用户名: 密码: 验证码:
类固态颗粒物质的声波性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒物质指由大量离散态颗粒组成的堆积体,是自然界最为广泛存在的、人们非常熟悉的物质类型之一。它具有许多复杂的物理性质,如非线性、塑性变形、能量耗散、类固-液态转换、等等,是当前软凝聚态物理领域里的一个重要研究对象。由于许多工业和环境保护领域都涉及到颗粒物质,这一物理研究方向也与它们密切相关。近年来在这方面的一些研究报道显示,紧密堆积的类固态颗粒物质内部应力的分布、静态屈服、和声波传播等所有宏观静力学问题都可在经典弹性理论的框架下,用一个弹性势能模型来统一描述。为了进一步深入考察这个观点的正确性,本文从其给出的弹性势能模型出发,对当前该领域关注的一些声波现象进行了理论分析。论文重点计算了倾斜颗粒层的应力可能出现的各种不同状态,及其对表面声波性质的影响。结果发现,不同应力下的表面波性质相差不大。这意味着上述弹性理论观点不会与已有的表面波测量数据冲突。具体地,本文基于这个弹性势能模型,开展了如下内容的工作:
     首先,系统分析了均匀应力状态颗粒固体的平面波问题。给出了圆柱对称时,沿对称轴方向和垂直对称轴方向传播的平面波速度的解析表达式,并与现有的实验测量结果进行了比较讨论。理论能很好地符合现有文献报道的声速实验数据,特别是能够解释观测到的径向横波简并劈裂现象。这些公式能用于分析处理平面波波速的实验结果,或者用于从实验数据反演势能模型中的材料参数值。论文对后者给出了一套完整的反演方案步骤。
     其次,论文给出了重力固结下无限大倾斜颗粒层的所有可能应力分布的、含三个积分常数的通解,及其力学稳定性分析。其中积分常数不为零的解在以前未曾研究过,它们的主要特点是在最大倾斜角时颗粒层不是整体同时、而是从顶部的自由表面处开始失去稳定。这一结果表明弹性理论可以正确地反映与颗粒物质表面崩塌,或表面流动等局域屈服有关现象。
     最后,论文计算了上述应力非均匀颗粒层的表面波性质,主要是实验可直接观测的性质,包括传播模式和频散关系等。研究发现取决于积分常数值,这些表面波可以解耦成纵向模式(sagittal mode)和横向模式两类,但它们也可能因发生耦合而不能分开。分析并给出了这两类表面波模式之间发生耦合与分离的条件。另外数值计算显示,颗粒层应力状态的不同对这些表面波性质有一定的影响,但强度不大。鉴于目前的实验精度还远不能分辨这个细节,弹性理论对表面波的有效性仍可以继续保持。
     随着对颗粒物质宏观物理认识的逐步深入,今后有关弹性势能的考察工作将会更多地关注于理论和实验的细节对比,以及整体的协调性上。论文对声学在这方面的独特优势和存在的问题,特别是目前还未能澄清的、描述表面波时的势能参数值与描述其他力学实验时的参数值不协调问题,进行了简单讨论和展望。
Granular materials are large conglomerations of discrete macroscopic particles and widely spread both in nature and our daily life. They may exhibit many complex physical behaviors including nonlinearity, plastic deformation, energy dissipation, quasi-solid-liquid transition, and so on. Therefore, granular matter is an important research subject in the field of soft condensed matter physics at present, which is also closely related with many fields of industry and environmental protection. Recent studies have suggested all macroscopic statics problems, including static stress distribution, mechanical yield, and sound propagation for dense granular media, could be analyzed by an elastic potential model in the framework of classical elasticity theory. To further investigate the correctness of this viewpoint, theoretical studies of some acoustic phenomena concerned currently are performed with this elastic potential model. This thesis focuses on the calculation of various stress states that may occur in an inclined granular layer, and their influences on surface waves propagation. Results indicate that different stresses have little effect on the properties of surface waves. This means that the elasticity theory mentioned above does not conflict with existing experimental data of surface waves. Based on this elastic potential model, the concrete contents of this thesis are listed as follows:
     Firstly, the issue of plane wave propagation in uniform stressed granular solid has been systematic analyzed. For case of samples with cylindrical symmetry, the analytic expressions of velocities of plane waves propagating along and perpendicular to the symmetry axis are derived, and compared with the available experimental data. It is found that the theoretical predictions are in agreement well with the measurements of sound velocity, and can explain the degenerate splitting phenomenon of transverse waves velocity traveling along the radial direction.These formulas may be used to analyze the experimental results of plane-wave velocities or obtain the parameter values of the elastic potential model from experimental data. A complete inverse scheme is designed for the latter.
     Secondly, the present work gives a general solution of stress distributions with three integral constants, and stability analysis of an inclined granular layer at rest under gravity. It has never been studied that the integral constants in general solution are not all equal to zero, a striking feature of which is the onset of instability occurred only at a free surface rather than in whole layer. Results show that the elasticity theory could be used for accounting those local yield phenomena such as surface avalanches and flows of granular layers.
