用户名: 密码: 验证码:
光谱可控的可见光超连续谱与中红外超连续谱产生研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超连续谱激光光源不仅具有传统白光光源的宽光谱特性,还具有高亮度和高相干性,因此在基础科学、工业、通信及医学等众多领域都有着重要应用。近十年来,随着光子晶体光纤的出现,针对超连续谱光源的研究取得突飞猛进的发展。虽然石英光子晶体光纤中产生的超连续谱已超过两个倍频程,但是在超连续谱光谱控制、可见光及中红外超连续谱产生等方面的研究却相对滞后,成为目前超连续谱研究领域的热点。论文主要围绕可见光超连续谱产生及光谱控制、中红外超连续谱产生以及光纤放大器中超连续谱产生等问题展开理论和实验研究。主要内容包括:
     1.设计了带隙覆盖整个可见光波段的低损耗全固态光子带隙光纤,并应用于可见光超连续谱的产生及光谱控制。设计了低损耗全固态光子带隙光纤,第一阶带隙覆盖整个可见光波段。对所拉制的全固态光子带隙光纤,通过数值计算和实验测量获得其第一阶带隙范围为0.45~0.9μm,零色散波长为0.816μm。因此数值和实验研究了800nm附近可调谐飞秒脉冲泵浦全固态光子带隙光纤时超连续谱的产生,光谱展宽范围为0.68~0.9μm,长波边受到光子带隙的抑制。改用532nm的亚纳秒激光泵浦,产生的超连续谱被很好地控制在带隙范围内,光谱展宽范围为0.53~0.9μm。
     2.设计了氟化物、碲化物以及硫化物玻璃光纤,并数值模拟这些光纤中超连续谱的产生,分析光谱展宽到约5μm的可行性。计算ZBLAN单模光纤的各种光学参数,包括Raman响应函数,数值计算和实验测量表明ZBLAN单模光纤的零色散波长为1.49μm,因此选用1.55μm和2μm脉冲作为泵浦源,数值模拟了不同脉冲宽度和峰值功率下所产生的中红外超连续谱,结果表明脉冲宽度的增加可降低对峰值功率的要求,更容易将中红外超连续谱展宽到5μm;设计零色散波长在1.55μm以下的碲化物悬吊芯微结构光纤和在2μm以下的无截止单模光子晶体光纤,分别选择1.55μm和2μm脉冲激光作为泵浦源,数值研究证实采用悬吊芯微结构光纤,更容易将超连续谱展宽到5μm,而无截止单模光子晶体光纤在确保大功率和高光束质量的条件下,也能产生700~5000nm范围的超连续谱;设计非线性系数更高的As2S3悬吊芯微结构光纤,将零色散波长移到2μm以下,数值研究表明采用2μm皮秒脉冲泵浦,峰值功率只需500W,在15cm长的光纤内便可产生800~5000nm的中红外超连续谱。这种光纤的高非线性系数降低了对泵浦光的要求,可应用于紧凑的低阈值中红外超连续谱光源。
     3、在全光纤铒镱共掺双包层光纤放大器中,实现了8W光谱无畸变的纳秒脉冲输出。搭建基于半导体可饱和吸收镜的被动锁模光纤激光器作为种子光源,输出波长为1550nm,脉冲宽度为1ns。在各放大级中加入带通滤波器抑制输入信号光中的ASE噪声,同时采用掺铒光纤放大器与铒镱共掺双包层光纤放大器的混合结构,提高调制不稳定性发生的阈值,实现了1550nm波长的纳秒脉冲输出,平均功率达8W,光谱无畸变,边模抑制比达40dB。
     4、在铒镱共掺双包层光纤放大器对种子脉冲进行放大的过程中,直接产生平坦的超连续谱输出,并通过级联的铥钬共掺光纤放大器,将光谱扩展到中红外波段。利用调制不稳定性效应,使纳秒脉冲在铒镱共掺双包层光纤放大器中产生分裂,并出现非线性光谱展宽,光谱从1530nm展宽到1700nm以上,覆盖了通讯波段中C-band到U-band的整个范围。采用峰值功率更高的纳秒脉冲半导体激光作为种子光,经铒镱共掺双包层光纤放大器后,光谱可展宽到2μm以上,再通过级联的铥钬共掺光纤,产生了1.75~2.6μm的平坦中红外超连续谱输出。
Supercontinuum laser sources have broad spectra as traditional white light source,in addition they have high brightness and coherences, and therefore they have a widevariety of applications in fundamental science, industry, optical communication andmedicine. In the recent decade, the researches on supercontinuum source havedeveloped rapidly with the advent of photonic crystal fibers (PCF). Althoughsupercontinuum sources extend over two octaves in silica PCF, the studies oncontrolling of spectra broadening of supercontinuum, visible supercontinuum generationand mid-IR supercontinuum generation still lag behind. These issues have attractedconsiderable attention in the area of supercontinuum generation. In this thesiscontrollable visible supercontinuum generation, mid-infrared supercontinuumgeneration and supercontinuum generation in fiber amplifiers are investigated in theoryand experiment in thus thesis. The primary contents are presented as follows:
     1. The low loss all-solid photonic bandgap fiber (AS-PBGF) whose bandgapcovers the whole visible light region is designed and applied in controllable visiblesupercontinuum generation. The AS-PBGF is designed and its first bandgap covers thewhole visible light region. The bandgaps and the group velocity dispersion of thefabricated AS-PBGF are studied through numerical simulation and experiment. The firstbandgap covers from around0.45to0.9μm, and the zero-dispersion wavelength (ZDW)is0.816μm, therefore, supercontinuum generation in this fiber pumped by a tunablefemtosecond laser operating around800nm is studied experimentally and numerically.The output spectrum covers the range from0.68to0.9μm and the long wavelengthedge is suppressed by the photonic bangap. The supercontinuum from0.53to0.9μm isobtained using sub-nanosecond pulses from532nm microchip laser and its longwavelength reaches the edge of the bandgap. The generated visible supercontinuum isrestricted in the bandgap.
     2. Fluoride, tellurite and chalcogenide glass fibers are designed, and thesupercontinuum generation in these fibers are investigated by numerically. Thefeasibilities of extending the spectrum to around5μm are analyzed. The opticalparameters of single-mode ZBLAN fiber are calculated, including Raman responsefunction. Numerical calculation and experimental measurment confirm that the ZDW ofthe single-mode ZBLAN is1.49μm, and therefore the lasers operating at1.55μm and2μm are used to pump the ZBLAN fiber in the simulations. The supercontinuumgeneration is numerically simulated with different peak power and pulse duration. Fromthe results, it can be concluded that the longer pulse can relax the requirement of peakpower and readily broaden the spectra to5μm. Suspended core tellurite microstructuredoptical fiber (MOF) and endlessly single-mode tellurite PCF are both designed and the ZDWs are below1.55μm and2.0μm respectively. These fibers can be used for mid-IRsupercontinuum generation pumped by fiber lasers operating at1.55μm and2.0μmrespectively. Numerical studies demonstrate that the supercontinuum readily extends tonear5μm in suspended core MOF. And the endlessly single-mode fiber is appropriatefor high power mid-IR supercontinuum generation ranged from700nm to5000nm andthe endlessly single-mode property can ensure high beam quality. Suspended core MOFmade of As2S3with higher nonlinear coefficient is designed to have a ZDW below2.0μm. The numerical results indicate that500W peak power is enough to achievemid-infrared supercontinuum covering800~5000nm through15cm As2S3MOFpumped by picosecond pulse at2.0μm. The high nonlinear coefficient of As2S3MOFreduces the demand of pump laser, and this kind of fiber can be applicable to compactlow-threshold mid-IR supercontinuum source.
