusesin Coastal Waters. Clin Microbiol Rev,2003,16:129–143
    [106] Knowles N J, Hovi T, Hyypia T, et al.Classification and Nomenclature ofViruses:Ninth Report of the International Committee on Taxonomy of Viruses.San Diego: Elsevier,2011.
    [107] Beard M R, Cohen L, Lemon S M, Martin A. Characterization of RecombinantHepatitis A Virus Genomes Containing Exogenous Sequences at the2A/2BJunction. J Virol,2001,75:1414–1426
    [108] Christian P, Monika J, Verena G M. Processing of Proteinase Precursors andTheir Effect on Hepatitis A Virus Particle Formation. J Virology,1998,72:8013–8020
    [109] Lemon S M, Jansen R W, Brown E A. Genetic, Antigenic and BiologicalDifferences between Strains of Hepatitis A Virus. Vaccine10Suppl,1992,1:40–44
    [110] Bian G L, Ma R, Dong H J, et al. Long–Term Clinical Observation of theImmunogenicity of Inactivated Hepatitis A Vaccine in Children. Vaccine,2010,28(30):4798–4801
    [111] Bryan J P, Henry C H, Hoffman A G, et al. Randomized, Cross–over,Controlled Comparison of Two Inactivated Hepatitis A Vaccines. Vaccine,2001,19(7–8):743–750
    [112] Zheng H, Chen Y S, Wang F, et al. Comparing Live Attenuated and InactivatedHepatitis A Vaccines: An Immunogenicity Study after one Single Dose.Vaccine,2011,29(48):9098–9103
    [113]徐志一,汪萱怡,李荣成等.甲型肝炎减毒活疫苗免疫原性与保护效果的研究.中华医学杂志,2002,82(10):678–681
    [114] Stapleton J T, Raina V, Winokur P L, et al. Antigenic and ImmunogenicProperties of Recombinant Hepatitis A Virus14S and70S Subviral Particles. JVirol,1993,67:1080–1085
    [115] Kui X, Sun M, Xie T, et al.The Expression, Purification, and Immunogenicityof a New Chimeric Virus–Like Particle. Viral Immunol,2009,22(1):49–56
    [116] Hitchman R B, Possee R D, Crombie A T, et al. Genetic Modification of aBaculovirus Vector for Increased Expression in Insect Cells. Cell Biology andToxicology,2010,26(1):57-68
    [117] Valenzuela P. Medina R1Synthesis and Assemble of Hepatitis B Virus SurfaceAntigen Particles in Yeast. Nature,1982,298:34723-50
    [118] Guillen G, Aguilar J, Duenas S. Virus–Like Particles as Vaccine Antigens andAdjuvants: Application to Chronic Disease, Cancer Immunotherapy andInfectious Disease Preventive Strategies. Procedia in Vaccinology,2010,2:128–33
    [119] Grgacic E V, Anderson D A. Virus–Like Particles: Passport to ImmuneRecognition. Methods,2006,40(1):60–65
    [120] Liu F, Ge S, Li L, et al. Viurs–Like Particles: Potential Veterinary VaccineImmunogens. Res Vet Sci,2011,93(2):553–9
    [121] Huo Z, Bissett SL, Giemza R, et al. Systemic and Mucosal Immune Responsesto Sublingual or Intramuscular Human Papilloma Virus Antigens in HealthyFemale Volunteers. PLoS ONE,2012,7(3): e33736
    [122] Ju H, Wei N, Wang Q, et al. Goose Parvovirus Structural Proteins Expressedby Recombinant Baculoviruses Self–Assemble into Virus–Like Particles withStrong Immunogenicity in Goose. Biochem Biophys Res Commun,2011,409(1):131–6
    [123] Mihailova M, Boos M, Petrovskis I, et al. Recombinant Virus–Like Particlesas a Carrier of B–and T–cell Epitopes of Hepatitis C Virus (HCV). Vaccine,2006,24(20):4369–77
    [124] Quan F S, Vunnava A, Compans R W, et al. Virus–Like Particle VaccineProtects Against2009H1N1Pandemic Influenza Virus in Mice. PLoS ONE,2010,5(2): e9161
    [125] Wang B, Liu Q W, Shi J P, et al. Chimeric Virus Like Particles PresentingCommon Neutralizing Epitopes of Enterovirus71. BMC Proc,2011,5(Suppl1):29
    [126] Christian Probst, Monika Jecht, Verena Gauss-Muller. Processing of ProteinasePrecursors and Their Effect on Hepatitis A Virus Particle Formation. J Virol,1998,72(10):8013-8020.
    [127] Garcea R L, Gissmann L.Virus-Like Particles as Vaccines and Vessels for theDelivery of Small Molecules. Curr Opin Biotechnol,2004,15:513-517
    [128] Palker T J, Monteiro J M, Martin M M, et al. Antibody, Cytokine andCytotoxic T Kymphocyte Responses Inchimpanzees Immunized with JumanPapillomavirus Virus-Like Particles. Vaccine,2001,19:3733-3740

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700