     Finally, we calculate the surface wave propagation characteristics, the main of which can be directly observed by experiment, including the shape of the modes and their dispersion relation in the above-mentioned non-uniform stressed granular layer. Depending on integral constants, there have two types of surface waves, namely sagittal and transverse modes. The condition of coupling between them is discussed. In addition, numerical calculations show that different initial stress states produce certain influence on the propagation properties of surface waves, but the intensity is not great. Since the present experimental accuracy is far from being able to distinguish this detail, the validity of elasticity theory on the surface wave can still be maintained.
     With the deepening of understanding of macroscopic physics of granular matter, investigations of the elastic potential energy will pay more attention to the details of the comparison between theoretical and experimental results, and the coordination on entirety. The special advantages of sound waves in this research and the problems, especially the discrepancy of parameters values between describing surface waves and other mechanical experiments are discussed at last.
引文
[1]Jaeger H M, Nagel S R, Behringer R P. Granular solids, liquids, and gases [J]. Rev. Mod. Phys.1996,68 (4):1259-1273
    [2]Gudehus G. Physical soil mechanics[M]. Berlin:Springer,2010
    [3]Duran J. Sand, powder, and grains[M]. Berlin:Springer,2000
    [4]Kadanoff L P. Built upon sand:Theoretical ideas inspired by granular flows[J]. Rev. Mod. Phys.1999,71(1):435-444
    [5]de Gennes P G Granular matter:a tentative view[J]. Rev. Mod. Phys.1999,71 (2): s374-382
    [6]孙其诚,厚美瑛,金峰.颗粒物质物理与力学[M].北京:科学出版社,2011
    [7]Nedderman R M. Statics and kinematics of granular materials[M]. Cambridge: Cambridge University Press,1992
    [8]Bak P, Tang C, Wiesenfeld K. Self-organized criticality:An explanation of the 1/f noise[J]. Phys. Rev. Lett.1987,59(4):381-384
    [9]Bak P, Tang C, Wiesenfeld K. Self-organized criticality [J]. Phys. Rev. A.1988, 38(1):364-374
    [10]Bak P, Chen K. Self-organized criticality [J]. Sci. American.1991,264(1):26-33
    [11]Nagel S R. Instabilities in a sandpile[J]. Rev. Mod. Phys.1992,64(1):321-325
    [12]Brian P T, Snoeijer J H, Vlugt T, et al. Martin van Hecke. The force network ensemble for granular packings[J]. Soft Matter 2010,6(13):2908-2917
    [13]Henkes S, Bulbul C. Statistical mechanics framework for static granular matter[J]. Phys.Rev. E.2009,79(6):061301-1-20
    [14]Majmudar T S, Behringer R P. Contact force measurements and stress-induced anisotropy in granular materials[J]. Nature.2005,435:1079-1082
    [15]Majmudar T S, Sperl M, Luding S, et al. Jamming Transition in Granular Systems[J]. Phys. Rev. Lett.2007,8(5):058001-1-4
    [16]Sanfratello L, Zhang J, Cartee S C, et al. Exponential distribution of force chain lengths:a useful statistic that characterizes granular assemblies [J]. Granular Matter 2011,13(5):511-516
    [17]Saadatfar M, Sheppard A P, Senden T J, et al. Mapping forces in a 3D elastic assembly of grains[J]. Journal of the Mechanics and Physics of Solids. 2012,60(1):55-66
    [18]Kondic L, Fang X, Losert W, et al. Microstructure evolution during impact on granular matter[J]. Phys. Rev. E2012,85(1):011305-1-17
    [19]Zhou J, Long S, Wang Q, et al. Dinsmore, Measurement of forces inside a three-dimensional pile of frictionless droplets[J]. Science,2006, 312(5780):1631-1633
    [20]Erikson J M, Mueggenburg N W, Jaeger H M, et al. Force distributions in three-dimensional compressible granular packs [J]. Phys.Rev. E.2002, 66(4):040301-1-4
    [21]Lovoll G., Maloy K J, Flekkoy E G.. Force measurements on static granular materials[J]. Phys.Rev. E.1999,60(5):5872-5878
    [22]Vanel L, Howell D, Clark D, et al. Memories in sand:Experimental tests of construction history on stress distributions under sandpiles[J]. Phys.Rev. E.1999, 60(5):R5040-R5043
    [23]Zuriguel I, Mullin T, Arevalo R. Stress dip under a two-dimensional semipile of grains[J]. Phys.Rev. E.2008,77(6):061307-1-6
    [24]Zuriguel I, Mullin T, Rotter J M. Effect of Particle Shape on the Stress Dip Under a Sandpile[J]. Phys. Rev. Lett.2007,98(2):028001-1-4