     3. An8W nanosecond pulsed laser without distortions in spectrum is achieved inall-fiber Er/Yb co-doped double-clad fiber amplifier (EYDFA). A1550nm passivemode-locked fiber laser based on semiconductor saturable absorber mirror is built andthe output pulse width is around1ns. The nanosecond pulse is amplified in the hybridEr doped fiber amplifier (EDFA) and EYDFA successionally. The band pass filters areused to suppress the noise in input signal in each stage of the amplifier, thus thethreshold of modulation instability is increased. The nanosecond pulse at1550nm withaverage power of up to8W is achieved, and the feature of MI and any other significantnonlinearity distortions are not observed in the spectra. The side-mode suppression ratiois up to40dB.
     4. In the process of amplification of the seeded pulse in EYDFA, thesupercontinuum is generated directly from the fiber amplifier and extended tomid-infrared region by Tm/Ho co-doped fiber amplifier (THFA) in succession.Nanosecond pulse fission occurs initiated by modulation instability when it is amplifiedin EYDFA, and the spectrum is broadened due to nonlinear effects and extended from1530to above1700nm covering the total C-band to U-band in communication. AnEYDFA is used to amplify a nanosecond seeded pulse with higher peak power fromelectric modulated laser diode, and the output spectrum extends beyond2μm. A pieceof cascaded THDF is employed to gain flat mid-infrared supercontinuum from1.75μmto2.6μm.
引文
[1] D. M. John, Optical interferometry in astronomy [J]. Reports on Progress inPhysics,2003,66(5):789-857.
    [2] T. Udem, R. Holzwarth, and T. W. Hansch, Optical frequency metrology [J].Nature,2002,416(6877):233-237.
    [3] I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K.Ranka, and R. S. Windeler, Ultrahigh-resolution optical coherence tomography usingcontinuum generation in an air-silica microstructure optical fiber [J]. Opt. Lett.,2001,26(9):608-610.
    [4] H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M.Abe, T. Morioka, and K. I. Sato, More than1000channel optical frequency chaingeneration from single supercontinuum source with12.5GHz channel spacing [J].Electronics Letters,2000,36(25):2089-2090.
    [5] B. Guo, Y. Wang, C. Peng, H. Zhang, G. Luo, H. Le, C. Gmachl, D. Sivco, M.Peabody, and A. Cho, Laser-based mid-infrared reflectance imaging of biologicaltissues [J]. Opt. Express,2004,12(1):208-219.
    [6] R. R. Alfano, and S. L. Shapiro, Observation of Self-Phase Modulation andSmall-Scale Filaments in Crystals and Glasses [J]. Physical Review Letters,1970,24(11):592-594.
    [7] R. R. Alfano, and S. L. Shapiro, Emission in the Region4000to7000ViaFour-Photon Coupling in Glass [J]. Physical Review Letters,1970,24(11):584-587.
    [8] J. I. Gersten, R. R. Alfano, and M. Belic, Combined stimulated Ramanscattering and continuum self-phase modulations [J]. Physical Review A,1980,21(4):1222-1224.
    [9] F. Shimizu, Frequency Broadening in Liquids by a Short Light Pulse [J].Physical Review Letters,1967,19(19):1097-1100.
    [10] R. R. Alfano. The supercontinuum laser source: fundamentals with updatedreferences [M]. New York: Springer,2006.
    [11] C. Lin, and R. H. Stolen, New nanosecond continuum for excited-statespectroscopy [J]. Applied Physics Letters,1976,28(4):216-218.
    [12] W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man,and P. S. J. Russell, Supercontinuum generation in photonic crystal fibers and opticalfiber tapers: a novel light source [J]. J. Opt. Soc. Am. B,2002,19(9):2148-2155.
    [13] D. Akimov, A. Ivanov, M. Alfimov, S. Bagayev, T. Birks, W. Wadsworth, P.Russell, A. Fedotov, V. Pivtsov, A. Podshivalov, and A. Zheltikov, Spectralsuperbroadening of subnanojoule Cr:Forsterite femtosecond laser pulses in a taperedfiber [J]. JETP Letters,2001,74(9):460-463.
    [14] T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, Supercontinuumgeneration in tapered fibers [J]. Opt. Lett.,2000,25(19):1415-1417.
    [15] S. T. S rensen, A. Judge, C. L. Thomsen, and O. Bang, Optimum fiber tapersfor increasing the power in the blue edge of a supercontinuum-group-accelerationmatching [J]. Opt. Lett.,2011,36(6):816-818.
    [16] J. Lgsgaard, S. E. B. Libori, K. Hougaard, J. Riishede, T. T. Larsen, T.Srensen, T. P. Hansen, K. P. Hansen, M. D. Nielsen, J. B. Jensen, and A. Bjarklev.Dispersion properties of photonic crystal fibers-Issues and opportunities [C]. Boston,MA., United states, Engineered Porosity for Microphotonics and Plasmonics,2003,169-180.
    [17] J. K. Ranka, R. S. Windeler, and A. J. Stentz, Visible continuum generation inair-silica microstructure optical fibers with anomalous dispersion at800nm [J]. Opt.Lett.,2000,25(1):25-27.
    [18] P.-A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L.Labonté, P. Roy, C. Froehly, and P. Nérin, White-light supercontinuum generation innormally dispersive optical fiber using original multi-wavelength pumping system [J].Opt. Express,2004,12(19):4366-4371.
    [19] E. R ikk nen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C.Buchter, Supercontinuum generation by nanosecond dual-wavelength pumpinginmicrostructured optical fibers [J]. Opt. Express,2006,14(17):7914-7923.
    [20] T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann,Supercontinuum generation by femtosecond single and dual wavelength pumping inphotonic crystal fibers with two zero dispersion wavelengths [J]. Opt. Express,2005,13(23):9556-9569.
    [21] W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell,Supercontinuum and four-wave mixing with Q-switched pulses in endlesslysingle-mode photonic crystal fibres [J]. Opt. Express,2004,12(2):299-309.
    [22] S. Martin-Lopez, L. Abrardi, P. Corredera, M. Gonzalez Herraez, and A.Mussot, Spectrally-bounded continuous-wave supercontinuum generation in a fiber withtwo zero-dispersion wavelengths [J]. Opt. Express,2008,16(9):6745-6755.
    [23] A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, Tailoring CWsupercontinuum generation in microstructured fibers with two-zero dispersionwavelengths [J]. Opt. Express,2007,15(18):11553-11563.
    [24] K. M. Hilligs e, T. Andersen, H. Paulsen, C. Nielsen, K. M lmer, S. Keiding,R. Kristiansen, K. Hansen, and J. Larsen, Supercontinuum generation in a photoniccrystal fiber with two zero dispersion wavelengths [J]. Opt. Express,2004,12(6):1045-1054.
    [25] G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, Enhanced bandwidthof supercontinuum generated in microstructured fibers [J]. Opt. Express,2004,12(15):3471-3480.
    [26] J. C. Travers, S. V. Popov, and J. R. Taylor, Extended blue supercontinuumgeneration in cascaded holey fibers [J]. Opt. Lett.,2005,30(23):3132-3134.
    [27] J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor,Visible supercontinuum generation in photonic crystal fibers with a400W continuouswave fiber laser [J]. Opt. Express,2008,16(19):14435-14447.
    [28] C. Xiong, Z. Chen, and W. J. Wadsworth, Dual-Wavelength-PumpedSupercontinuum Generation in an All-Fiber Device [J]. J. Lightwave Technol.,2009,27(11):1638-1643.
    [29] A. Shirakawa, J. Ota, M. Musha, K. i. Nakagawa, K.-i. Ueda, J. R. Folkenberg,and J. Broeng, Large-mode-area erbium-ytterbium-doped photonic-crystal fiberamplifier for high-energy femtosecond pulses at1.55μm [J]. Opt. Express,2005,13(4):1221-1227.