    [25]Tejchman J, Wu W. FE-calculations of stress distribution under prismatic and conical sandpiles within hypoplasticity[J]. Granular Matter 2008,10(5):399-405
    [26]Gay C, Silveira R A. Anisotropic elastic theory of preloaded granular media[J]. Europhys. Lett.2004,68(1):51-57
    [27]Landry J W, Grest G S, Silbert L E, et al. Confined granular packings:Structure, stress, and forces[J]. Phys.Rev. E.2003,67(4):041303-1-9
    [28]Rajchenbach J. Stress transmission through textured granular packings[J]. Phys.Rev. E.2001,63(4):041301-1-5
    [29]Reydellet G, Clement E. Green's Function Probe of a Static Granular Piling[J]. Phys. Rev. Lett.2001,86(15):3308-3311
    [30]Geng J, Howell D, Longhi E, et al. Footprints in Sand:The response of a granular material to local perturbations[J]. Phys.Rev.Lett.2001,87 (3):035506-1-4
    [31]Mueggenburg N W, Jaeger H M, Nagel S R. Stress transmission through Three-dimensional ordered granular arrays[J]. Phys.Rev.E.2002,66 (3): 031304-1-9
    [32]Silva M D, Rajchenbach J. Stress transmission through a model system of cohesionless elastic grains[J].Nature 2000,406:708-710
    [33]Goldenberg C, Goldhirsch I. Force Chains, Microelasticity, and Macroelasticity[J]. Phys. Rev. Lett.2002,89 (8):084302-1-4
    [34]Goldenberg C, Goldhirsch I. Friction enhances elasticity in granular solids[J]. Nature.2005,435:188-191
    [35]Wood D M, Soil behaviour and critical state soil mechanics[M]. Cambridge: Cambridge University Press,1990
    [36]Wittmer J P, Claudin P, Cates M E, et al. An explanation for the central stress minimum in sand piles[J]. Nature 1996,382:336-338
    [37]Wittmer J P, Cates M E, Claudin P. Stress Propagation and Arching in Static Sandpiles[J]. J.Phys.I France.1997,7(1):39-80
    [38]Bouchaud J P, Cates M E, Claudin P. Stress Distribution in Granular Media and Nonlinear Wave Equation[J]. J.Phys. I.1995,5(6):639-656
    [39]Cates M E, Wittmer J P, Bouchaud J P, et al. Jamming and static stress transmission in granular materials [J]. Chaos,1999,9(3):511-520
    [40]Bouchaud J P, Claudin P, Levine D, et al. Force chain splitting in granular materials:A mechanism for large-scale pseudo-elastic behaviour[J]. Eur. Phys. J. E,2001,4(4):451-457
    [41]Kuwano R, Jardine R J. On the applicability of cross-anisotropic elasticity to granular materials at very small strains[J]. Geotechnique.2002,52,727-749
    [42]Wichtmann T.2005, Ph.D. Dissertation (Bochum:Ruhr-Univ. Bochum)
    [43]Jiang Y M, Liu M. Granular solid hydrodynamics [J]. Granular Matter 2009,11(3):139-156
    [44]Reynold O. Phil.Mag.Ser.5,1885, (50):469
    [45]Williams J C. Segregation of particulate materials-a review[J].Powder Technology.1976,15(2):245-251
    [46]Rosato A, Strandburg K J, Prinz F, et al. Why the Brazil nuts are on top:Size segregation of particulate matter by shaking[J]. Phys.Rev.Lett.1987, 58(10):1038-1040
    [47]Knight J B, Jaeger H M, Nagel S R. Vibration-induced size separation in granular media:The convection connection[J]. Phys.Rev.lett.1993,70(24): 3728-3731
    [48]Knight J B, Ehrichs E E, Kuperman V Y, et al. Experimental study of granular convection[J]. Phys.Rev.E 1996,54 (5):5726-5738
    [49]Cooke W, Warr S, Huntley J M, et al. Particle size segregation in a two-dimensional bed undergoing vertical vibration[J]. Phys.Rev.E 1996,53 (3): 2812-2822
    [50]Shinbrot T, Muzzio F J. Reverse buoyancy in shaken granular beds[J]. Phys.Rev.Lett.1998,81 (20):4365-4368
    [51]Thomas W, William H. Granular segregation in a tilted-rotating drum[J]. Powder Technology.2012,215(216):227-234
    [52]Matthew J. M, Brenda R, Glasser B J. All the Brazil nuts are not on top: Vibration induced granular size segregation of binary, ternary and multi-sized mixtures[J]. Powder Technology.2011,205(1):42-51
    [53]Yan X., Shi Q, Hou M, et al. Effects of Air on the Segregation of Particles in a Shaken Granular Bed[J]. Phys.Rev.Lett.2003,91(1):014302-1-4
    [54]Seiden G., Thomas P J. Complexity, segregation, and pattern formation in rotating-drum flows[J]. Rev. Mod. Phys.2011,83(4):1323-1365
    [55]Melo F, Umbanhowar P B, Swinney H L. Transition to parametric wave patterns in a vertically oscillated granular layer[J]. Phys.Rev.Lett.1994,72(1):172-175
    [56]Melo F, Umbanhowar P B, Swinney H L. Hexagons, Kinks, and Disorder in Oscillated Granular Layers[J]. Phys.Rev.Lett.1995,75 (21):3838-3841
    [57]Bougie J, Duckert K. Continuum simulations of shocks and patterns in vertically oscillated granular layers[J]. Phys.Rev.E 2011,83 (1):011303-1-11
    [58]Eldin W, Lim C. Vibrated granular bed on a bumpy surface[J]. Phys.Rev.E 2009, 79(4):041302-1-10
    [59]Bizon C, Shattuck M D, Swift J B, et al. Patterns in 3D Vertically Oscillated Granular Layers:Simulation and Experiment[J]. Phys.Rev.Lett 1998,80 (1):57-60
    [60]Umbanhowar P B, Melo F, Swinney H L. Localized excitations in a vertically vibrated granular layer[J]. Nature 1996,382:793-796
    [61]Aranson I S, Tsimring L S. Patterns and collective behavior in granular media:Theoretical concepts[J]. Rev. Mod. Phys.2006,78 (2):641-692
    [62]Rothman D. Oscillons spiral waves, and stripes in a model of vibrated sand [J]. Phys.Rev.E 1998,57 (2):R1239-1242
    [63]Huang K, Miao G Q, Zhang P, et al. Shock wave propagation in vibrofluidized granular materials[J]. Phys.Rev.E 2006,73 (4):041302-1-5
    [64]Faraday M. On a peculiar class of acoustical figures and on certain forms assumed by groups of particles upon vibrating elastic surfaces[J]. Philos.Tran. Roy. Soc. London,1831, (121):299-340
    [65]Rognon P, Einav I. Thermal Transients and Convective Particle Motion in Dense Granular Materials[J]. Phys.Rev.Lett.2010,105(21):218301-1-4
    [66]Rietz F, Stannarius R. On the Brink of Jamming:Granular Convection in Densely Filled Containers[J]. Phys.Rev.Lett.2008,100(7):078002-1-4
    [67]Rodriuez-Linan G. M, Nahmad-Molinari Y. Granular convection driven by shearing inertial forces[J]. Phys.Rev.E 2006,73 (1):011302-1-6
    [68]Risso D, Soto R, Godoy S, et al. Friction and convection in a vertically vibrated granular system[J]. Phys.Rev.E 2005,72 (1):011305-1-6
    [69]Wildman R D, Martin T W, Krouskop P E, et al. Convection in vibrated annular granular beds[J]. Phys.Rev.E 2005,71(6):061301-1-9
    [70]Milburn R J, Naylor M A, Smith A J, et al. Faraday tilting of water-immersed granular beds[J]. Phys.Rev.E 2005,71(1):011308-1-10
    [71]Hou M Y, Chen W, Zhang T, et al. Global Nature of Dilute-to-Dense Transition of Granular Flows in a 2D Channel[J]. Phys. Rev. Lett.2003,91 (20):204301-1-4
    [72]Zhong J, Hou M Y, Shi Q, et al. Criticality of the dilute-to-dense transition in a 2D granular flow[J]. J. Phys.:Condens Matter,2006,18(10):2789-2794
    [73]Hu G Q, Li Y C, Hou M Y, et al. Traveling shock front in quasi-two-dimensional granular flows[J]. Phys.Rev.E 2010,81(1):011305-1-5
    [74]Rietz F, Stannarius R. Oscillations, Cessations, and Circulation Reversals of Granular Convection in a Densely Filled Rotating Container[J]. Phys.Rev.Lett. 2012,108(11):118001-1-5
    [75]Chialvo S, Sun J, Sundaresan S. Bridging the rheology of granular flows in three regimes[J]. Phys.Rev.E 2012,85(2):021305-1-8
    [76]To K, Lai P Y, Pak H K. Jamming of granular flow in a two-dimensional hopper[J]. Phys. Rev. Lett.2001,86 (1):71-74
    [77]To K, Lai P Y, Pak H K. Jamming pattern in a two-dimensional hopper[J]. Phys. Rev. E.2002,66 (1):011308-1-7
    [78]To K, Lai P Y, Pak H K. Flow and jam of granular particles in a two-dimensional hopper[J]. Physica A,2002,315 (2):174-180
    [79]Kerner B S, Rehborn H. Experimental feature and characteristics of traffic jams[J]. Phys. Rev. E1996,53 (2):R1297-1300
    [80]Kerner B S, Rehborn H. Experimental properties of complexity in traffic flow[J]. Phys. Rev. E1996,53 (5):R4275-4278
    [81]Kerner B S, Rehborn H. Experimental properties of phase transitions in traffic flow[J]. Phys. Rev. Lett.1997,79 (20):4030-4033
    [82]Risto G H, Herrmann H J. Density patterns in two-dimensional hoppers[J]. Phys. Rev. E 1994,50 (1):R5-8
    [83]Baxter G. W, Behringer R P. Pattern formation in flowing sand[J]. Phys. Rev. Lett.1989,62 (24):2825-2828
    [84]Ellingsen S, Gjerden K S, Grova M, et al. Model for density waves in gravity-driven granular flow in narrow pipes[J]. Phys. Rev. E 2010, 81(6):061302-1-5
    [85]Raafat T, Hulin J P, Herrmann H J. Density waves in dry granular media falling through a vertical pipe[J]. Phys. Rev. E 1996,53 (5):4345-4350
    [86]Aider J, Sommier N, Raafat T, et al. Experimental study of a granular flow in a vertical pipe:A spatiotemporal analysis[J]. Phys. Rev. E 1999,59 (1):778-786