    [30] S. P. Stark, J. C. Travers, and P. S. J. Russell, Extreme supercontinuumgeneration to the deep UV [J]. Opt. Lett.,2012,37(5):770-772.
    [31] Z. Zhu, and T. Brown, Experimental studies of polarization properties ofsupercontinua generated in a birefringent photonic crystal fiber [J]. Opt. Express,2004,12(5):791-796.
    [32] M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, Supercontinuumgeneration in a highly birefringent microstructured fiber [J]. Applied Physics Letters,2003,82(14):2197-2199.
    [33] T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi,Supercontinuum generation at1.55μm in a dispersion-flattenedpolarization-maintaining photonic crystal fiber [J]. Opt. Express,2003,11(13):1537-1540.
    [34] V. V. R. Kumar, A. George, W. Reeves, J. Knight, P. Russell, F. Omenetto,and A. Taylor, Extruded soft glass photonic crystal fiber for ultrabroad supercontinuumgeneration [J]. Opt. Express,2002,10(25):1520-1525.
    [35] H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V. V. R. K. Kumar, A.George, J. Knight, and P. Russell, Supercontinuum generation with200pJ laser pulsesin an extruded SF6fiber at1560nm [J]. Opt. Express,2003,11(24):3196-3201.
    [36] J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, V. Finazzi,J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J.Richardson. Non-silica microstructured optical fibers for mid-IR supercontinuumgeneration from2μm-5μm [C]. San Jose, CA, United states, Fiber Lasers III:Technology, Systems, and Applications,2006, SPIE.
    [37] J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V.Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J.Richardson, Mid-IR supercontinuum generation from nonsilica microstruetured opticalfibers [J]. IEEE Journal on Selected Topics in Quantum Electronics,2007,13(3):738-749.
    [38] A. Bozolan, C. J. de Matos, C. M. B. Cordeiro, E. M. dos Santos, and J.Travers, Supercontinuum generation in a water-core photonic crystal fiber [J]. Opt.Express,2008,16(13):9671-9676.
    [39] J. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer,and J. Herrmann, Two-octave supercontinuum generation in a water-filled photoniccrystal fiber [J]. Optics Express,2010,18(6):6230-6240.
    [40] G. E. Town, T. Funaba, T. Ryan, and K. Lyytikainen, Optical supercontinuumgeneration from nanosecond pump pulses in an irregularly microstructured air-silicaoptical fiber [J]. Applied Physics B: Lasers and Optics,2003,77(2):235-238.
    [41] D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, Solitonself-frequency shift cancellation in photonic crystal fibers [J]. Science,2003,301(5640):1705-1708.
    [42] Z. Chen, A. J. Taylor, and A. Efimov, Coherent mid-infrared broadbandcontinuum generation in non-uniform ZBLAN fiber taper [J]. Opt. Express,2009,17(7):5852-5860.
    [43] A. Efimov, A. Taylor, F. Omenetto, A. Yulin, N. Joly, F. Biancalana, D.Skryabin, J. Knight, and P. Russell, Time-spectrally-resolved ultrafast nonlineardynamics in small-core photonic crystal fibers: Experiment and modelling [J]. Opt.Express,2004,12(26):6498-6507.
    [44] A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton,Nonlinear propagation effects in antiresonant high-index inclusion photonic crystalfibers [J]. Opt. Lett.,2005,30(8):830-832.
    [45] A. Fuerbach, P. Steinvurzel, J. Bolger, and B. Eggleton, Nonlinear pulsepropagation at zero dispersion wavelength in anti-resonant photonic crystal fibers [J].Opt. Express,2005,13(8):2977-2987.
    [46] S. Dasgupta, B. P. Pal, and M. R. Shenoy, Nonlinear Spectral Broadening inSolid-Core Bragg Fibers [J]. J. Lightwave Technol.,2007,25(9):2475-2481.
    [47] B. Kibler, T. Martynkien, M. Szpulak, C. Finot, J. Fatome, J. Wojcik, W.Urbanczyk, and S. Wabnitz, Nonlinear femtosecond pulse propagation in an all-solidphotonic bandgap fiber [J]. Opt. Express,2009,17(12):10393-10398.
    [48] A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y.Quiquempois, Control of supercontinuum generation and soliton self-frequency shift insolid-core photonic bandgap fibers [J]. Opt. Lett.,2009,34(20):3083-3085.
    [49] O. Vanvincq, A. Kudlinski, A. Bétourné, Y. Quiquempois, and G. Bouwmans,Extreme deceleration of the soliton self-frequency shift by the third-order dispersion insolid-core photonic bandgap fibers [J]. J. Opt. Soc. Am. B,2010,27(11):2328-2335.
    [50] J. A. Cerqueira S, C. M. B. Cordeiro, F. Biancalana, P. J. Roberts, H. E.Hernandez-Figueroa, and C. H. B. Cruz, Nonlinear interaction between two differentphotonic bandgaps of a hybrid photonic crystal fiber [J]. Opt. Lett.,2008,33(18):2080-2082.
    [51] P. D. Rasmussen, J. L gsgaard, and O. Bang, Degenerate four wave mixing insolidcore photonic bandgap fibers [J]. Opt. Express,2008,16(6):4059-4068.
    [52] O. Vanvincq, B. Barviau, A. Mussot, G. Bouwmans, Y. Quiquempois, and A.Kudlinski, Significant reduction of power fluctuations at the long-wavelength edge of asupercontinuum generated in solid-core photonic bandgap fibers [J]. Opt. Express,2010,18(23):24352-24360.
    [53] V. Pureur, and J. M. Dudley, Nonlinear spectral broadening of femtosecondpulses in solid-core photonic bandgap fibers [J]. Opt. Lett.,2010,35(16):2813-2815.
    [54] V. Pureur, and J. M. Dudley, Design of solid core photonic bandgap fibers forvisible supercontinuum generation [J]. Optics Communications,2011,284(6):1661-1668.
    [55]方晓惠,胡明列,刘博文,栗岩峰,柴路,王清月,全固态带隙结构光子晶体光纤中非线性过程的数值模拟[J].量子电子学报,2008,25(6):742-748.
    [56]张斌,侯静,姜宗福,全固态光子带隙光纤中实现光谱可控的大功率超连续谱输出[J].光学学报,2010,30(9):2513-2518.
    [57] C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A.Galvanauskas, F. L. Terry Jr, M. J. Freeman, D. A. Nolan, and W. A. Wood,Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses[J]. IEEE Journal on Selected Topics in Quantum Electronics,2007,13(3):789-796.
    [58] G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi,Supercontinuum generation spanning over three octaves from UV to3.85μm in afluoride fiber [J]. Opt. Lett.,2009,34(13):2015-2017.
    [59] H. Jonathan, R. M. Curtis, L. B. Shaw, S. S. Jasbinder, and D. A. Ishwar.Supercontinuum Generation in an As2Se3-Based Chalcogenide PCF Using Four-WaveMixing and Soliton Self-Frequency Shift [C].2009, OWU6.
    [60] S. Roy, and P. Roy Chaudhuri, Supercontinuum generation in visible tomid-infrared region in square-lattice photonic crystal fiber made from highly nonlinearglasses [J]. Optics Communications,2009,282(17):3448-3455.
    [61] G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi,Ultrabroadband supercontinuum generation from ultraviolet to6.28μm in a fluoridefiber [J]. Applied Physics Letters,2009,95(16):161103.
    [62] N. Ducros, A. Labruyère, S. Février, F. Morin, F. Druon, M. Hanna, and P.Georges. Mid-IR Supercontinuum in a Fluorozirconate Fiber Pumped by a FemtosecondCPA System at1.6μm [C].2010, CPDB7.