    [87]Aguirre M A, Grande J G, Calvo A, L. et al. Granular flow through an aperture: Pressure and flow rate are independent J]. Phys. Rev. E 2011,83(6):061305-1-6
    [88]Mankoc C, Janda A, Arevalo R, et al. Garcimartin and D. Maza. The flow rate of granular materials through an orifice[J]. Granular Matter,2007,9(6):407-414
    [89]Alonso-Marroquin F, Azeezullah S I, Galindo-Torres S A, et al. Bottlenecks in granular flow:When does an obstacle increase the flow rate in an hourglass?[J]. Phys. Rev. E 2012,85(2):020301(R)-1-4
    [90]Helbing D, Johansson A, Mathiesen J, et al. Analytical Approach to Continuous and Intermittent Bottleneck Flows[J]. Phys. Rev. Lett.2006,97(16):168001-1-4
    [91]Peng Z, Zheng H P, Jiang Y M. Forced Granular Orifice Flow[J]. Arxiv preprint arXiv:2009,0908.0258, http://arxiv.org/abs/0908.0258
    [92]柴华友,吴慧明,张电吉等(编著).弹性介质中表面波理论及其在岩土工程中应用[M].北京:科学出版社,2008
    [93]吴世明(著).土介质中的波[M].北京:科学出版社,1997
    [94]张海澜(编著).理论声学[M].北京:高等教育出版社,2007
    [95]Duffy J, Mindlin R D. Stress-strain relations and vibrations of a granular media[J]. J. Appl. Mech.1957,24:585-593
    [96]Digby P J. The effective elastic moduli of porous granular rocks [J]. J. Appl. Mech.1981,48:803-808
    [97]Walton K. The effective elastic moduli of a random packing of spheres [J]. J. Mech. Phys. Solids.1987,35(2),213-226
    [98]Norris A N, Johnson D L. Nonlinear elasticity of granular media[J]. J. Appl. Mech.1997,64:39-49
    [99]Johnson D L, Schwartz L M, Elata D, et al. Linear and nonlinear elasticity of granular media:stress-Induced anisotropy of a random sphere pack[J]. J. Appl. Mech.ASME.1998,65:380-388
    [100]Johnson K L. Contact Mechanics[M]. Cambridge:Cambridge University Press,1985
    [101]Mindlin R D. Compliance of elastic bodies in contact[J]. J. Appl. Mech.1949,71:259-268
    [102]Landau L D, Lifshitz E M. Theory of Elasticity[M]. New York:Pergamon, 1970
    [103]Hardin B O, Richart F E. Elastic wave velocities in granular soils[J].J. Soil Mech. Found. Div.1963, ASCE 89(SM1):33-65
    [104]Khidas Y, Jia X. Anisotropic nonlinear elasticity in a spherical-bead pack: Influence of the fabric anisotropy [J]. Phys.Rev. E 2010,81(2):021303-1-9
    [105]Borzsonyi T, Kovacs Z. High-speed imaging of traveling waves in a granular material during silo discharge[J]. Phys.Rev. E 2011,83(3):032301-1-4
    [106]Huillard G., Noblin X, Rajchenbach J. Propagation of acoustic waves in a one-dimensional array of noncohesive cylinders[J]. Phys.Rev. E 2011, 84(1):016602-1-9
    [107]Domenico S N. Elastic properties of unconsolidated porous sand reservoirs [J]. Geophysics.1977,42(7):1339-1368
    [108]Winkler K W. Contact stiffness in granular porous materials:Comparison between theory and experiment[J]. Geophys. Res. Lett.1983,10(11):1073-1076
    [109]de Gennes P G. Static compression of a granular medium:the "soft shell" model[J]. Europhys. Lett.1996,35(2):145-149
    [110]Goddard J D. Nonlinear Elasticity and Pressure-Dependent Wave Speeds in Granular Media[J]. Proc. R. Soc. Lond. Ser. A 1990,(430):105-131
    [111]Makse H A, Gland N, Johnson D L, et al. Granular packings:Nonlinear elasticity, sound propagation, and collective relaxation dynamics[J]. Phys.Rev. E 2004,70(6):061302-1-19
    [112]Makse H A, Gland N, Johnson D L, et al. Why Effective Medium Theory Fails in Granular Materials[J]. Phys.Rev.Lett.1999,83(24):5070-5073
    [113]Jenkins J, Johnson D, Ragione L L, et al. Fluctuations and the effective moduli of an isotropic, random aggregate of identical, frictionless spheres [J]. J. Mech. Phys. Solids 2005,53(1):197-225
    [114]Magnanimo V, Ragione L L, Jenkins J, et al. Characterizing the shear and bulk moduli of an idealized granular material[J].Eur. Phys. Letts.2008, 81(3):34006-1-6
    [115]Velicky B, Caroli C. Pressure dependence of the sound velocity in a two-dimensional lattice of Hertz-Mindlin balls:Mean-field description[J]. Phys.Rev. E 2002,65(2):021307-1-14
    [116]Liu C H, Nagel S R. Sound in sand[J]. Phys.Rev.Lett.1992,68(15):2301-2304
    [117]Liu C H, Nagel S R. Sound in a granular material:disorder and nonlinearity[J]. Phys.Rev.B.1993,48(21):15646-15650
    [118]Liu C H. Spatial patterns of sound propagation in sand[J]. Phys.Rev.B.1994, 50(2):782-794
    [119]Leibig M. Model for the propagation of sound in granular materials [J]. Phys.Rev. E.1994,49(2):1647-1656
    [120]Melin S. Wave propagation in granular assemblies [J]. Phys.Rev.E.1994, 49(3):2353-2361
    [121]Jia X, Caroli C, Velicky B. Ultrasound propagation in externally stressed granular media[J]. Phys.Rev.Lett.1999,82(9):1863-1866
    [122]Coste C, Gilles B. Sound propagation in a constrained lattice of beads: High-frequency behavior and dispersion relation[J]. Phys.Rev. E.2008, 77(2):021302-1-13
    [123]Gilles B, Coste C. Low-frequency behavior of beads constrained on a lattice[J]. Phys.Rev.Lett.2003,90(17):174302-1-4
    [124]Somfai E, Roux J N, Snoeijer J H, et al. Elastic wave propagation in confined granular systems[J]. Phys.Rev. E.2005,72(2):021301-1-18
    [125]Jia X P, Laurent J, Khidas Y, et al. Sound scattering in dense granular media. Chinese Sci Bull,2009,54:4327-4336
    [126]Brunet T, Jia X P, Johnson PA. Transitional nonlinear elastic behaviour in dense granular media[J].Geophys. Res. Lett.2008,35 (08):L19308
    [127]Mayer M, Liu M. Propagation of elastic waves in granular solid hydrodynamics[J]. Phys.Rev. E.2010,82(4):042303-1-3
    [128]Jia X P. Codalike multiple scattering of elastic waves in dense granular media[J]. Phys.Rev.Lett.2004,93(15):154303-1-4
    [129]Jia X P. Brunet T, Laurent J. Elastic weakening of a dense granular pack by acoustic fluidization:Slipping, compaction, and aging[J]. Phys.Rev. E.2011, 84(2):020301-1-4
    [130]Johnson P A, Jia X P. Nonlinear dynamics, granular media and dynamic earthquake triggering[J].Nature,2005,437:871-874
    [131]Brunet T, Jia X P, Mills P. Mechanisms for acoustic absorption in dry and weakly wet granular media[J]. Phys.Rev.Lett.2008,101(13):138001-1-4
    [132]Brownell P H. Compressional and Surface Waves in Sand:Used by Desert Scorpions to Locate Prey[J]. Science 1977,197(4302):479-428
    [133]Brownell P H, Farley R D. Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, paruroctonus mesaensis[J].J. Comp. Physiol. 1979(131):23-30
    [134]Brownell P H, Farley R D. Orientation to vibrations in sand by the nocturnal scorpion paruroctonus mesaensis:mechanism of target localization[J].J. Comp. Physiol.1979(131):31-38
    [135]Andreotti B. The song of dunes as a wave-particle mode locking[J]. Phys.Rev.Lett.2004,93(23):238001-1-4
    [136]Bonneau L, Andreotti B, Clement E. Surface elastic waves in granular media under gravity and their relation to booming avalanches [J]. Phys.Rev.E.2007, 75(1):016601-1-13
    [137]Bonneau L, Andreotti B, Clement E. Evidence of rayleigh-hertz surface waves and shear stiffness anomaly in granular media[J]. Phys.Rev.Lett.2008, 101(11):118001-1-4
    [138]Jiang Y M, Liu M. Granular elasticity without the coulomb condition[J]. Phys.Rev.Lett.2003,91 (14):144301-1-4
    [139]Jiang Y M, Liu M. Energetic instability unjams sand and suspenion[J]. Phys.Rev. Lett.2004,93 (14):148001-1-4
    [140]Jiang Y M, Liu M. From elasticity to hypoplasticity:dynamics of granular solids[J]. Phys.Rev. Lett.2007,99 (10):105501-1-4
    [141]Jiang Y M, Liu M. A brief review of granular elasticity [J]. Eur. Phys. J. E 2007,22 (3):255-260
    [142]Gusev V, Aleshin V, Tournat V. Acoustic waves in an elastic channel near the free surface of granular media[J]. Phys.Rev.Lett.2006,96(21):214301-1-4
    [143]Aleshin V, Gusev V, Tournat V. Acoustic modes propagating along the free surface of granular media[J]. J.Acoust.Soc.Am.2007,121(5):2600-2611
    [144]Jacob X, Aleshin V, Tournat V, et al. Acoustic probing of the jamming transition in an unconsolidated granular medium[J]. Phys.Rev.Lett.2008 100(15):158003-1-4
    [145]Ritz C. Booming sands and granular physics. Carleton College,2004, http://digitalcommons.carleton.edu/pacp/3
    [146]Humpries D W. The booming sand of Korizo, Sahara and the squeaking sand of Gower, South Wales[J]. Sedimentology,19666:135-152
    [147]Sholtz P, Bretz M, F. Nori. Sound-producing sand avalanches[J], Contemp. Phys.1997,38(5):329-342
    [148]Nori F, Sholtz P, Bretz M. Booming sand[J], Sci. Am.1997,277:84-89
    [149]HaffP K. Booming Dunes[J]. American Scientist.1986,74(4):376-381
    [150]Goldsack D, Leach M, Kilkenny C. Natural and artificial 'singing' sands[J]. Nature,1997,386:29
    [151]PoloM. The travels of marco polo [Z]. http://www.pmmh.espci.fr/-andreotti /SongOfDunes.html
    [152]Vriend N M, Hunt M L, Clayton R W, et al. Solving the mystery of booming sand dunes[J].Geophys.Res.Lett.2007,34(07):L 16306