    [63] M. Duhant, W. Renard, G. Canat, F. Smektala, J. Troles, P. Bourdon, and C.Planchat. Improving mid-infrared supercontinuum generation efficency by pumping afluoride fiber directly into the anomalous regime at1995nm [C].2011, CD9_1.
    [64] C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngs, C. L. Thomsen,J. Th gersen, S. R. Keiding, and O. Bang, Supercontinuum generation in ZBLANfibers: detailed comparison between measurement and simulation [J]. J. Opt. Soc. Am.B,2012,29(4):635-645.
    [65] C. L. Hagen, J. W. Walewski, and S. T. Sanders, Generation of a continuumextending to the midinfrared by pumping ZBLAN fiber with an ultrafast1550-nmsource [J]. IEEE Photonics Technology Letters,2006,18(1):91-93.
    [66] C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. F. L. Terry, M. J. Freeman,M. Poulain, and G. Mazé, Mid-infrared supercontinuum generation to4.5μm inZBLAN fluoride fibers by nanosecond diode pumping [J]. Opt. Lett.,2006,31(17):2553-2555.
    [67] C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas,H. G. Winful, J. F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, Power scalablemid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to1.3wattstime-averaged power [J]. Opt. Express,2007,15(3):865-871.
    [68] C. Xia, Z. Xu, M. N. Islam, F. L. Terry Jr, M. J. Freeman, A. Zakel, and J.Mauricio,10.5W time-averaged power mid-IR supercontinuum generation extendingbeyond4m With direct pulse pattern modulation [J]. IEEE Journal on Selected Topicsin Quantum Electronics,2009,15(2):422-434.
    [69] O. Kulkarni, V. Alexander, M. Kumar, M. N. Islam, M. J. Freeman, and F. L.Terry. Mid-IR Supercontinuum (SC) Generation in ZBLAN fiber pumped by Tm-dopedamplifier with fused silica SC input [C].2011, CThD2.
    [70] O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, J. F.L. Terry, M. Neelakandan, and A. Chan, Supercontinuum generation from~1.9to4.5μm in ZBLAN fiber with high average power generation beyond3.8μm using athulium-doped fiber amplifier [J]. J. Opt. Soc. Am. B,2011,28(10):2486-2498.
    [71] J. Geng, Q. Wang, and S. Jiang, High-spectral-flatness mid-infraredsupercontinuum generated from a Tm-doped fiber amplifier [J]. Appl. Opt.,2012,51(7):834-840.
    [72] P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George,C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, Over4000nm bandwidth ofmid-IR supercontinuum generation in sub-centimeter segments of highly nonlineartellurite PCFs [J]. Opt. Express,2008,16(10):7161-7168.
    [73] X. Feng, J. C. Flanagan, K. E. Frampton, P. Petropoulos, N. M. White, W. H.Loh, H. N. Rutt, and D. J. Richardson. Single-mode tellurite glass holey fiber withextremely large mode area for infrared applications [C]. San Diego, CA, United states,OFC/NFOEC2008,2008, OThR2.
    [74] X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P.Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. Price, H. N. Rutt, and D. J.Richardson, Single-mode tellurite glass holey fiber with extremely large mode area forinfrared nonlinear applications [J]. Opt. Express,2008,16(18):13651-13656.
    [75] L. Shaw, J. Sanghera, I. Aggarwal, and F. Hung, As-S and As-Se basedphotonic band gap fiber for IR laser transmission [J]. Opt. Express,2003,11(25):3455-3460.
    [76] J. M. Harbold, F.. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B.Shaw, and I. D. Aggarwal, Highly nonlinear As-S-Se glasses for all-optical switching[J]. Opt. Lett.,2002,27(2):119-121.
    [77] T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J.Richardson, Chalcogenide holey fibres [J]. Electronics Letters,2000,36(24):1998-2000.
    [78] L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N.Traynor, and A. Monteville, Fabrication of complex structures of Holey Fibers inChalcogenide glass [J]. Opt. Express,2006,14(3):1280-1285.
    [79] B. Ung, and M. Skorobogatiy, Chalcogenide microporous fibers for linear andnonlinear applications in the mid-infrared [J]. Opt. Express,2010,18(8):8647-8659.
    [80] J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal,Maximizing the bandwidth of supercontinuum generation in As2Se3chalcogenide fibers[J]. Opt. Express,2010,18(7):6722-6739.
    [81] J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal,Computational study of3-5μm source created by using supercontinuum generation inAs2S3chalcogenide fibers with a pump at2μm [J]. Opt. Lett.,2010,35(17):2907-2909.
    [82] R. J. Weiblen, A. Docherty, J. Hu, and C. R. Menyuk, Calculation of theexpected bandwidth for a mid-infrared supercontinuum source based on As2S3chalcogenide photonic crystal fibers [J]. Opt. Express,2010,18(25):26666-26674.
    [83] S. Brandon, T. Peter, K. Fred, N. Vinh, S. Jas, and A. Ishwar. IRSupercontinuum Generation in As-Se Photonic Crystal Fiber [C].2005, TuC5.
    [84] L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal. All-fiber mid-IRsupercontinuum source from1.5to5μm [C]. San Francisco, CA, United states, FiberLasers VIII: Technology, Systems, and Applications,2011,79140P.
    [85] M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I.Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F.Smektala, Microstructured chalcogenide optical fibers from As2S3glass: towards newIR broadband sources [J]. Opt. Express,2010,18(25):26655-26665.
    [86] X. Yan, C. Chaudhari, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, Ultraflatsupercontinuum generation in an As2S3-based chalcogenide core microstructured fiber[J].2010,7598(1):75981M.
    [87] D.-I. Yeom, E. C. M gi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J.Eggleton, Low-threshold supercontinuum generation in highly nonlinear chalcogenidenanowires [J]. Opt. Lett.,2008,33(7):660-662.
    [88] D. D. Hudson, S. A. Dekker, E. C. M gi, A. C. Judge, S. D. Jackson, E. Li, J.S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, Octave spanningsupercontinuum in an As2S3taper using ultralow pump pulse energy [J]. Opt. Lett.,2011,36(7):1122-1124.
    [89] N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame,G. Cerullo, A. Jha, and A. K. Kar, Supercontinuum generation in an ultrafastlaserinscribed chalcogenide glass waveguide [J]. Opt. Express,2007,15(24):15776-15781.
    [90] M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton,Supercontinuum generation in dispersion engineered highly nonlinear(γ=10/W/m)As2S3chalcogenide planar waveguide [J]. Opt. Express,2008,16(19):14938-14944.
    [91]夏兰叶,文建国,赵楚军,谢栋,微结构硫化物光纤中中红外超连续谱的产生[J].激光与光电子学进展,2011,041901.
    [92] L. Liu, G. Qin, Q. Tian, D. Zhao, and W. Qin, Numerical investigation ofmid-infrared supercontinuum generation up to5μm in single mode fluoride fiber [J].Opt. Express,2011,19(11):10041-10048.
    [93]杨未强,侯静,张斌,王彦斌,刘泽金,2μm波段脉冲激光抽运碲化物光子晶体光纤产生中红外超连续谱的理论研究[J].强激光与粒子束,已录用.
    [94]郝志坚,雷大军,赵楚军,谢栋,文双春,范滇元,两级光纤中的中红外超连续谱产生[J].中国激光,2011,38(01):0105009.
    [95] S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason,Supercontinuum generation in submicron fibre waveguides [J]. Opt. Express,2004,12(13):2864-2869.
    [96] J. M. Dudley, G. Genty, euml, ry, S. Coen, eacute, and phane,Supercontinuum generation in photonic crystal fiber [J]. Reviews of Modern Physics,2006,78(4):1135.
    [97] G. P. Agrawal. Nonlinear fiber optics [M]. San Diego: Academic Press,2007.
    [98] Y. R. Shen. The principles of nonlinear optics [M]. Wiley-Interscience,2003.
    [99] A. Hasegawa, and F. Tappert, Transmission of stationary nonlinear opticalpulses in dispersive dielectric fibers. I. Anomalous dispersion [J]. Applied PhysicsLetters,1973,23(3):142-144.
    [100] R. A. Fisher, and W. K. Bischel, Numerical studies of the interplay betweenself-phase modulation and dispersion for intense plane-wave laser pulses [J]. Journal ofApplied Physics,1975,46(11):4921-4934.
    [101] R. A. Fisher, and W. Bischel, The role of linear dispersion in plane-waveself-phase modulation [J]. Applied Physics Letters,1973,23(12):661-663.
    [102] G. H. Weiss, and A. A. Maradudin, The Baker-Hausdorff Formula and aProblem in Crystal Physics [J]. J. Math. Phys.,1962,3(4):771-777.
    [103] J. Fleck, J. Morris, and M. Feit, Time-dependent propagation of high energylaser beams through the atmosphere [J]. Applied Physics A: Materials Science&Processing,1976,10(2):129-160.
    [104] M. Lax, J. H. Batteh, and G. P. Agrawal, Channeling of intenseelectromagnetic beams [J]. Journal of Applied Physics,1981,52(1):109-125.
    [105] J. Hult, A Fourth-Order Runge-Kutta in the Interaction Picture Method forSimulating Supercontinuum Generation in Optical Fibers [J]. J. Lightwave Technol.,2007,25(12):3770-3775.
    [106] O. V. Sinkin, R. Holzl hner, J. Zweck, and C. R. Menyuk, Optimization ofthe Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems [J].J. Lightwave Technol.,2003,21(1):61-68.
    [107] C. W. Gear. Numerical Initial Value Problems in Ordinary DifferentialEquations [M]. New Jersey: Prentice Hall PTR,1971.
    [108] A. Heidt, Efficient Adaptive Step Size Method for the Simulation ofSupercontinuum Generation in Optical Fibers [J]. J. Lightwave Technol.,2009,27(18):3984-3991.
    [109] J. M. Dudley, and J. R. Taylor. Supercontinuum Generation in Optical Fibers[M]. Cambridge: Cambridge University Press,2010.
    [110] P. V. Mamyshev, and S. V. Chernikov, Ultrashort-pulse propagation inoptical fibers [J]. Opt. Lett.,1990,15(19):1076-1078.
    [111] J. Laegsgaard, Mode profile dispersion in the generalised nonlinearSchr dinger equation [J]. Opt. Express,2007,15(24):16110-16123.
    [112] R. G. Smith, Optical Power Handling Capacity of Low Loss Optical Fibersas Determined by Stimulated Raman and Brillouin Scattering [J]. Appl. Opt.,1972,11(11):2489-2494.
    [113] J. W. Goodman. Statistical optics [M]. Wiley,2000.
    [114] M. H. Frosz, Validation of input-noise model for simulations ofsupercontinuum generation and rogue waves [J]. Opt. Express,2010,18(14):14778-14787.
    [115] M. H. Frosz, O. Bang, and A. Bjarklev, Soliton collision and Raman gainregimes in continuous-wave pumped supercontinuum generation [J]. Opt. Express,2006,14(20):9391-9407.
    [116] S. B. Cavalcanti, G. P. Agrawal, and M. Yu, Noise amplification indispersive nonlinear media [J]. Physical Review A,1995,51(5):4086.
    [117] A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois,Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers[J]. Opt. Express,2004,12(13):2838-2843.
    [118] A. V. Gorbach, and D. V. Skryabin, Light trapping in gravity-like potentialsand expansion of supercontinuum spectra in photonic-crystal fibres [J]. Nat Photon,2007,1(11):653-657.
    [119] N. Nishizawa, and T. Goto, Characteristics of pulse trapping by ultrashortsoliton pulse in optical fibers across zerodispersion wavelength [J]. Opt. Express,2002,10(21):1151-1160.
    [120] D. Grischkowsky, and A. C. Balant, Optical pulse compression based onenhanced frequency chirping [J]. Applied Physics Letters,1982,41(1):1-3.
    [121] M. H. Frosz, T. S rensen, and O. Bang, Nanoengineering of photonic crystalfibers for supercontinuum spectral shaping [J]. J. Opt. Soc. Am. B,2006,23(8):1692-1699.
    [122] E. A. Golovchenko, and A. N. Pilipetskii, Unified analysis of four-photonmixing, modulational instability, and stimulated Raman scattering under variouspolarization conditions in fibers [J]. J. Opt. Soc. Am. B,1994,11(1):92-101.
    [123] R. H. Stolen, and J. E. Bjorkholm, Parametric amplification and frequencyconversion in optical fibers [J]. IEEE Journal of Quantum Electronics,1982,18(7):1062-1072.
    [124] R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, Ramanresponse function of silica-core fibers [J]. J. Opt. Soc. Am. B,1989,6(6):1159-1166.
    [125] S. Coen, eacute, phane, D. A. Wardle, and J. D. Harvey, Observation ofNon-Phase-Matched Parametric Amplification in Resonant Nonlinear Optics [J].Physical Review Letters,2002,89(27):273901.
    [126] F. Vanholsbeeck, P. Emplit, and S. Coen, Complete experimentalcharacterization of the influence of parametric four-wave mixing on stimulated Ramangain [J]. Opt. Lett.,2003,28(20):1960-1962.
    [127] R. H. Stolen, C. Lee, and R. K. Jain, Development of the stimulated Ramanspectrum in single-mode silica fibers [J]. J. Opt. Soc. Am. B,1984,1(4):652-657.
    [128] K. J. Blow, and D. Wood, Theoretical description of transient stimulatedRaman scattering in optical fibers [J]. IEEE Journal of Quantum Electronics,1989,25(12):2665-2673.
    [129] Q. Lin, and G. P. Agrawal, Raman response function for silica fibers [J]. Opt.Lett.,2006,31(21):3086-3088.
    [130] D. Hollenbeck, and C. D. Cantrell, Multiple-vibrational-mode model forfiber-optic Raman gain spectrum and response function [J]. J. Opt. Soc. Am. B,2002,19(12):2886-2892.
    [131] W. Q. Zhang, S. Afshar V, and T. M. Monro, A genetic algorithm basedapproach to fiber design for high coherence and large bandwidth supercontinuumgeneration [J]. Opt. Express,2009,17(21):19311-19327.
    [132] J. P. Gordon, Theory of the soliton self-frequency shift [J]. Opt. Lett.,1986,11(10):662-664.
    [133] J. Herrmann, and A. Nazarkin, Soliton self-frequency shift for pulses with aduration less than the period of molecular oscillations [J]. Opt. Lett.,1994,19(24):2065-2067.
    [134] M. H. Frosz, Supercontinuum generation in photonic crystal fibres:Modelling and dispersion engineering for spectral shaping [D]. Lyngby: University ofDenmark,2006
    [135] A. A. Voronin, and A. M. Zheltikov, Soliton self-frequency shift deceleratedby self-steepening [J]. Opt. Lett.,2008,33(15):1723-1725.
    [136] P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, Ultrashort pulsepropagation, pulse breakup, and fundamental soliton formation in a single-mode opticalfiber [J]. IEEE Journal of Quantum Electronics,1987,23(11):1938-1946.
    [137] J. K. Lucek, and K. J. Blow, Soliton self-frequency shift intelecommunications fiber [J]. Physical Review A,1992,45(9):6666-6674.
    [138] Y. Kodama, and A. Hasegawa, Nonlinear pulse propagation in a monomodedielectric guide [J]. IEEE Journal of Quantum Electronics,1987,23(5):510-524.