    [153]Grega P. Singing dunes. Ljubljana, Seminar.2007, http://www-fl.ijs.si/-rudi /sola/SingingDunes.pdf
    [154]Bagnold R A. The physics of blown sand and desert dunes[M].London: Methuen,1941
    [155]Bagnold R A. The shearing and dilatation of dry sand and the singing mechanism[J]. Proc. R. Soc. London, Ser. A 1966,295(1442):219-232
    [156]Douady S, Manning A, Hersen P, et al. Song of the dunes as a self-synchronized instrument[J]. Phys.Rev.Lett.2006,97(1):018002-1-4
    [157]Patitsas A J. Booming and singing acoustic emissions from fluidized granular beds[J]. Journal of Fluids and Structures,2003,(17):287-315
    [158]Ball P. News the dune chorus [J].Nature,2007,449:10-11
    [159]Dagois B S, Ngo S, Pont S C, et al. Laboratory singing sand avalanches [J]. Ultrasonics,2010,50(2):127-132
    [160]Andreotti B, Bonneau L. Booming dune instability[J]. Phys.Rev.Lett.2009 103(23):238001-1-4
    [161]Andreotti B, Bonneau L, Clement E. Comment on "Solving the mystery of booming sand dunes"by Nathalie M. Vriend et al[J]. Geophys.Res.Lett. 2008,35(08):L08306
    [162]Vriend N M, Hunt M L, Clayton R W, et al. Reply to comment by B. Andreotti et al. on "Solving the mystery of booming sand dunes"[J].Geophys. Res. Lett.2008,35 (08):L08307
    [163]Ablowitz M A, Clarkson P A. Solitons nonlinear evolution and inverse scattering[M]. Cambridge:Cambridge University Press,1992
    [164]NesterenkoV. Propagation of nonlinear compression pulses in granular media[J]. J. Appl. Mech. Tech. Phys.1984,24(5):733-743
    [165]Lazaridi A, Nesterenko V. Observation of a new type of solitary waves in a one-dimensional granular medium[J].J. Appl. Mech. Tech. Phys.1985, 26(3):405-408
    [166]Nesterenko V, Lazaridi A, Sibiryakov E. The decay of soliton at the contact of two "acoustic vacuums"[J].J. Appl. Mech. Tech. Phys.1995,36(2):166-158
    [167]Sinkovits R S, Sen S. Nonlinear dynamics in granular columns[J]. Phys.Rev.Lett.1995,74(14):2686-2689
    [168]Sen S, Sinkovits R S. Sound propagation in impure granular columns[J]. Phys.Rev. E.1996,54(6):6857-6865
    [169]Coste C, Falcon E, Fauve S. Solitary waves in a chain of beads under Hertz contact[J]. Phys.Rev. E.1997,56(5):6104-6117
    [170]Coste C, Gilles B. On the validity of Hertz contact law for granular material acoustics[J]. Eur.Phys.J.B.1999,7:155-168
    [171]Sen S, Manciu M. Discrete Hertzian chains and solitons[J]. Phys.Lett.A. 1999,268(3):644-649
    [172]Sen S, Manciu M. Solitary wave dynamics in generalized Hertz chains:An improved solution of the equation of motion[J]. Phys.Rev. E.2001, 64(5):056605-l-4
    [173]Friesecke G, Wattis J A D. Existence theorem for solitary waves on lattices[J]. Commun. Math. Phys.1994,161(2):391-418
    [174]MacKay R S. Solitary waves in a chain of beads under Hertz contact[J]. Phys.Lett.A.1999,251(3):191-192
    [175]Hong J, Ji J Y, Kim H. Power laws in nonlinear granular chain under gravity[J]. Phys.Rev.Lett.1999,82(15):3058-3061
    [176]Ji J Y, Hong J. Existence criterion of solitary waves in a chain of grains[J]. Phys.Lett.A.1999,260(1):60-61
    [177]Hong J, Xu A. Effects of gravity and nonlinearity on the waves in the granular chain[J]. Phys.Rev. E.2001,63(6):061310-1-7
    [178]Manciu M, Sen S, Hurd A. J. Crossing of identical solitary waves in a chain of elastic beads[J]. Phys.Rev. E.2000,63(1):016614-1-6
    [179]Felicia S, Manciu, Sen S. Secondary solitary wave formation in systems with generalized Hertz interactions [J]. Phys.Rev. E.2002,66(1):016616-1-11
    [180]Job S, Melo F, Sokolow A, et al. How hertzian solitary waves interact with boundaries in a ID granular medium[J].Phys.Rev.Lett.2005,94(17):178002-1-4
    [181]Avalos E, Sen S. How solitary waves collide in discrete granular alignments[J]. Phys.Rev. E.2009,79(4):046607-1-7
    [182]Sen S, Hongb J, Bangb J, et al. Solitary waves in the granular chain[J]. Phys. Rep.2008,462:21-66
    [183]Mooney M. A theory of large elastic deformation[J]. J. Appl. Phys.1940, 11:582-592
    [184]Krimer D O, Pfitzner M, Brauer K, et al. Granular elasticity:general considerations and the stress dip in sand piles[J]. Phys.Rev.E 2006,74 (6): 061310-1-10
    [185]Brauer K, Pfitzner M, Krimer D O, et al. Granular elasticity:stress distributions in silos and under point loads[J]. Phys.Rev.E 2006,74 (6): 061311-1-10