    [139] C.-M. Chen, and P. L. Kelley, Nonlinear pulse compression in optical fibers:scaling laws and numerical analysis [J]. J. Opt. Soc. Am. B,2002,19(9):1961-1967.
    [140] J. P. Gordon, Dispersive perturbations of solitons of the nonlinearSchr dinger equation [J]. J. Opt. Soc. Am. B,1992,9(1):91-97.
    [141] J. N. Elgin, T. Brabec, and S. M. J. Kelly, A perturbative theory of solitonpropagation in the presence of third order dispersion [J]. Optics Communications,1995,114(3-4):321-328.
    [142] P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, Nonlinear pulsepropagation in the neighborhood of the zero-dispersion wavelength of monomodeoptical fibers [J]. Opt. Lett.,1986,11(7):464-466.
    [143] M. Erkintalo, G. Genty, and J. M. Dudley. Soliton collision induceddispersive wave generation [C]. San Jose, CA, United states, CLEO/QELS,2010,CTuX6.
    [144] M. Erkintalo, G. Genty, and J. M. Dudley, Experimental signatures ofdispersive waves emitted during soliton collisions [J]. Optics Express,2010,18(13):13379-13384.
    [145] L. Tartara, I. Cristiani, and V. Degiorgio, Blue light and infrared continuumgeneration by soliton fission in a microstructured fiber [J]. Applied Physics B: Lasersand Optics,2003,77(2):307-311.
    [146] I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, Dispersive wavegeneration by solitons in microstructured optical fibers [J]. Opt. Express,2004,12(1):124-135.
    [147] N. Akhmediev, and M. Karlsson, Cherenkov radiation emitted by solitons inoptical fibers [J]. Physical Review A,1995,51(3):2602.
    [148] S. Roy, S. K. Bhadra, K. Saitoh, M. Koshiba, and G. P. Agrawal, Dynamicsof Raman soliton during supercontinuum generation near the zero-dispersionwavelength of optical fibers [J]. Optics Express,2011,19(11):10443-10455.
    [149] A. V. Yulin, D. V. Skryabin, and P. S. J. Russell, Four-wave mixing of linearwaves and solitons in fibers with higher-orderdispersion [J]. Opt. Lett.,2004,29(20):2411-2413.
    [150] D. V. Skryabin, and A. V. Yulin, Theory of generation of new frequencies bymixing of solitons and dispersive waves in optical fibers [J]. Physical Review E,2005,72(1):016619.
    [151] A. B. Fedotov, A. N. Naumov, A. M. Zheltikov, I. Bugar, J. D. Chorvat, D.Chorvat, A. P. Tarasevitch, and D. von der Linde, Frequency-tunable supercontinuumgeneration in photonic-crystal fibers by femtosecond pulses of an optical parametricamplifier [J]. J. Opt. Soc. Am. B,2002,19(9):2156-2164.
    [152] J. Price, W. Belardi, T. Monro, A. Malinowski, A. Piper, and D. Richardson,Soliton transmission and supercontinuum generation in holey fiber, using a diodepumped Ytterbium fiber source [J]. Opt. Express,2002,10(8):382-387.
    [153] W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F.G. Omenetto, A. Efimov, and A. J. Taylor, Transformation and control of ultra-shortpulses in dispersion-engineered photonic crystal fibres [J]. Nature,2003,424(6948):511-515.
    [154] K. M. Hilligs e, H. N. Paulsen, J. Th gersen, S. R. Keiding, and J. J. Larsen,Initial steps of supercontinuum generation in photonic crystal fibers [J]. J. Opt. Soc. Am.B,2003,20(9):1887-1893.
    [155] J. T. Moeser, N. A. Wolchover, J. C. Knight, and F. G. Omenetto, Initialdynamics of supercontinuum generation in highly nonlinear photonic crystal fiber [J].Opt. Lett.,2007,32(8):952-954.
    [156] K. Sakamaki, M. Nakao, M. Naganuma, and M. Izutsu, Soliton inducedsupercontinuum generation in photonic crystal fiber [J]. IEEE Journal on SelectedTopics in Quantum Electronics,2004,10(5):876-884.
    [157] A. V. Husakou, and J. Herrmann, Supercontinuum Generation ofHigher-Order Solitons by Fission in Photonic Crystal Fibers [J]. Physical ReviewLetters,2001,87(20):203901.
    [158] J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C.Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, Experimental Evidence forSupercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers [J].Physical Review Letters,2002,88(17):173901.
    [159] G. Genty, M. Lehtonen, and H. Ludvigsen, Effect of cross-phase modulationon supercontinuum generated in microstructured fibers with sub-30fs pulses [J]. Opt.Express,2004,12(19):4614-4624.
    [160] R. Driben, F. Mitschke, and N. Zhavoronkov, Cascaded interactions betweenRaman induced solitons and dispersive waves in photonic crystal fibers at the advancedstage of supercontinuum generation [J]. Optics Express,2010,18(25):25993-25998.
    [161] S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J.Wadsworth, and P. S. J. Russell, White-light supercontinuum generation with60-pspump pulses in a photonic crystal fiber [J]. Opt. Lett.,2001,26(17):1356-1358.
    [162] L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J.Eggleton, Compact broadband continuum source based on microchip laser pumpedmicrostructured fibre [J]. Electronics Letters,2001,37(9):558-560.
    [163] A. V. Avdokhin, S. V. Popov, and J. R. Taylor, Continuous-wave,high-power, Raman continuum generation in holey fibers [J]. Opt. Lett.,2003,28(15):1353-1355.
    [164] T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen,High average power supercontinuum generation in photonic crystal fibers [J]. OpticsCommunications,2003,228(1-3):71-78.
    [165] M. Seefeldt, A. Heuer, and R. Menzel, Compact white-light source with anaverage output power of2.4W and900nm spectral bandwidth [J]. OpticsCommunications,2003,216(1-3):199-202.
    [166] M. González-Herráez, S. Martín-López, P. Corredera, M. L. Hernanz, and P.R. Horche, Supercontinuum generation using a continuous-wave Raman fiber laser [J].Optics Communications,2003,226(1-6):323-328.
    [167] J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G.J rgensen, Pulsed and continuous-wave supercontinuum generation in highly nonlinear,dispersion-shifted fibers [J]. Applied Physics B: Lasers and Optics,2003,77(2):211-218.
    [168] A. K. Abeeluck, and C. Headley, Supercontinuum growth in a highlynonlinear fiber with a low-coherence semiconductor laser diode [J]. Applied PhysicsLetters,2004,85(21):4863-4865.
    [169] M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, High-order solitonsand the modulational instability [J]. Physical Review A,1989,39(11):5768.
    [170] J. N. Kutz, C. Lyng, and B. Eggleton, Enhanced SupercontinuumGeneration through Dispersion-Management [J]. Opt. Express,2005,13(11):3989-3998.
    [171] R. V. J. Raja, K. Porsezian, and K. Nithyanandan,Modulational-instability-induced supercontinuum generation with saturable nonlinearresponse [J]. Physical Review A-Atomic, Molecular, and Optical Physics,2010,82(1):013825.
    [172] F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, Therole of pump incoherence in continuous-wave supercontinuum generation [J]. Opt.Express,2005,13(17):6615-6625.
    [173] J. M. Stone, and J. C. Knight, Visibly "white" light generation inuniformphotonic crystal fiber using a microchip laser [J]. Opt. Express,2008,16(4):2670-2675.
    [174] N. Korneev, E. A. Kuzin, B. Ibarra-Escamilla, M. Bello-Jimènez, and A.Flores-Rosas, Initial development of supercontinuum in fiberswith anomalousdispersion pumped bynanosecond-long pulses [J]. Opt. Express,2008,16(4):2636-2645.
    [175] S. Kobtsev, and S. Smirnov, Modelling of high-power supercontinuumgeneration in highly nonlinear, dispersion shifted fibers at CW pump [J]. Opt. Express,2005,13(18):6912-6918.
    [176] S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J.Wadsworth, and P. S. J. Russell, Supercontinuum generation by stimulated Ramanscattering and parametric four-wave mixing in photonic crystal fibers [J]. J. Opt. Soc.Am. B,2002,19(4):753-764.
    [177] A. K. Abeeluck, and C. Headley, Continuous-wave pumping in theanomalous-and normal-dispersionregimes of nonlinear fibers for supercontinuumgeneration [J]. Opt. Lett.,2005,30(1):61-63.
    [178] S. B. Cavalcanti, J. Cressoni, eacute, C, H. R. da Cruz, and A. S.Gouveia-Neto, Modulation instability in the region of minimum group-velocitydispersion of single-mode optical fibers via an extended nonlinear Schrödingerequation [J]. Physical Review A,1991,43(11):6162.
    [179] F. K. Abdullaev, S. A. Darmanyan, S. Bischoff, P. L. Christiansen, and M. P.S rensen, Modulational instability in optical fibers near the zero dispersion point [J].Optics Communications,1994,108(1-3):60-64.
    [180] S. Pitois, and G. Millot, Experimental observation of a new modulationalinstability spectral window induced by fourth-order dispersion in a normally dispersivesingle-mode optical fiber [J]. Optics Communications,2003,226(1-6):415-422.
    [181] J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J.Wadsworth, and P. St.J. Russell, Scalar modulation instability in the normal dispersionregime by use of a photonic crystal fiber [J]. Opt. Lett.,2003,28(22):2225-2227.
    [182] A. Demircan, and U. Bandelow, Supercontinuum generation by themodulation instability [J]. Optics Communications,2005,244(1-6):181-185.
    [183] E. A. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov,Mutual influence of the parametric effects and stimulated Raman scattering in opticalfibers [J]. IEEE Journal of Quantum Electronics,1990,26(10):1815-1820.
    [184] L. I. Pavlov, L. M. Kovachev, D. Y. Dakova, S. V. Naboko, D. V.Stoimenova, R. L. Pavlov, S. I. Pavlova, I. Y. Tabanliyski, and S. P. Penchev. Effect ofparametric processes on the stimulated Raman scattering in fibers [C]. Sunny Beach,Bulgaria,14th International School on Quantum Electronics: Laser Physics andApplications,2007,66040P.
    [185] N. A. Silva, N. J. Muga, and A. N. Pinto, Influence of the Stimulated RamanScattering on the Four-Wave Mixing Process in Birefringent Fibers [J]. J. LightwaveTechnol.,2009,27(22):4979-4988.
    [186] A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J.C. Knight, W. J. Wadsworth, and P. S. J. Russell, Widely tunable optical parametricgeneration in a photonic crystal fiber [J]. Opt. Lett.,2005,30(7):762-764.
    [187] J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J.Eggleton, and S. Coen, Supercontinuum generation in air-silica microstructured fiberswith nanosecond and femtosecond pulse pumping [J]. J. Opt. Soc. Am. B,2002,19(4):765-771.
    [188] G. Genty, T. Ritari, and H. Ludvigsen, Supercontinuum generation in largemode-area microstructured fibers [J]. Opt. Express,2005,13(21):8625-8633.
    [189] E. A. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov,Numerical analysis of the Raman spectrum evolution and soliton pulse generation insingle-mode fibers [J]. J. Opt. Soc. Am. B,1991,8(8):1626-1632.
    [190] J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, All-silicasingle-mode optical fiber with photonic crystal cladding [J]. Opt. Lett.,1996,21(19):1547-1549.
    [191] J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, Photonic Band GapGuidance in Optical Fibers [J]. Science,1998,282(5393):1476-1478.
    [192] T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd,Full2-D photonic bandgaps in silica/air structures [J]. Electronics Letters,1995,31(22):1941-1943.
    [193] P. Yeh, A. Yariv, and E. Marom, Theory of Bragg fiber [J]. J. Opt. Soc. Am.,1978,68(9):1196-1201.
    [194] V. Pureur, A. Betourne, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace,A. Le Rouge, Y. Quiquempois, and M. Douay, Overview on solid core photonicbandgap fibers [J]. Fiber and Integrated Optics,2009,28(1):27-50.
    [195] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J.Roberts, and D. C. Allan, Single-Mode Photonic Band Gap Guidance of Light in Air [J].Science,1999,285(5433):1537-1539.
    [196] R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J.Trevor. Tunable photonic band gap fiber [C]. Anaheim, CA, United states, Optical FiberCommunication Conference and Exhibit,2002,466-468.
    [197] F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight,and P. S. J. Russell, All-solid photonic bandgap fiber [J]. Opt. Lett.,2004,29(20):2369-2371.
    [198] A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. S. J.Russell, Photonic bandgap with an index step of one percent [J]. Opt. Express,2005,13(1):309-314.
    [199] A. Wang, A. K. George, and J. C. Knight, Three-level neodymium fiber laserincorporating photonic bandgap fiber [J]. Opt. Lett.,2006,31(10):1388-1390.
    [200] V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y.Jaouen, Ytterbium-doped solid core photonic bandgap fiber for laser operation around980nm [J]. Applied Physics Letters,2008,92(6):061113.
    [201] E. M. Dianov, M. E. Likhachev, and S. Fevrier, Solid-core photonic bandgapfibers for high-power fiber lasers [J]. IEEE Journal on Selected Topics in QuantumElectronics,2009,15(1):20-29.
    [202] J. Shephard, J. Jones, D. Hand, G. Bouwmans, J. Knight, P. Russell, and B.Mangan, High energy nanosecond laser pulses delivered single-mode throughhollow-core PBG fibers [J]. Opt. Express,2004,12(4):717-723.
    [203] L. Vincetti, F. Poli, and S. Selleri, Confinement loss and nonlinearityanalysis of air-guiding modified honeycomb photonic bandgap fibers [J]. IEEEPhotonics Technology Letters,2006,18(3):508-510.
    [204] F. Couny, F. Benabid, and P. S. Light, Subwatt Threshold cw RamanFiber-Gas Laser Based on H2-Filled Hollow-Core Photonic Crystal Fiber [J]. PhysicalReview Letters,2007,99(14):143903.
    [205] T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird,Bend loss in all-solid bandgap fibres [J]. Opt. Express,2006,14(12):5688-5698.
    [206] N. Yi, A. Liang, X. Yuejian, Z. Lei, and P. Jiangde, Confinement loss insolid-core photonic bandgap fibers [J]. Optics Communications,2004,235(4-6):305-310.
    [207] K. Saitoh, and M. Koshiba, Confinement losses in air-guiding photonicbandgap fibers [J]. IEEE Photonics Technology Letters,2003,15(2):236-238.
    [208] J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George,and D. M. Bird, An improved photonic bandgap fiber based on an array of rings [J]. Opt.Express,2006,14(13):6291-6296.
    [209] A. Bétourné, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin,and M. Douay, Solid photonic bandgap fiber assisted by anextra air-clad structure forlow-loss operationaround1.5μm [J]. Opt. Express,2007,15(2):316-324.
    [210] A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay,Improvements of solid-core photonic bandgap fibers by means of interstitial air holes [J].Opt. Lett.,2007,32(12):1719-1721.
    [211] G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M.Douay, Fabrication and characterization of an all-solid2D photonic bandgap fiber witha low-loss region (<20dB/km) around1550nm [J]. Opt. Express,2005,13(21):8452-8459.
    [212] G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, Design ofall-solid bandgap fiber with improved confinement and bend losses [J]. IEEE PhotonicsTechnology Letters,2006,18(24):2560-2562.