    [186]Jiang Y M, Liu M. Incremental stress-strain relation from granular elasticity: Comparison to experiments[J]. Phys.Rev. E.2008,77(2):021306-1-9
    [187]Drucker D C, Prager W. Soil mechanics and plastic analysis for limit design[J]. Quarterly of Applied Mathematics.1952,10(2):157
    [188]Jiang Y M, Zheng H P, Peng Z, et al. Expression for the granular elastic energy[J]. Phys.Rev.E 2012,85 (5):051304-1-9
    [189]Humrickhouse P W, Sharpe J P, Corradini M L. Comparison of hyperelastic models for granular materials[J]. Phys.Rev. E.2010,81(1):011303-1-12
    [190]Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique.1979,29(1):47-65
    [191]Poschel T, Schwager T. Computational granular dynamics:Models and algorithms[M]. Heidelerg:Springer-Verlag,2005
    [192]Rapaport D C. The art of molecular dynamics simulation[M]. Cambridge: Cambridge University Press,2004
    [193]Zhang Q, Li Y C, Hou M Y, Jiang Y M, et al.. Elastic waves in the presence of a granular shear band formed by direct shear[J]. Phys.Rev. E.2012, 85(3):031306-1-5
    [194]Song C, Wang P, Makse H A. A phase diagram for jammed matter[J]. Nature,2008,453:629-632
    [195]Rothenburg L, Kruyt N P. Critical state and evolution of coordination number in simulated granular materials[J]. Int. J. Solids. Struct.2004,41:5763-5774
    [196]Daerr A, Douady S. Two types of avalanche behaviour in granularmedia[J]. Nature.1999,399:241-243
    [197]Daerr A. Dynamical equilibrium of avalanches on a rough plane[J]. Phys. Fluids,2001,13(7):2115-2124
    [198]Lopez D, Petreis F. Surface instability driven by dipole-dipole interactions in a granular Layer[J]. Phys.Rev.Lett.2010,104(15):158001-1-4
    [199]Conway S L, Goldfarb D J, Shinbrot T, et al. Free surfacewaves in wall-bounded granular flows[J]. Phys.Rev.Lett.,2003,90(7):074301-1-4
    [200]Cheng X. Experimental study of the jamming transition at zero temperature[J]. Phys.Rev. E.2010,81(3):031301-1-12
    [201]Cheng X. Packing structure of a two-dimensional granular system through the jamming transition[J]. Soft Matter.2010,6(13):2931-2934
    [202]Xu N. Mechanical, vibrational, and dynamical properties of amorphous systems near jamming [J]. Front. Phys.2010,6(1):109-123
    [203]Xu N, Vitelli V, Wyart M, et al. Energy transport in jammed sphere packings[J]. Phys.Rev.Lett.2009,102(3):038001-1-4
    [204]Vitelli V, Xu N, Wyart M, et al. Heat transport in model jammed solids[J]. Phys.Rev. E.2010,81(2):021301-1-14
    [205]Xu N, Vitelli V, Liu A J, et al. Anharmonic and quasi-localized vibrations in jammed solids---Modes for mechanical failure[J]. Europhys. Lett.2010, 90(5):56001-1-6
    [206]Souslov A, Liu A J, Lubensky T C. Elasticity and Response in Nearly Isostatic Periodic Lattices[J]. Phys.Rev.Lett.2009,103(20):038001-1-4
    [207]Silbert L E, Liu A J, Nagel S R. Vibrations and Diverging Length Scales Near the Unjamming Transition[J]. Phys.Rev.Lett.2005,95(9):098301-1-4
    [208]Gomez L R, Turner A M, Hecke M, et al. Shocks near Jamming[J]. Phys.Rev.Lett.2012,108(5):058001-1-5
    [209]O'Hern C S, Silbert L E, Liu A J, et al. Jamming at zero temperature and zero applied stress:The epitome of disorder[J]. Phys.Rev. E.2003,68(1).011306-1-19
    [210]O'Hern C S, Langer S A, Liu A J, et al. Random packings of frictionless particles[J]. Phys.Rev.Lett.2002,88(7):075507-1-4
    [211]Shundyak K, Hecke M, Saarloos W. Force mobilization and generalized isostaticity in jammed packings of frictional grains[J]. Phys. Rev. E 2007,75(R), 010301-1-4
    [212]Ellenbroek W G, Somfai E, Hecke M, et al. Critical scaling in linear response of frictionless granular packings near jamming[J]. Phys.Rev.Lett.2006, 97(25):258001-1-4
    [213]Ellenbroek W G, Snoeijer J H. Bounds on the shear load of cohesionless granular matter[J]. J. Stat. Mech.2007,2007(1):P01023-1-23
    [214]Wyart M, Silbert L E, Nagel S R, et al. Effects of compression on the vibrational modes of marginally jammed solids[J]. Phys.Rev. E.2005, 72(5):051306-1-11
    [215]Wyart M. Scaling of phononic transport with connectivity in amorphous solids[J]. Europhys. Lett.2010,89(6):64001-1-6
    [216]Wyart M, Liang H, Kabla A, et al. Elasticity of floppy and stiff random networks[J]. Phys.Rev.Lett.2008,101(21):215501-1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700