    [213] G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, Low-loss all-solidphotonic bandgap fiber [J]. Opt. Lett.,2007,32(9):1023-1025.
    [214] N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton,Antiresonant reflecting photonic crystal optical waveguides [J]. Opt. Lett.,2002,27(18):1592-1594.
    [215] T. P. White, R. C. McPhedran, C. Martijnde Sterke, N. M. Litchinitser, andB. J. Eggleton, Resonance and scattering in microstructured optical fibers [J]. Opt. Lett.,2002,27(22):1977-1979.
    [216] A. Abeeluck, N. Litchinitser, C. Headley, and B. Eggleton, Analysis ofspectral characteristics of photonic bandgap waveguides [J]. Opt. Express,2002,10(23):1320-1333.
    [217] N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C.McPhedran, and C. M. de Sterke, Resonances in microstructured optical waveguides [J].Opt. Express,2003,11(10):1243-1251.
    [218]张斌,侯静,姜宗福,材料色散对全固态带隙光纤带内色散的影响[J].国防科技大学学报,2011,33(2):5-8.
    [219] M. Poulain, M. Poulain, and J. Lucas, Verres fluores au tetrafluorure dezirconium proprietes optiques d'un verre dope au Nd3+[J]. Materials Research Bulletin,1975,10(4):243-246.
    [220] R. N. Brown, and J. J. Hutta, Material dispersion in high optical qualityheavy metal fluoride glasses [J]. Appl. Opt.,1985,24(24):4500-4503.
    [221] A. Sa ssy, J. Botineau, L. Macon, and G. Maze, Diffusion Raman dans unefibre optique en verre fluoré [J]. J. Physique Lett.,1985,46(6):289-294.
    [222] Z. Chen, A. J. Taylor, and A. Efimov, Soliton dynamics in non-uniform fibertapers: analytical description through an improved moment method [J]. J. Opt. Soc. Am.B,2010,27(5):1022-1030.
    [223] C. Petersen, S. Dupont, C. Agger, J. Th gersen, O. Bang, and S. RudKeiding, Stimulated Raman scattering in soft glass fluoride fibers [J]. J. Opt. Soc. Am.B,2011,28(10):2310-2313.
    [224]裴珊珊,江中澳,简水生,碲化物玻璃在光纤光学中的应用及研究进展[J].激光与红外,2004,34(4):254-256.
    [225] J. S. Wang, E. M. Vogel, and E. Snitzer, Tellurite glass: a new candidate forfiber devices [J]. Optical Materials,1994,3(3):187-203.
    [226]张斌,侯静,姜宗福,碲化物微结构光纤应用于中红外超连续谱的产生[J].红外与激光工程,2011,40(2):328-331.
    [227] X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, Transient Ramanresponse and soliton self-frequency shift in tellurite microstructured fiber [J]. Journal ofApplied Physics,2010,108(12):123110.
    [228] W. Aimin, Advances in microstructured optical fibres and their applications[D]. Bath: University of Bath,2010
    [229] D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M.Monro, Thulium pumped high power supercontinuum in loss-determined optimumlengths of tellurite photonic crystal fiber [J]. Applied Physics Letters,2010,97(6):061106.
    [230] A. V. Husakou, and J. Herrmann, Supercontinuum generation in photoniccrystal fibers made from highly nonlinear glasses [J]. Applied Physics B: Lasers andOptics,2003,77(2):227-234.
    [231] T. Kohoutek, X. Yan, T. W. Shiosaka, S. N. Yannopoulos, A.Chrissanthopoulos, T. Suzuki, and Y. Ohishi, Enhanced Raman gain of Ge-Ga-Sb-Schalcogenide glass for highly nonlinear microstructured optical fibers [J]. J. Opt. Soc.Am. B,2011,28(9):2284-2290.
    [232] C. Lin, and R. H. Stolen, Backward Raman amplification and pulsesteepening in silica fibers [J]. Applied Physics Letters,1976,29(7):428-431.
    [233] M. Ikeda, Stimulated Raman amplification characteristics in long spansingle-mode silica fibers [J]. Optics Communications,1981,39(3):148-152.
    [234] S. Coen, and M. Haelterman, Continuous-wave ultrahigh-repetition-ratepulse-train generation through modulational instability in a passive fiber cavity [J]. Opt.Lett.,2001,26(1):39-41.
    [235] G. P. Agrawal, Modulation instability in erbium-doped fiber amplifiers [J].IEEE Photonics Technology Letters,1992,4(6):562-564.
    [236] J. Koroshetz, E. Schneider, I. T. McKinnie, D. Smith, J. Unternahrer, W. A.Clarkson, J. Nilsson, J. Sahu, P. Jander, A. Carter, K. Tankala, J. Farroni, and G.Duchak. High power eye-safe fiber transmitter for free space optical communications
    [C]. Big Sky, MT, United states,2004IEEE Aerospace Conference Proceedings,2004,1730-1735.
    [237] J. Ma, M. Li, L. Tan, Y. Zhou, S. Yu, and Q. Ran, Experimentalinvestigation of radiation effect on erbium-ytterbium co-doped fiber amplifier for spaceoptical communication in low-dose radiation environment [J]. Opt. Express,2009,17(18):15571-15577.
    [238] J. Nicholson, A. Yablon, P. Westbrook, K. Feder, and M. Yan, High power,single mode, all-fiber source of femtosecond pulses at1550nm and its use insupercontinuum generation [J]. Opt. Express,2004,12(13):3025-3034.
    [239] J. Feng, Y. Li, X. Tian, J. Liu, and K. Zhang, Noise suppression, linewidthnarrowing of a master oscillator power amplifier at1.56μm and the second harmonicgeneration output at780nm [J]. Opt. Express,2008,16(16):11871-11877.
    [240] M. Mehmet, S. Steinlechner, T. Eberle, H. Vahlbruch, A. Thüring, K.Danzmann, and R. Schnabel, Observation of cw squeezed light at1550nm [J]. Opt.Lett.,2009,34(7):1060-1062.
    [241] G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N.Payne, Fabrication and Characterization of Yb3+: Er3+Phosphosilicate Fibers for Lasers[J]. J. Lightwave Technol.,1998,16(11):1990.
    [242] J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, Yb3+sensitised Er3+doped silica optical fibre with ultrahigh transfer efficiency and gain [J].Electronics Letters,1991,27(21):1958-1959.
    [243] P. R. Kaczmarek, T. Rogowski, E. Kopczynski, P. Karnas, and K. M.Abramski. High output power erbium-ytterbium doped fibre amplifier [C]. Athens,Greece,200810th ICTON,2008,350-352.
    [244] Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R.Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper,Erbium:ytterbium codoped large-core fiber laser with297-W continuous-wave outputpower [J]. IEEE Journal on Selected Topics in Quantum Electronics,2007,13(3):573-578.
    [245] T. Fabio Di, S.-L. Matthias, and N. Marc.300-μJ Pulse-Energy,2-ns PulseFiber Amplifier at1567nm [C].2005, TuC4.
    [246] S. Desmoulins, and F. Di Teodoro, High-gain Er-doped fiber amplifiergenerating eye-safe MW peak-power, mJ-energy pulses [J]. Opt. Express,2008,16(4):2431-2437.
    [247] B. Peng, H. Zhang, M. Gong, and P. Yan, All-fiber eye-safe pulsed laserwith Er-Yb Co-doped multi-stage amplifier [J]. Laser Physics,2009,19(10):2019-2022.
    [248] J.W. Nicholson, A.M. DeSantolo, S. Ghalmi, J.M. Fini, J. Fleming, E.Monberg, and F. DiMarcello. Nanosecond Pulse Amplification in a Higher-Order-ModeErbium-Doped Fiber Amplifier [C]. CLEO,2010, CPDB5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700